聚乙烯回收料改性研究
- 格式:doc
- 大小:2.00 MB
- 文档页数:20
无卤阻燃改性聚乙烯的研究的开题报告一、选题背景和研究意义随着人们对环境保护的重视以及消防安全的提高,阻燃材料的需求越来越大。
聚乙烯作为一种广泛应用的材料,在电力、电子、汽车、建筑等领域都有着广泛的应用。
然而,普通的聚乙烯不具备阻燃性能,一旦遇火易燃并释放有害气体,给人们的生命财产带来威胁。
因此,如何赋予聚乙烯良好的阻燃性能成为一个重要的研究方向。
目前,常见的阻燃聚乙烯主要采用溴、氯等卤素类化合物进行改性。
然而,卤素化合物的应用却存在着一系列的问题,如卤素化合物是气候变化的主要元凶之一,其燃烧后产生的有害气体对环境和人体健康造成的影响也越来越严重。
因此,需要寻找一种替代品。
本研究将探讨采用无卤素化合物进行聚乙烯改性的方法,研究无卤阻燃材料的制备工艺以及阻燃机理,为深入开发无卤阻燃新材料提供理论依据和实验基础。
二、研究内容本研究拟采用无卤素化合物为聚乙烯添加剂,通过有机磷化合物、铝氢氧化物和硅酸铝等材料的复配与改性,制备出具有较强阻燃性能的聚乙烯复合材料。
主要研究内容包括以下几个方面:1. 无卤化合物的选择及其作用机理的分析;2. 无卤阻燃辅助剂的设计和制备;3. 有机磷复合无卤阻燃剂的合成及优化;4. 聚乙烯复合材料的制备工艺及性能测试;5. 对聚乙烯复合材料的阻燃机理进行深入探讨。
三、研究方法和技术路线本研究采用的方法包括物理混合法和化学反应法,其中物理混合法主要用于添加剂的预处理和辅助剂的混合,化学反应法主要用于有机磷化合物与聚乙烯的共混反应。
具体的技术路线如下:1. 无卤化合物的选择和筛选:筛选一系列的无卤素化合物,分别与聚乙烯预处理后的样品进行混合,并进行阻燃性能测试,选取阻燃性能最优的化合物。
2.预处理添加剂的设计与制备:选取适合阻燃聚乙烯的添加剂,并与无卤辅助剂混合,制备出预处理添加剂。
3. 有机磷复合无卤阻燃剂的制备:采用先进的有机磷化学方法,合成出高效的有机磷复合无卤阻燃剂。
4. 聚乙烯复合材料的制备工艺:将有机磷复合无卤阻燃剂和预处理添加剂,加入到聚乙烯中,通过加热混合法制备出具有良好阻燃性能的复合材料。
聚乙烯改性研究进展刘生鹏;张苗;胡昊泽;林婷;危淼【摘要】聚乙烯以优良的力学性能、加工性能、耐化学性等成为最主要的聚烯烃塑料品种,大量用于生产薄膜、包装和管材等.但聚乙烯的非极性和低刚性限制了其在某些领域的应用.综述了聚乙烯的化学改性、物理改性和改性新技术的新进展.化学改性包括接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性;物理改性包括增强改性、共混改性、填充改性;并介绍了各种改性对聚乙烯性能的影响.【期刊名称】《武汉工程大学学报》【年(卷),期】2010(032)003【总页数】6页(P31-36)【关键词】聚乙烯;化学改性;物理改性;进展【作者】刘生鹏;张苗;胡昊泽;林婷;危淼【作者单位】武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074;武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074;武汉大学化学与分子科学学院,湖北武汉430072;武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074;武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074【正文语种】中文【中图分类】TB3240 引言聚乙烯(PE)质优、价廉、易得,且用途十分广泛,主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料.随着石油化工的发展,聚乙烯生产得到迅速发展,产量约占塑料总产量的1/4.但聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差.采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘结性、生物相容性等性质.1 化学改性化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法.其原理是通过化学反应在PE分子链上引入其它链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘结性能等.1.1 接枝改性接枝改性是指将具有各种功能的极性单体接枝到 PE主链上的一种改性方法.接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能.常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等[1].接枝改性的方法主要有溶液法[2]、固相法[3]、熔融法[4]、辐射接枝法[5]、光接枝法[6]等.程为庄等[2]以过氧化苯甲酰为引发剂,二甲苯为溶剂,进行了丙烯酸与低密度聚乙烯(LDPE)的溶液接枝聚合.聚乙烯接枝了丙烯酸后与铝的粘结强度显著增大,当接枝率为7.2%时,剥离强度由未接枝时的193 N/m提高到984 N/m.唐进伟等[3]利用固相法在线性低密度聚乙烯(LLDPE)上接枝MA,得到了接枝率为1%~2.4%,凝胶含量小于4%的 LLDPE-g-MA.于逢源等[4]采用多组分单体熔融接枝法,以甲基丙烯酸缩水甘油酯和苯乙烯作为接枝单体,对LDPE进行熔融接枝改性,获得了接枝率为3%的改性低密度聚乙烯.鲁建民等[5]研究了粉末态高密度聚乙烯的辐射效应、与多种单体的固态辐射接枝行为及其表征,并将其应用于聚乙烯粉末涂料,其附着力和柔韧性得到显著改善. Elkholdi等[6]采用光接枝的方法将AA接枝到聚乙烯上,改性后的PE薄膜具有良好的粘结性.1.2 共聚改性共聚改性是指通过共聚反应将其它大分子链或官能团引入到PE分子链中,从而改变PE的基本性能.通过共聚反应,可以改变大分子链的柔顺性或使原来的基团带有反应性官能团,可以起到反应性增容剂的作用[7].Ghosh等[8]采用接枝共聚的方法将少量的丙烯酸单体共聚物接枝到PE上,与原始的PE相比,改性后的PE具有较高的熔体粘度和较低的熔体流动指数.1.3 交联改性交联改性是指在聚合物大分子链间形成了化学共价键以取代原来的范德华力.