单片机移位寄存器
- 格式:docx
- 大小:36.81 KB
- 文档页数:3
单向移位寄存器图1(a)是由D触发器组成的单向移位寄存器逻辑图。
当移位脉冲上升沿来到后,输入数据移入F1,而每个D触发器的状态移入下一级触发器,F4的状态移出寄存器。
设各触发器初态均为0,输入数据为1011,则经过四个CP移位脉冲之后,1011全部存入寄存器,移位波形图如图1(b)所示。
图1 D触发器组成的单向移位寄存器这种输入数据取自F1的D端。
当来一个CP移位脉冲时,各触发器状态移入下一级的输入方式叫做串行输入。
输出取自各触发器的Q端叫做并行输出。
而输出取自最高位触发器的Q端叫做串行输出。
因此,图1(a)的电路叫做串行输入、串并行输出单向移位寄存器。
Pattern A和B 没有说明Callen的作用?配置为各种模式如何验证?没有寄存器描述没有寄存器描述中断使能寄存器通过设置中断使能寄存器IE 的EA 位使能所有中断每个中断源都有单独的使能位可通过软件设置IE 中相应的使能位在任何时候使能或禁能中断中断使能寄存器IE 的各位如下所示中断使能寄存器IE可位寻址EA 使能标志位置位则所有中断使能复位则禁止所有中断保留ET2 定时器2 中断使能ES 串行通信中断使能ET1 定时器1 中断使能EX1 外部中断1 使能ET0 定时器0 中断使能EX0 外部中断0使能8051 支持两个中断优先级有标准的中断机制,低优先级的中断只能被高优先级的中断所中断,而高优先级的中断不能被中断。
中断优先级寄存器每个中断源都可通过设置中断优先级寄存器IP来单独设置中断优先级如果每个中断源的相应位被置位则该中断源的优先级为高,如果相应的位被复位, 则该中断源的优先级为低, 如果你觉得两个中断源不够用,别急以后我会教你如何增加中断优先级表A-5 示出了IP 寄存器的各位此寄存器可位寻址IP寄存器可位寻址PS 串行通信中断优先级PT1 定时器1中断优先级PX1 外部中断1 优先级PT0 定时器0中断优先级PX0 外部中断0 优先级电源控制PCON8051的CHMOS 版本可通过软件设置两种节电方式空闲模式和低功耗模式设置电源控制寄存器PCON 的相应位来进入节电方式置位IDLE 进入空闲模式空闲模式将停止程序执行RAM 中的数据仍然保持晶振继续工作但与CPU 断开定时器和串行口续工作, 发生中断将退出中断模式执行完中断程序后将从程序停止的地方继续指令的执行通过置位PDWN 位来进入低功耗模式低功耗模式中晶振将停止工作因此定时器和串行口都将停止工作至少有两伏的电压加在芯片上因此RAM 中的数据仍将保存退出低功耗模式只有两种方式上电或复位SMOD 位可控制串行通信的波特率将使由定时器1 的溢出率或晶振频率产生的波特率翻倍置位SMOD 可使工作于方式 1 2 3 定时器产生的波特率翻倍当使用定时器 2 产生波特率时SMOD将不影响波特率电源控制寄存器PCON不可位寻址SMOD 串行口通信波特率控制位置位使波特率翻倍- 保留- 保留- 保留GF1 通用标志位GF0 通用标志位PDWN 低功耗标志位置位进入低功耗模式IDLE 空闲标志位置位进入空闲模式PSW处理器状态处理器的状态保存在状态寄存器PSW 中状态字中包括进位位用于BCD 码处理的辅助进位位, 奇偶标志位, 溢出标志位, 还有前面提到的用于寄存器组选择的RS0 和RS1 , 0组从地址00H 开始1 组从地址08H 开始2 组从地址10H 开始3 组从地址18H 开CY 进位标志位AC 辅助进位标志位F0 通用标志位RS1 寄存器组选择位高位RS0 寄存器组选择位低位OV 溢出标志位USR 用户定义标志位P 奇偶标志位定时器控制寄存器TCON 可位寻址TR1 定时器1控制位置位时定时器1 工作复位时定时器1 停止工作TF0 定时器0溢出标志位定时器0 溢出时置位处理器响应中断后清除该位TR0 定时器0控制位置位时定时器0 工作复位时定时器0 停止工作IE1 外部中断1 触发标志位当检测到P3.3 有从高到低的跳变电平时置位处理器响应中断后由硬件清除该位IT1 中断1 触发方式控制位置位时为跳变触发复位时为低电平触发IE0 外部中断1 