由此极大地改善了诸如热变形、耐磨性、粘性形变、耐化学药品性及耐环境应力开裂性等一系列物理化学性能[9].聚乙烯的交联改性方法包括过氧化物交联(化学交联)、高能辐射交联[10]、硅烷接枝交联、紫外光交联[11].1.3.1 过氧化物交联过氧化物交联适用性强、交联制品的性能好,在工业中得到广泛的应用[12].刘新民等[13]研究了过氧化物交联PE的工艺与力学性能.过氧化物交联PE的力学性能有一定的提高,随着过氧化二异丙苯含量的增加,交联PE的凝胶含量提高;交联PE的拉伸强度随PE的凝胶含量增加而提高,断裂伸长率下降.同时,炭黑对复合材料有一定的补强作用,氧化锌的加入有助于交联反应和拉伸强度的提高.1.3.2 辐射交联应用辐射新技术,将聚合物置于辐射场中,在高能射线(γ射线、电子束以及中子束等)的作用下,可以在固态聚合物中形成多种活性粒子,引发一系列的化学反应,在聚合物内部形成交联的三维网络结构,使聚合物的诸多性能得到改善[14].王亚珍等[15]采用辐射交联制备的LDPE/EVA混合体系泡沫片材具有表观光滑、柔软、手感好、表观密度较小的特点,复合材料具有优异的力学性能,较高的拉伸强度、断裂伸长率和撕裂强度.1.3.3 硅烷接枝交联硅烷接枝交联聚乙烯主要包括接枝和交联两个过程.在接枝过程中,乙烯基硅烷接枝于聚乙烯大分子链上生成接枝聚合物,在交联过程中,接枝聚合物先水解成硅醇,—OH与邻近的Si—O—H基团缩合形成Si—O—H键,从而使聚乙烯的大分子之间产生交联.张建耀等[16]研究了高密度聚乙烯(HDPE)、LLDPE及其共混物的乙烯基三乙氧基硅烷(VTEOS)接枝交联产物的分子结构、熔融行为.研究发现VTEOS接枝交联PE 能力为:LLDPE>HDPE/LLDPE共混物>HDPE;接枝交联使HDPE、LLDPE及其共混物的结晶度和熔点降低,晶粒变得不均匀.1.3.4 紫外光交联紫外光交联是近年来才开始实现工业应用的新交联方法,通过加入聚乙烯基料中的光引发剂和光交联剂吸收紫外光后发生一系列的光物理和光化学反应而产生的大分子自由基进行迅速复合生成三维网状的交联结构.Wu等[17]用紫外光辐射的方法将C—O、C—OH和C=O等含氧基团引入LLDPE的分子链上.结果表明:辐射后LLDPE的分子量变小,和LLDPE相比,其熔体流动指数、拉伸强度和断裂伸长率都有所降低,但仍保持良好的韧性,且亲水性增强.1.4 氯化及氯磺化改性氯化聚乙烯是聚乙烯分子中的仲碳原子被氯原子取代后生成的一种高分子氯化物,具有较好的耐候性、耐臭氧性、耐化学药品性、耐寒性、阻燃性和优良的电绝缘性. 氯磺化聚乙烯是聚乙烯经过氯化和氯磺化反应而制得的具有高饱和结构的特种弹性材料,属于高性能橡胶品种.其结构饱和,无发色基团存在,涂膜的抗氧性、耐候性和保色性能优异,且耐酸碱和化学药品的腐蚀,已广泛应用于石油、化工等行业[18].1.5 等离子体改性处理等离子体是由部分电离的导电气体组成,其中包括电子、正离子、负离子,基态的原子或分子、激发态的原子或分子、游离基等类型的活性粒子[19].在聚乙烯等高分子材料表面改性中主要利用低温等离子体中的活性粒子轰击材料表面,使材料表面分子的化学键被打开,并与等离子体中的氧、氮等活性自由基结合,在高分子材料表面形成含有氧、氮等极性基团,由于表面增加了大量的极性基团从而能明显地提高材料表面的粘接性、印刷性、染色性等[20-21].Ataeefard等[22]用Ar、O2、N2、CO2气态等离子体处理LDPE表面,结果表明在低气压时O2、Ar、N2、CO2气态等离子体可改善LDPE薄膜的润湿性,其接触角的减小主要与放电量和曝光时间有关;LDPE的表面形貌与等离子体放电量、曝光时间和采用不同类型的气体有关,用Ar、N2气态等离子体处理LDPE效果更佳.2 物理改性物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法.常用的方法有增强改性、共混改性、填充改性.2.1 增强改性增强改性是指填充后对聚合物有增强效果的改性.加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等.自增强改性也属于增强改性的一种.2.1.1 自增强改性所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题[23].张慧萍等[24]采用超高分子量聚乙烯(UHMPE)纤维分别增强高密度聚乙烯(HDPE)和LDPE基体,研究发现UHMPE纤维与LDPE基体在加热加压成型的条件下,可以形成良好的界面,最大限度发挥基体和纤维的强度,而以HDPE为基材时力学性能相对较差.2.1.2 纤维增强改性纤维增强聚合物基复合材料由于具有比强度高、比刚度高等优点而得到广泛应用,而界面问题是纤维增强聚合物基复合材料研究中的主要问题. 张宁等[25]采用经 KH-550偶联剂处理的长玻璃纤维(LGF)与PE复合制备了PE/LGF复合材料.研究发现LGF的为30%(质量)、长度约为35 mm时,复合材料的拉伸强度和冲击强度分别为52.5 MPa和52 kJ/m;LGF在PE基体中呈现三维交叉结构,这种结构和 KH-550的加入改善了复合材料的力学性能.2.1.3 晶须改性经典的载荷传递机理认为,聚合物/晶须复合材料受到外力时,应力可以通过界面层由基体传递给晶须,晶须承受部分应力,使基体所受应力得以分散.晶须增韧聚合物来源于两方面的贡献,其一是晶须导致基体局部应力状态改变,其二是晶须对基体结晶行为产生影响[26].潘宝风等[27]的研究表明硅钙镁晶须的加入能够大幅度提高HDPE材料的拉伸力学性能,包括短期力学性能及耐长期蠕变性能.晶须对HDPE材料的增强作用主要归因于它们之间的良好界面粘结,同时刚性的晶须则能够承担较大的外界应力使复合材料的模量得到提高.2.1.4 纳米粒子增强改性少量无机刚性粒子填充PE可同时起到增韧与增强的作用.郜华萍等[28] 将表面处理过的纳米SiO2粒子填充m-LLDPE/LDPE发现复合材料力学性能达到最佳值的纳米粒子填充量为2%,与纯m-LLDPE/LDPE相比,拉伸强度、断裂伸长率分别提升了l3.7 MPa和174.9%.力学性能的显著提高归因于SiO2纳米粒子均匀分散于基材中,与基材形成牢固的界面结合.Qian等[29]研究了HDPE/纳米SiO2的非等温结晶行为,发现复合材料的结晶速率高于纯HDPE,结晶活化能由纯HDPE的166.3 kJ/mol,提高到206.2、251.1和266.0 kJ/mol(填充质量分数分别为1%、3%和5%).2.2 共混改性共混改性主要目的是改善PE的韧性、冲击强度、粘结性、高速加工性等各种缺陷,使其具有较好的综合性能.