触发标志位当检测到P3.3 有从高到低的跳变电平时置位处理器响应中断后由硬件清除该位IT0 中断1 触发方式控制位置位时为跳变触发复位时为低电平触发定时器控制寄存器TMOD-不可位寻址定时器1 定时器0GA TE 当GATE置位时定时器仅当TR=1并且INT=1 时才工作如果GA TE=0 置位TR 定时器就开始工作C/T 定时器方式选择如果C/T=1 定时器以计数方式工作C/T=0 时以定时方式工作M1 模式选择位高位M0 模式选择位低位串行控制寄存器SCON -可位寻址SM1 串行模式选择SM2 多机通讯允许位当模式0 时此位应该为0 模式1 时当接收到停止位时该位将置位模式2 或模式3 时当接收的第9 位数据为1时将置位REN 串行接收允许位TB8 在模式2 和模式3 中将被发送数据的第9 位RB8 在模式0中该位不起作用在模式1中该位为接收数据的停止位在模式2 和模式3 中为接收数据的第9位TI 串行中断标志位由软件清零RI 接收中断标志位有软件清零51单片机存储类型Keil 允许使用者指定程序变量的存储区这使使用者可以控制存储区的使用编译器第七讲 单片机专用寄存器一. 概述AT89S51单片机专用寄存器区共用18个专用寄存器,根据需要进行选用。
单片机流水灯实验原理
单片机流水灯实验原理是通过使用单片机控制LED灯的亮灭
顺序,实现像水流一样顺序逐个灯泡点亮或熄灭的效果。
具体的原理是首先定义一个存储变量来表示灯泡的状态,将其初始化为一个特定的值,然后通过循环不断地改变存储变量的值,从而改变LED灯的状态。
在流水灯实验中,使用的通常是移位寄存器方法。
首先将存储变量的最低位设置为1,表示第一个灯泡亮起。
然后通过向左
移位的方法不断改变存储变量的值,使得下一个灯泡依次点亮。
当存储变量的最高位被移动到最低位时,循环重新开始,实现灯泡的循环点亮。
为了使灯泡的点亮和熄灭速度可见,可以在每次改变存储变量的值之后,添加一个延时函数,控制灯泡亮灭的间隔时间,从而形成一个流动的效果。
通过编程控制灯泡的亮灭顺序和时间间隔,可以实现不同的流水灯效果,如单方向流水灯、双向流水灯、交替流水灯等。
这些效果的产生都是通过改变存储变量的值和控制亮灭时间来实现的。
51单片机的简介——串行口、SCON51单片机有一个全双工串行通讯口,它即可作为UART(Universal AsynchronousReceiver/Transmitter),也可作为一个同步移位寄存器。
而且作为UART时,其具有多机通讯能力。
51单片机的串行口由发送控制、接收控制、波特率输入管理和发送/接收缓冲区SBUF(地址为99H)组成。
SBUF作为发送和接收缓冲区其实际是分开的两个器件,数据不会相互覆盖,但在对其寻址时都是99H,51单片机会根据读或者写指令操作相应的器件。
站在汇编角度来看,51单片机的串行口通讯操作体现为累加器Acc(地址E0H)和发送/接收缓冲区SBUF之间的数据传递。
当我们要发送数据时,对串行口完成初始化设置后,数据由累加器A传入SBUF,然后在发送控制器的控制下组成帧结构,并自动从TXD端口发出,发送结束后置位TI(TI是特殊功能寄存器SCON的可独立寻址位,参见SCON介绍),如果要继续发送就在指令中将TI清0。
接收数据时,相当于对串口完成初始化设置后,数据由SBUF传入累加器Acc,在置位允许位(即设置SCON的独立寻址位REN为1)后才开始进行串行接收操作,在接收控制器控制下,通过移位寄存器将串行数据输入SBUF,接收结束后将RI(SCON中可独立寻址位)置位,最后将数据送累加器Acc。
特殊功能寄存器SCON是串行口控制寄存器,用于存放串行口的控制和状态信息,其地址为98H,具有位寻址功能,其各位的结构如下图所示:其中各个位的功能及含义如下:SM0、SM1:串行口工作方式选择位,其组合含义如下图所示:SM2:多机通讯控制位。
在方式2和方式3中用于多机通讯控制,在方式2、方式3的接收状态中,若SM2=1,当接收到的第9位(同时系统将第9位值赋予RB8)为0时,舍弃接收到的数据,RI置0;若第9位为1时,将接收到的数据送入接收SBUF中,并将RI置1;而对于方式1,接收到有效的停止位时,将RI置1。