共混改性主要是向PE基体中加入另一种聚合物,如塑料类、弹性体类等聚合物,以及不同种类的PE之间进行共混.2.2.1 PE系列的共混改性单一组分的PE往往很难满足加工要求,而通过共混改性技术可以获得性能优良的PE材料.林群球等[30]通过LDPE与LLDPE共混,解决了LDPE因大量添加阻燃剂和抗静电剂等主助剂造成力学性能急剧降低的问题.汤亚明[31]对LLDPE与HDPE的共混改性进行了研究,结果表明共混后可以提高产品的抗冲击强度和综合性能.2.2.2 PE与弹性体的共混改性弹性体具有低的表面张力、较强的极性、突出的增韧作用,因此与PE共混后,既能保持PE的原有性能,同时也可以制备出具有综合优良性能的PE.王新鹏等[32]采用熔融共混法制备了LDPE/聚烯烃弹性体(POE)共混物,研究发现POE的含量显著影响着LDPE的结晶行为.随着POE用量的增加,LDPE的结晶度稍有减小,结晶的完善性和均一性变差,晶粒变小,LDPE在结晶过程中出现了二次结晶;随着LDPE含量的增加,POE的结晶度逐渐减小.当POE含量为30%时,共混体系的拉伸强度达到最大值,为21.5 MPa.2.2.3 PE与塑料的共混改性聚乙烯具有良好的韧性,但制品的强度和模量较低,与工程塑料等共混可提高复合体系的综合力学性能.但PE和这类高聚物的界面问题也是影响其共混物性能的主要原因,因此通常需要加入界面相容剂以提高共混物的力学性能[33].周松等[34]研究了PP对HDPE性能的影响,随着PP用量增加,复合体系的熔体流动速率提高,冲击强度下降.三元乙丙共聚物可作为相容剂,改善HDPE-PP间的相容性,研究发现HDPE/PP/EPDM(77/23/8)共混体系的综合性能最优,拉伸强度和冲击强度都得到提高.杜强国等[35]研究发现少量LLDPE的加入对PBT有一定程度的增韧作用,此时分散相的粒径很小,随着LLDPE量的增加,分散相粒径的尺寸显著增大,缺口冲击强度急剧下降.LLDPE-g-MA能明显改善了LLDPE与PBT的界面粘结,共混物冲击强度随着LLDPE接枝率的提高而提高.杜芹等[36]利用微层共挤方法制备了具有层状交替结构的HDPE/PA6共混物,共混物中引入少量HDPE-g-MA时,化学反应在界面进行,与海岛结构的共混物界面面积相比,层状共混物的界面接触面积小,界面化学反应相对较弱,但层状共混物的屈服强度和断裂伸长率有大幅度提高,层状结构对HDPE和PA6的结晶行为影响很小.王娜等[37]用熔融共混法制备出HDPE/聚苯乙烯(PS)/有机蒙脱土(OMMT)复合材料.随着OMMT的增加,复合材料的拉伸强度和弹性模量增加;当HDPE/PS为20∶80(质量比)、OMMT为3%(质量分数) 时,复合材料的拉伸强度比未加OMMT时提高了80%,弹性模量提高了20%.2.3 填充改性填充改性是在PE基质中加入无机填料或有机填料,一方面可以降低成本达到增重的目的,另一方面可提高PE的功能性,如电性能、阻燃性能等.但同时对复合材料的力学性能和加工性能带来一定程度的影响.无论是无机填料还是有机填料,填料与PE基体的相容性和界面粘结强度是PE填充改性必须面临的问题,而PE 是非极性化合物,与填料相容性差,因此,必须对填料进行表面处理.填料的表面处理一般采用物理或化学方法进行处理,在填料表面包覆一层类似于表面活性剂的过渡层,起“分子桥”的作用,使填料与基体树脂间形成一个良好的粘结界面[38].常用的填料表面处理技术有:表面活性剂或偶联剂处理[39]、低温等离子体技术[40]、聚合填充法 [41]和原位乳液聚合[42]等PE中填充木粉、淀粉、废纸粉、滑石粉、碳酸钙等一类填料,不仅可以改善PE的性能,同时也具有十分重要的健康环保意义[43-46];而PE的功能性填充改性是指在改善PE性能的同时赋予其光、电、阻燃等方面的效果[47].3 PE改性技术的新进展3.1 单活性中心催化剂开发的PE均聚物埃克森化学公司与道化学公司采用单活性催化剂制备的PE均聚物已进入工业化阶段.这些新型PE具有优异的透明度、强度、柔软性和低温热封性等,分子量及组成分布很窄.埃克森拟将其用于医疗等方面,而道化学公司则以树脂改性用途等为重点进行应用开发,但加工性是其目前的难点[48].3.2 双峰PE具有双峰分子质量分布的聚乙烯被称为双峰聚乙烯,它的优点是既含有很短的聚合物分子链,起到分子间的润滑作用,能够改善加工性能,又含有很长的聚合物分子链,保证材料的机械作用,因此双峰聚乙烯产品具有优良的物理力学性能和加工性能[49].从世界聚乙烯工业的发展趋势来看,双峰聚乙烯产品将向传统聚乙烯产品提出挑战,国外各大石化公司已在此方面有了较快发展,而国内仅是对此技术进行了初步的研究.开发新型金属催化剂和催化剂载体以及催化剂配体,是今后双峰聚乙烯研究开发的重点[50].3.3 茂金属聚乙烯茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其分子量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等[51-52].González等[53]研究茂金属线性低密度聚乙烯(m-LLDPE)对沥青/LLDPE共混物稳定性和流变性能的影响.m-LLDPE替代LLDPE改性沥青可以有效避免高温放置时的象乳液一般发生相分离,同时显著改善沥青的粘弹性.Qin等[54]研究了PP/m-LLDPE共混物的熔融/结晶行为和等温结晶动力学,结果表明PP与m-LLDPE是部分相容的,两者的相互作用主要存在于m-LLDPE链与PP分子中的PE链段,m-LLDPE的引入降低了PP的结晶温度,但有助于PP形成良好的球晶.4 结语21世纪新材料发展非常迅速,优胜劣汰的竞争将更为激烈.PE以其价格低廉、品质优良、适于改性的特点,成为人们的首选.各种改性技术的引入,使通用PE的应用范围越来越广泛,使低档塑料高性能化应用成为现实.尽管在各种改性PE中可能还存在不完善和缺陷,但是,可以预料经济而有效的PE改性开发研究仍将得到大力发展.参考文献:[1]殷锦捷, 王亚鹏. 聚乙烯改性的研究进展[J]. 上海塑料, 2006(3): 13-16.[2]程为庄, 彭蓉, 杜强国. 聚乙烯与丙烯酸的溶液接枝聚合[J]. 功能高分子学报, 1997, 10(1): 67-71.[3]唐进伟, 童身毅. 线型低密度聚乙烯固相接枝马来酸酐研究[J]. 化工科技, 2007, 15(3): 5-8.[4]于逢源, 肖汉文, 徐冰, 等. 低密度聚乙烯的接枝改性[J]. 应用化学, 2005, 22(7): 796-799.[5]鲁建民, 张湛, 刘亚康, 等. 粉末态高密聚乙烯的辐射接枝[J]. 化工学报, 2006, 53(6): 640-643.[6]Costamagna V, Strumia M, Lopez-Gonzalez M, et al. Gas transport in surface-modified low-density polyethylene films with acrylic acid as a grafting agent [J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(19): 2828-2840.[7]李孝三, 王德禧. 聚烯烃的化学结构改性[J]. 中国塑料, 1990, 4(4): 17-25.[8]Ghosh P, Chattopadhyay B, Sen A K. Modification of low density polyethylene (LDPE) by graft copolymerization with some acrylic monomers [J]. Polymer, 1998, 39(1): 193-201[9]钱军民, 李旭祥. 国内聚乙烯接枝和交联改性的研究进展[J]. 合成材脂及塑料, 2001, 18(3): 41-44.[10]Zhang Wei, Zhang Yi He, Ji Jun Hui, et al. Antimicrobial properties of copper plasma-modified polyethylene [J]. Polymer, 2006, 47(21): 7441-7445.[11]胡发亭, 郭奕崇. 聚乙烯交联改性研究进展[J]. 现代塑料加工应用, 2002, 14(2): 61-64.[12]史伟, 王伟明. 过氧化物交联聚乙烯管材的生产工艺[J]. 工程塑料应用, 2004, 32(7): 26-28.[13]刘新民, 许春霞, 葛涛, 等. 过氧化物交联聚乙烯的力学性能研究[J]. 现代塑料加工应用, 2003, 15(6): 14-16.[14]李星, 刘东辉, 杨明, 等. 辐射交联聚乙烯薄膜的研究[J]. 现代塑料加工应用, 2002, 14(2): 5-8.[15]王亚珍, 张辉, 李曙光, 等. 辐射交联 LDPE/EVA 混合体系泡沫片材性能的研究[J]. 塑料, 2004, 33 (1): 20-32.[16]张建耀, 刘少成. 硅烷接枝交联HDPE、LLDPE及其共混物的结构研究[J].弹性体, 2007, 17(4): 39-43.[17]Wu Shi Shan, Chen Zheng Nian, Ma Qing Qing, et al. Studies on linear low-density polyethylene functionalized by ultraviolet irradiation and its compatibilization [J]. Polymer Bulletin, 2006, 57(4): 595-602.[18]孙聚华, 邹向阳, 金永峰, 等. 氯磺化聚乙烯的合成[J]. 弹性体, 2008, 18(2): 34-37.[19]Zhang Wei, Chu PK, Ji Jun Hui, et al. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene [J]. Polymer, 2006, 47(3): 931-936.[20]Deshmukh R R, Shetty A R. Surface characterization of polyethylene films modified by gaseous plasma [J]. Journal of Applied Polymer Science, 2007, 104(1): 449-457.[21]Guddeti R R, Knight R, Grossmann E D. Plasma depolymerization of polyethylene using induction-coupled plasma technology [J]. Plasma Chemistry and Plasma Processing, 2000, 20(1): 37-64.[22]Ataeefard M, Moradian S, Mirabedini M, et al. Surface properties of low density polyethylene upon low temperature plasma treatment with various gases [J]. Plasma Chem Plasma Process, 2008, 28(3): 377-390.[23]张斌, 朱武, 周科朝, 等. 工艺参数对自增强HDPE棒材的力学性能和微观结构的影响[J]. 功能材料, 2008, 39(1): 173-176.[24]张慧萍, 庄兴民, 晏雄, 等. 聚乙烯自增强复合材料的制备及力学性能[J]. 高分子材料科学与工程, 2004, 20(1): 121-124.[25]张宁, 李忠恒, 陶字, 等. 长纤维增强聚乙烯复合材料的研究[J]. 工程塑料应用, 2007, 35(1): 21-25.[26]陈尔凡, 陈东. 晶须增强增韧聚合物基复合材料机理研究进展[J]. 高分子材料科学与工程, 2006, 22(2): 20-24.[27]潘宝风, 刘军, 宋斌, 等. SMC晶须增强高密度聚乙烯复合材料的拉伸性能[J]. 高分子材料科学与工程, 2008, 24(4): 101-104.[28]郜华萍, 谭惠民. SiO2纳米粒子增强改性聚乙烯力学性能的研究[J]. 昆明理工大学学报, 2005, 30(3): 35-37.[29]Qian Jia Sheng, He Ping Sheng. Non-isothermal crystallization of HDPE/nano-SiO2 composite [J]. Journal of Materials Science, 2003, 38(11): 2299-2304.