移位寄存器实验心得(精品5篇)移位寄存器实验心得篇1以下是一篇移位寄存器实验心得:移位寄存器实验心得移位寄存器是数字电路中的一个基本组件,它可以在一个有限位的寄存器中存储数据,并可以通过移位操作将数据向左或向右移动。
在本次实验中,我们通过使用移位寄存器来实现一个简单的计数器,并通过对移位寄存器的操作来实现其他功能。
在实验中,我们首先使用了一个4位二进制移位寄存器来实现计数器。
我们通过输入不同的数值,并使用移位操作来控制计数器的计数方式。
通过观察实验结果,我们发现计数器的计数方式与我们所输入的数值和移位操作有关。
接着,我们使用移位寄存器来实现了一个简单的LED显示电路。
我们将移位寄存器中的数据通过一个数码管显示出来,从而实现了LED显示的功能。
在这个实验中,我们学习了如何将数字转换成二进制码,并将其存储在移位寄存器中,然后通过数码管将数据显示出来。
最后,我们使用移位寄存器来实现了一个简单的电子琴电路。
我们将移位寄存器中的数据通过一个电子琴模拟出来,从而实现了电子琴的功能。
在这个实验中,我们学习了如何将数字转换成二进制码,并将其存储在移位寄存器中,然后通过电子琴将数据模拟出来。
通过这次实验,我们不仅学习了移位寄存器的基本原理和操作方法,还加深了对数字电路的理解和认识。
同时,我们也学会了如何将理论知识与实际操作相结合,提高了我们的动手能力和解决问题的能力。
移位寄存器实验心得篇2在进行移位寄存器实验的过程中,我不仅对移位寄存器有了更深入的理解,还掌握了一些实际操作技巧。
以下是我对这次实验的心得体会。
首先,实验开始前,我对于移位寄存器的工作原理感到困惑。
但是在实验过程中,我逐渐明晰了其工作机制。
移位寄存器是一种具有存储功能的电子元件,可以将数据从高位移至低位或低位移至高位,从而实现数据的传递和存储。
这一过程让我对电子元件的工作原理有了更深入的了解。
在实验过程中,我遇到了一些问题,例如在编程时出现了错误。
但是,通过查阅相关资料和反复试验,我逐渐找到了解决问题的方法。
1) 芯片的振荡模式选择。
2) 片内看门狗的启动。
3) 上电复位延时定时器PWRT的启用。
4) 低电压检测复位BOR模块的启用。
5) 代码保护。
__CONFIG_CP_OFF &_WDT_OFF &_BODEN_OFF &_PWRTE_ON &_XT_OSC &_WRT_OFF &_LVP_OFF &_CPD_OFF ;_CP_OFF 代码保护关闭_WDT_OFF 看门狗关闭_BODEN_OFF_PWRTE_ON 上电延时定时器打开_XT_OSC XT振荡模式_WRT_OFF 禁止Flash程序空间写操作_LVP_OFF 禁止低电压编程_CPD_OFF EEPROM数据读保护关闭LVP Low Voltage Program 低电压编程CP Code Protect 代码保护Date EE Read Protect EEPROM数据读保护Brown Out DetectPower Up TimerWatchdog TimerFlash Program Write外部时钟输入(HS,XT或LP OSC配置)如下图:陶瓷(ceramic)谐振器电容的选择如下表:一般情况为:11 1111 0011 0001 0x3F31 或0x3F71位13 CP:闪存程序存储器代码保护位11=代码保护关闭0=所有程序存储器代码保护位12 未定义:读此位为1 1位11 DEBUG:在线调试器模式位11=禁止在线调试器,RB6和RB7是通用I / O引脚0=在线调试功能开启,RB6和RB7专用于调试位10:9 WRT1:WRT0:闪存程序存储器的写使能位11PIC16F876A / 877A11=写保护关闭,所有的程序存储器可能被写入由EECON控制10=0000h-00FFh写保护,0100h-1FFFh写入由EECON控制01=0000h-07FFh写保护,0800h-1FFFh写入由EECON控制00=0000h-0FFFh写保护,1000h-1FFFh写入由EECON控制位8 CPD:数据EEPROM存储器代码保护位(Code Protection