[30]林群球, 刘浩, 卢红. LDPE/LLDPE共混改性矿用管的研制[J]. 塑料科技, 2001, 4: 20-21.[31]汤亚明. LLDPE与HDPE共混改性的研究[J]. 塑料包装, 1999, 9(3): 5-8.[32]王新鹏, 张军. LDPE/POE共混物的结晶行为和力学性能[J]. 合成树脂及塑料, 2009, 26(1): 10-14.[33]Sinthavathavorn W, Nithitanakul M, Grady B P, et al. Melt rheology of low-density polyethylene/polyamide6 using ionomer as a compatibilizer [J]. Polymer Bulletin, 2008, 61(3): 331-340.[34]周松, 艾刚建, 张再昌, 等. HDPE/PP/EPDM共混物的性能研究[J]. 塑料助剂, 2008, 2: 39-42.[35]杜强国, 王荣海, 李跃龙, 等. PBT/LLDPE共混改性的初步研究[J]. 合成树脂及塑料, 1991, 2: 37-40.[36]杜芹, 郭少云, 李姜, 等. 高密度聚乙烯/尼龙6共混物的形态结构对其性能的影响[J]. 高分子材料科学与工程, 2008, 24(6): 88-91.[37]高娜,白杉,邵亚薇,等. 蒙脱土增容HDPE/PS共混体系[J]. 合成树脂及塑料,2008, 25(6): 17-20.[38]伍学诚, 解孝林. 高耐磨超高分子量聚乙烯改性研究进展[J]. 塑胶工业, 2004, 1: 47-49.[39]蔡长庚. 填料的表面处理及其应用[J]. 铜箔与基材, 2000, 5: 18-20.[40]王跃华, 陈敏, 李长敏, 等. 低温等离子体技术在无机粉体表面改性中的研究进展[J]. 材料导报, 2008, 22(4): 34-37.[41]任照玉, 于元章, 周淑平. 聚合填充法制备聚乙烯原位复合材料[J]. 齐鲁石油化工, 2000, 28(4): 265-267.[42]Liu Sheng Peng, Ying Ji Ru, Zhou Xing Ping, et al. Core-shell magnesium hydroxide/polystyrene hybrid nanoparticles prepared by ultrasonic wave-assisted in-situ copolymerization [J]. Materials Letters, 2009, 63(11): 911-913.[43]Zheng Xiu Ting, Wu Da Ming, Meng Qing Yun, et al. Mechanical properties of low-density polyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretching method [J]. Journal of Polymer Research, 2008, 15(1): 59-65.[44]Dang Z, Fan L, Shen Y, et al. Study of thermal and dielectric behavior of low-density polyethylene composites reinforced with zinc oxide whisker [J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 635-641. [45]Han G, Lei Y, Wu Q, et al. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay [J]. Journal of Polymers and the Environment, 2008, 16(2): 123-130.[46]Wang Shu Jun, Yu Jiu Gao, Yu Jing Lin. Preparation and characterization of compatible and degradable thermoplasticstarch/polyethylene film [J]. Journal of Polymers and the Environment, 2006, 14(1): 65-70.[47]Costache M C, Heidecker M J, Manias E, et al. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene [J]. Polymer, 2007,48(22): 6532-6545.[48]王霞, 陈少卿, 成霞, 等. 纳米ZnO对聚乙烯抗紫外光老化的影响[J]. 电工技术学报, 2008, 23(10): 6-10.[49]崔月, 李勇智. 双峰聚乙烯技术研究进展[J]. 广东化工, 2007,34(8): 42-44.[50]李玉芳. 双峰聚乙烯的生产技术及市场前景[J]. 塑料制造, 2006, 12: 59-65.[51]杨军忠, 崔跃飞, 景振华, 等. 茂金属聚乙烯交联反应挤出流动模型分析[J]. 化工进展, 2008, 27(8): 1222-1226.[52]袁波,李兰军, 何波兵, 等. 茂金属聚乙烯交联研究进展及应用[J]. 塑料工业, 2007(35): 74-76.[53]González O, Muoz M E, Santamaría A. Bitumen/polyethylene blends: using m-LLDPEs to improve stability and viscoelastic propertie s[J]. Rheologica Acta, 2006, 45(5): 603-610.[54]Qin Jiang Lei, Guo Shao Qiang, Li Zhi Ting. Melting behavior and isothermal crystallization kinetics of PP/m-LLDPE blends [J]. Journal of Polymer Research, 2008, 15: 413-420.。
聚乙烯抗静电改性研究的开题报告
一、论文选题背景及意义
聚乙烯是一种常见的塑料材料,广泛应用于工业、建筑、包装等领域。
但在使用过程中,聚乙烯容易受到静电的影响,产生粘附、污染等
问题,影响产品品质和生产效率。
因此,如何提高聚乙烯的抗静电性能,对于解决相关问题具有重要意义。
本文旨在探索聚乙烯抗静电改性的研究,通过添加抗静电剂等方法,提高聚乙烯的抗静电性能,为相关领域的应用提供技术支持和参考。
二、研究目的和内容
1、对聚乙烯的抗静电性能进行研究分析;
2、评估不同抗静电剂在聚乙烯中的改性效果;
3、探究不同工艺条件对聚乙烯抗静电性能的影响;
4、建立聚乙烯抗静电改性的技术体系。
三、研究方法和步骤
1、收集相关文献资料,了解聚乙烯抗静电性能改性的现状和发展趋势;
2、按照一定比例向聚乙烯中添加不同类型的抗静电剂,制备试样;
3、通过表面电阻率测试、雷电放电等方法,对试样的抗静电性能进行测试和分析;
4、优选最佳的改性工艺方案,并制备优化试样;
5、对优化试样的性能进行综合评估和分析。
四、论文预期成果和意义
预计通过本研究,可以找到一种或多种适合用于聚乙烯抗静电改性的抗静电剂,并建立一套聚乙烯抗静电改性的技术体系。
该技术体系可以为相关领域的应用提供技术支持和参考,进一步提高生产效率和产品质量,具有重要的应用价值和推广意义。
关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究作者:赵艳张滨茹杨伟来源:《科学与信息化》2017年第29期摘要随着当今社会的快速发展和科学技术的不断进步,高分子材料在工农业中应用的比重也在不断增加,并得到了广泛的应用。
由于塑料是高分子材料发展的重要内容之一,PP在使用过程中,不仅应该具有较高的强度,也应该有良好的韧性。
因此对通用大品种树脂聚丙烯(PP)和聚乙烯(PE)开展改性研究一直是高分子材料科学研究领域的重要课题。
关键词聚烯烃;聚丙烯;聚乙烯;共混改性前言众所周知,PP和PE是重要的通用大品种树脂,聚丙烯(PP)具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,但脆性和低温抗冲击性能差。
聚乙烯(PE)具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性差、耐大气老化性能差以及易应力开裂等缺点也相当突出。
因此聚丙烯和聚乙烯的改性研究已经成为目前高分子材料科学研究的重点,本文主要对聚丙烯(PP)与聚乙烯(PE)的共混改性进行研究与探讨。
1 聚烯烃概述1.1 聚丙烯聚丙烯(即)是非常重要的廉价通用高分子材料,它具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,广泛用于薄膜、管材、板材、注射产品及中空制品中。
聚丙烯相对低的价格和适宜的特性提高了它的市场效能,不仅用做其他材料的替代物,而且也不断地开发出一些新的应用[1]。
1.2 聚乙烯聚乙烯工艺化已有60多年的历史,聚乙烯现在是世界上产量最大、品种繁多的最重要的合成树脂之一。
其应用已深入到国民经济的各个部门和人们的日常生活中。
历经半个多世纪的开发,现在已能生产各种类型和品级的聚乙烯树脂,可以做成不同形式、不同用途的系列制品。
在满足最终用途的前提下,与其他聚合物和非聚合物材料相比,聚乙烯树脂以其价廉质优而具有强劲的市场竞争力,已发展成生产量大、用途宽广的最重要的一类通用树脂。
2 聚烯烃(聚丙烯,聚乙烯)共混改性方法2.1 塑料增韧PP采用塑料类作为PP增韧改性的改性剂,不仅可以达到增韧的目的,而且可使材料的耐磨性、染色性等得到改善,且价格低廉。
改性聚乙烯亚胺回收高锰酸钾废液中的锰李嘉;王刚;管映兵;徐敏【摘要】为了回收高锰酸钾废液中的锰,以高锰酸钾废液为研究对象,采用二硫代羧基化聚乙烯亚胺(DTPEI)作为锰回收剂,考察了强酸介质、pH、Mn(Ⅶ)初始浓度对DTPEI捕集锰的影响,并探寻了不同浸出液对锰的回收性能.结果表明,DTPEI在HCl、HNO3和H2SO4介质中对高锰酸钾溶液中的Mn(Ⅶ)均具有很好的捕集效果,最高捕集率接近100%.体系初始pH对DTPEI捕集锰的影响显著,pH为2.0~3.0时,锰的捕集效果较好,且随着体系pH的升高,达到较高捕集率所需DTPEI投加量明显减少;pH为4.0~6.0时,捕集效果有所降低.DTPEI对Mn(Ⅶ)初始浓度不同的含锰溶液均具有较好的捕集效果.沉淀物DTPEI-Mn采用H2SO4浸出液进行静态浸泡18 h后,锰的回收率可达99.5%.【期刊名称】《工业水处理》【年(卷),期】2019(039)001【总页数】4页(P21-24)【关键词】聚乙烯亚胺;高锰酸钾;螯合沉淀;回收【作者】李嘉;王刚;管映兵;徐敏【作者单位】兰州交通大学环境与市政工程学院,甘肃兰州730070;兰州交通大学环境与市政工程学院,甘肃兰州730070;兰州交通大学环境与市政工程学院,甘肃兰州730070;兰州交通大学环境与市政工程学院,甘肃兰州730070【正文语种】中文【中图分类】X703.1高锰酸钾溶液作为氧化剂常被用于分析化学试验、水处理试验以及环境监测指标分析等方面,因此会产生一定量的含锰废液。
因缺少一种既经济高效又普遍适用的处理方法,该废液大多只经简单处理或者不经处理排入下水管道,造成环境污染,因此如何有效处理高锰酸钾废液是亟待解决的问题〔1〕。
目前常见的除锰方法有吸附法〔2〕、离子交换法〔3〕、锰砂法〔4〕、粉煤灰法〔5〕、絮凝沉淀法〔6〕等。
但上述处理方法均以重金属锰的减量化、无害化为目标,未考虑对锰进行回收,且多数方法只能去除Mn(Ⅱ),无法直接去除或回收高锰酸钾中的Mn (Ⅶ)。
浅谈聚氯乙烯的化学改性方法张同心发布时间:2021-09-26T08:36:42.265Z 来源:《中国科技人才》2021年第19期作者:张同心[导读] 聚氯乙烯(PVC)树脂分子链间具有较强的作用力,聚合反应中分子链也存在一些缺陷,造成PVC树脂热稳定性差,抗冲击性能低新疆中泰创新技术研究院有限责任公司新疆乌鲁木齐 830023摘要:聚氯乙烯(PVC)树脂分子链间具有较强的作用力,聚合反应中分子链也存在一些缺陷,造成PVC树脂热稳定性差,抗冲击性能低。
采用共聚、接枝、交联、氯化等化学改性方法能有效提高PVC树脂的热稳定性和抗冲击性能,扩大其应用范围。
关键词:聚氯乙烯;化学改性;共聚;接枝;交联引言聚氯乙烯简称PVC(Polyvinyl Chloride)树脂,是氯乙烯单体在引发剂作用下聚合而成,分子链上含有56%~58%氯原子[1],分子链间具有很强的范德华力,使得聚氯乙烯具有力学性能优异、耐腐蚀、阻燃等优点,广泛应用于管道、线缆、型材、板材、人造革等领域。
但是,分子链间极强的作用力以及聚合反应中分子链上产生的缺陷,造成聚氯乙烯热稳定性差、抗冲击性能低等缺点。
正因如此,物理改性和化学改性的研究始终伴随着聚氯乙烯工业的发展。
1 聚氯乙烯改性方法PVC树脂常用的改性方法分为物理改性和化学改性。
物理改性主要是使用各类添加剂,通过共混来提高聚氯乙烯的性能。
比如,针对PVC树脂热稳定性低,加工性能差的问题,可添加铅盐基类、金属皂类、有机锡类等热稳定剂。
通过添加增塑剂,减弱聚氯乙烯大分子间的作用力,可以制造电缆、薄膜等软制品。
为了提高PVC树脂的抗冲击性,常添加氯化聚乙烯CPE、ACR、MBS等抗冲改性剂。
物理改性具有加工容易、成本低的优点,但是添加剂的析出、分散不均匀、界面相容性差等影响了物理改性效果。
相比于物理改性,PVC树脂的化学改性从分子链的结构尺度进行设计,通过共聚、接枝、交联、氯化等方法改善高分子材料性能,具有可设计性和更高的稳定性。
POE的性能及在聚烯烃树脂改性中的应用POE是乙烯和辛烯-1在茂金属催化剂作用下聚合而成的聚烯烃热塑性弹性体,由美国 DOW化学公司采用限定几何构型催化剂技术 (CGCT技术)开发成功。
这种技术生产的 POE分子链饱和、结构可人为控制、具有窄相对分子质量分布和窄共聚单体分布,因此P0E具有优异的耐老化、耐紫外光性、良好的力学性能和加工流变性能,与聚烯烃亲和性好、低温韧性突出、性能价格比高等优点,使其在聚烯烃的增韧改性,医用包装材料、汽车配件、电线电缆方面得到了广泛的应用。
1 POE的性能特点POE采用溶液法聚合工艺生产,单体辛烯含量在20%~30%之间,密度较低,基本结构如下所示:其中聚乙烯链结晶区起物理交联点承受载荷的作用,一定量辛烯的引入降低了聚乙烯链的结晶度,形成了呈现橡胶弹性的无定型区。
聚合物的微观结构决定其宏观性能,分子结构的特殊性使POE具有优异的综合性能,与其他传统弹性体相比,POE具有以下主要特点。
(1)分子链结构中没有不饱和键,所含叔碳原子少,具有更优异的热稳定性和耐候性。
(2)商品化 POE呈颗粒状,可以直接加入到聚丙烯(PP)等粒状聚合物中,混合更快速、更均匀。
(3)较强的剪切敏感性、熔体强度和窄的相对分子质量分布,使材料边缘在加工中不易卷曲且弥补了挤出片材时材料易下垂和难以吹膜的缺陷。
(4)可用过氧化物、硅烷和辐射方法交联,交联POE的热老化及紫外光气候老化性能优于三元乙丙橡胶(EPDM)和二元乙丙橡胶(EPR)。
(5)未交联 POE的密度比乙烯-醋酸乙烯共聚物(EVA)和苯乙烯-丁二烯-苯乙烯共聚物(SBS)低10%~20%,材料透明度高。
(6)加工性与力学性能平衡性优。
一般弹性体的门尼粘度低,加工性好,而力学性能差。
常用弹性体门尼粘度在20~90之间,而POE的门尼粘度在5~35之间,但力学性能却能和高门尼粘度热塑性丁苯橡胶媲美。
作为增韧材料,POE具有添加量少、增韧效果明显、对基础树脂性能影响小等特点。
稳定混杂废塑料(PE)再生颗粒的性能研究 付 义 术 摘要:本文以回收的聚乙烯废塑料为基础,加入抗氧剂、降指剂等助剂进行改性,制备符合各种管材用再生颗粒。对其熔融指数、氧化诱导期、断裂伸长率、拉伸强度、炭黑含量、灰分含量、静液压强度分别进行了测试,结果表明,再生颗粒的熔融指数小于1.0g/10min(5kg、190℃),氧化诱导期接近20min,断裂伸长率大于350%,拉伸强度大于18MPa,炭黑含量小于3.0%,灰分含量小于4%,静液压强度高,符合本公司各种管材挤出要求。
关键词:聚乙烯;再生颗粒;改性;管材挤出;
1前言 1.1 聚乙烯的种类及用途 聚乙烯(PE)是中国通用合成树脂中应用最广泛的品种,主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料。随着石油化工的发展,聚乙烯生产得到迅速发展,产量约占塑料总产量的1/4。中国国民经济的持续高速发展,为合成树脂工业营造了有利的发展氛围,聚乙烯(PE)产业更是以较快的速度增长。 2009年1-12月国内PE累计产量为812.9万吨,较2008年(689.5万吨)增加123.4万吨;2009年全年累计进口740.85万吨,较2008年(449.58万吨)增加291.27万吨。未来几年间,亚太地区的聚乙烯新项目主要位于中国、印度和韩国,中国将继续成为动力源泉。中国正成为世界上最大的PE薄膜和包装袋出口国,大量供应北美、西欧和日本。另外各行业对薄膜、编织袋、管材、电缆料、中空容器、周转箱等制品需求旺盛将带动聚乙烯消费量增长。 聚乙烯(PE)作为通用的聚合物产品,已形成低密度聚乙烯、高密度聚乙烯、线型低密度聚乙烯、超高分子量聚乙烯、分子量和支链可控的茂金属聚乙烯等产品。并以其优良的性能成为合成树脂发展最大、最为迅速的品种之一。通常按工业化出现的年代来分有1939年工业化的第一代聚乙烯,即:高压法聚乙烯(低密度聚乙烯)、1953年工业化的第二代聚乙烯,即:低压法聚乙烯(高密度聚乙烯)、1977年工业化的第三代聚乙烯,即:线性低密度聚乙烯(LLDPE)、1984年工业化的第四代聚乙烯,超低密度聚乙烯(VLDPE),以及1958年工业化的超高分子量聚乙烯(UHMWPE)和20世纪90年代出现的茂金属聚乙烯(MPE)。UHMWPE是分子量超过100万的一种聚乙烯。
(一)低密度聚乙烯(LDPE) LDPE的特性是:(1)LDPE是密度为0.91~0.925g/cm3的白色蜡状颗粒状固体,无味无嗅无毒;(2)LDPE是典型的结晶型聚合物,结晶度为55%~65%,熔点为105~126℃;(3)LDPE是非极性材料,易带静电,表面能低,因而在印刷、复合前应进行电晕处理,以提高表面能,加工过程中,应注意防静电,避免静电积累影响制品质量或电火花放电,引起火灾;(4)LDPE透明性优良,热封性优良,可广泛用于透明低温冷冻包装制品的生产;(5)LDPE阻湿性优良,是制作干燥食品或需要良好防潮物品包装的优质原料。但LDPE阻气性大,易透过各类气体;(6)LDPE虽有一定的耐油脂性,但其耐油脂性和耐有机溶剂性不如聚丙烯,因此,当厚度小时,不适宜长期放置汽油、酒精、油脂等。使用LDPE时,最好厚度应超过50mm;(7)LDPE具有易燃性,燃烧时,火焰无烟无色,且有烧滴现象并有蜡烛气,是鉴别的一个特点。 LDPE挤出吹膜时应选择熔融指数(MI)为2~6g/10min的吹膜级粒子,不仅有良好开口性,还有良好热封性。挤出机均化段温度在150~180℃,吹胀比2~3。牵引比应与吹胀比平衡。挤吹或注吹中空容器时,选择MI小于2g/10min的挤吹级或注吹级的LDPE粒子,大于2g/10min的粒子易产生瓶子的厚薄不均或根本吹不出好的容器。挤出流涎LDPE膜时,一般选用8~15g/10min的MI,太高的MI膜强度太低,挤出温度视流涎膜用途而定,如果为热封用,则温度不要超过200℃,如果为复合用,为了提高PE同其它基材的挤复牢度,可提高到300℃甚至更高的温度,但超过315℃以上时,时间不能太长,避免分介加大,性能降低。
(二)中密度聚乙烯(MDPE) 中密度聚乙烯是密度为0.926~0.94g/cm3,与LDPE有相同性能的一种聚乙烯,由于密度的提高,MDPE的结晶度高达70%~80%,而密度和结晶度的提高,则提高了MDPE熔融温度、制品的硬度和强度。MDPE处于LDPE和HDPE之间。应当指出PE也有用压延方法成型成片材和薄膜的,但是由于LDPE熔融流动性太好,因此,压延加工都用于PE的填充改性材料中,如:片材用于真空吸塑包装制品时。
(三)高密度聚乙烯(HDPE) 高密度聚乙烯(0.94~0.965g/cm3)的刚性、强韧性、机械强度、耐溶剂性、耐应力开裂性都比LDPE好。由于MI<1g/10mm的HDPE有很高的强度,因此,用于垃圾袋是吹膜级HDPE的重要用途之一,熔点126~136℃,结晶度超过90%。回转成型用HDPE可以选用MI3~20g/10min的粒子或粉末,生产大型高强度的包装容器。注射周转箱可以用MI为30~50g/10min的HDPE。HDPE成型温度为180~250℃。HDPE特点是强度很高,透明性差。
(四)线性低密度聚乙烯(LLDPE) LLDPE除了具有LDPE的一些特性外,它还有以下几个特点:(1)LLDPE具有极好的热封性,虽然LLDPE的熔融温度比LDPE要高5℃左右,但LLDPE的热封性具有良好的似离子性能,即:像离子型聚合物surlyn那样,热封面即使有严重的污染,仍旧有高度的热封强度;热封时温度只要高于起始热封温度就可有高热封强度,而一般的塑料,如:LDPE热封温度愈高,热封强度愈大,因此,如用LLDPE为热封材料,可只需使用较低的热封温度就可达到高度可靠的热封强度,适宜于高速热合机使用;(2)LLDPE的熔融粘度相当地大,是LDPE的10倍,而且LLDPE的熔融粘度对温度不敏感,而对加工应力的敏感性则很强,这就是说LLDPE不能用提高温度的方法来降低粘度,而只能用提高加工的速度,即:提高剪切应力的方法来提高熔融流动性,因此,加工LLDPE的螺杆设计是特殊的,主电机的功率往往是LDPE的2倍以上。我们常常用50%的LDPE+50%LLDPE的混合料来改善二者的性能,并使之可以在加工LDPE的设备上加工LLDPE。
(五)茂金属聚乙烯(mPE) mPE同以上的各类PE不一样,它不是用一般的ziegler-Natta催化剂聚合而成的,而是用二茂基氯锆和甲基铝氧化物组成的新型催化剂生成的。特点是具有LLDPE同样的性能,同时也可以用提高温度,或提高剪切力的方法来提高流动性。它在塑料包装上一问世就得到广泛的应用。
(六)超高分子量聚乙烯(UHMWPE) UHMWPE是分子量超过100万的一种聚乙烯,由于分子量特别高,其熔融流动性几乎为零,不适宜一般加工设备来加工,而只适宜于采用热压法或者冷压烧结法加工,现在利用其加入其它PE的掺混法用挤出法也可挤出,目前除了使用于包装容器外,还很少作其他用途。
1.2聚乙烯类其他相关树脂 (一)乙烯-醋酸乙烯共聚物 乙烯-醋酸乙烯共聚物(也称为乙烯-乙酸乙烯共聚物)是由乙烯(E)和乙酸乙烯(VA)共聚而制得,英文名称为:Ethylene Vinyl Acetate,简称为EVA,或E/VAC。聚合方法用高压本体聚合(塑料用)、溶液聚合(PVC加工助剂)、乳液聚合(粘合剂)、悬浮聚合。乙酸乙烯(VA)含量高于30%的采用乳液聚合,乙酸乙烯含量低的就用高压本体聚合。 EVA树脂的特点是具有良好的柔软性,橡胶般的弹性,在-50℃下仍能够具有较好的可挠性,透明性和表面光泽性好,化学稳定性良好,抗老化和耐臭氧强度好,无毒性。与填料的掺混性好,着色和成型加工性好。乙烯-醋酸乙烯共聚物的性能和乙酸乙烯含量、分子量、熔体指数关系很大。当熔融指数(MI)一定,乙酸乙烯(VAC)含量提高时候,其弹性、柔软性、相溶性,透明性等也随着提高。当VAC含量减少时候,则性能接近于聚乙烯,刚性增高,耐磨性、电绝缘性提高。若VAC含量一定时候,融体指数增加时,则软化点下降,加工性和表面光泽改善但强度会下降,否则,随MI的降低则分子量增大,冲击性能和抗环境应力开裂性能提高。 EVA树脂用途很广。一般情况下,乙酸乙烯含量在5%以下的EVA,其主要产品是薄膜、电线电缆、LDPE改性剂、胶粘剂等;乙酸乙烯含量在5%~10%的EVA产品为弹性薄膜等;乙酸乙烯含量在20%~28%的EVA,主要用于热熔粘合剂和涂层制品;乙酸乙烯含量在5%~45%,主要产品为薄膜(包括农用薄膜)和片材,注塑、模塑制品,发泡制品,热熔粘合剂等。如: (1)薄膜、薄片及层合制品:具有密封性、粘合性、柔软性、强韧性、紧缩性,适合弹性包装薄膜,热收缩薄膜,农用薄膜,食品包装薄膜,层合薄膜,可以用于做聚烯烃层压薄膜的中间层。 (2)一般用品:具有柔韧性,抗环境应力开裂性,耐气候性好的优点,适合工业用材料有电力电线绝缘皮包,家用电器配件,窗密封材料等。 (3)日用杂货类有运动用品,玩具、坐垫、束带、密封容器盖、EVA橡胶足球等。 (4)汽车配件有避震器、挡泥板、车内外装饰配件等。 (5)发泡制品:加压发泡有泡沫塑料拖鞋、凉鞋、建筑材料等。注塑发泡有各种工业零部件,女用鞋底,热熔粘合剂等。 乙烯-醋酸乙烯共聚物的的成型加工 EVA可注塑、挤塑、吹塑、压延、滚塑真空热成型、发泡、涂覆、热封,焊接等成型加工。
(二)聚烯烃弹性体POE POE是由辛烯和聚烯烃树脂组成的,连续相与分散相呈现两相分离的聚合物掺混物,通过扫描电子显微镜或相差显微镜的图像表明,可以形成以橡胶为连续相、树脂为分散相或以橡胶为分散相、树脂为连续相,或者两者都呈现连续相时的互穿网络结构。随着相态的变化,共混物的性能也随之而变。若橡胶为连续相时,呈现近似硫化胶的性能;树脂为连续相时,则性能近于塑料。 ;加工与配合:POE不需混炼和硫化。可采用通常热塑性塑料加工设备进行加工