bit) 1 1=数据EEPROM存储器代码保护关闭0=数据EEPROM存储器代码保护功能开启位7 LVP:低电压(单电源)在线串行编程使能位(Low V oltage Program) 0 1=RB3/PGM引脚有PGM功能,低电压编程启用0=RB3是数字I / O 引脚,HV(高电压13V左右) 加到MCLR必须用于编程位6 BOREN:欠压复位使能位(低电压检测复位)(Brown-out Reset(Detect)) 0 1=低电压检测复位BOR(BOD)模块启用0=低电压检测复位BOR(BOD)模块关闭位5:4 未定义:读此两位均为1 11位3 PWRTEN:上电定时器使能位(上电复位延时定时器)(Power-up Timer) 0 1=上电定时器关闭0=上电定时器开启位2 WDT:看门狗定时器使能位0晶体振荡器电容的选择1=看门狗开启如右图:0=看门狗关闭位1:0 Fosc1:Fosc0:振荡器选择位0111=RC振荡器10=晶体振荡器HS模式。
单片机特殊功能寄存器(SFR= special function register)整理一、中断系统1、定时器控制寄存器TCON(timer control)(88H)TCON:Timer控制寄存器,是管理定时器工作的SFR(其中低4位管外部中断).TF0/TF1(Timer Overflow Flag):定时器0/定时器1溢出中断申请标志位:=0:定时器未溢出;=1:定时器溢出申请中断,进中断后自动清零。
TR0/TR1(Timer Run):定时器运行启停控制位:=0:定时器停止运行;=1:定时器启动运行。
IT0/IT1(Interrupt Type):外部中断请求的触发方式选择位:=0:在INT0/INT1端申请中断的信号低电平触发;=1:在INT0/INT1端申请中断的信号负跳变触发.IE0/IE1(Interrupt Edge):外部中断申请标志位:=0:没有外部中断申请;=1:有外部中断申请。
2、中断允许寄存器IE(interrupt enable)(0A8H)EX0/EX1(Enable External)、ET1/ET0(Enable Timer)、ES(Enable Serial Port)位:分别是INT0/1,Timer0/1,串行口的中断允许控制位:=0 时禁止中断;=1 时允许中断。
ET2:T2中断允许控制位(仅52系列有)=0 时禁止中断;=1 时允许中断。
EA(Enable All Interrupt):总的中断允许控制位(总开关):=0 时禁止全部中断;=1 时允许中断。
3、中断优先级控制寄存器IP(interrupt priority)(0B8H)PX0/PX1(Priority External):INT0/1优先级控制位:=0 时属低优先级;=1 时属高优先级。
PT0/PT1/PT2(Priority Timer):T0/1/2中断优先级控制位:=0 时属低优先级;=1 时属高优先级。
单片机移位寄存器引言:在单片机的应用中,移位寄存器是一种非常常用的功能模块。
它能够实现数据的移位操作,常被用于串行通信、显示控制、数据传输等场景。
本文将介绍移位寄存器的工作原理、应用领域以及设计注意事项。
一、移位寄存器的工作原理移位寄存器是一种能够将数据按位进行移位操作的寄存器。
它内部由多个触发器组成,每个触发器都能存储一个二进制位。
移位寄存器的输入端可以接收一个数据位,通过控制线来选择是向左移位还是向右移位。
当移位方向选择为向左移位时,寄存器中的所有数据位都向左移动一位,最右边的数据位被丢弃,同时在最左边补入一个新的数据位。
当移位方向选择为向右移位时,寄存器中的所有数据位都向右移动一位,最左边的数据位被丢弃,同时在最右边补入一个新的数据位。
这样就实现了数据的移位操作。
二、移位寄存器的应用领域1. 串行通信:移位寄存器常被用于串行通信中,它可以将并行数据转换为串行数据进行传输。
通过不断地向右移位,将并行数据逐位发送出去,从而实现数据的串行传输。
在接收端,再通过向左移位将串行数据转换为并行数据进行处理。
2. 显示控制:在数码管显示、液晶显示等场景中,移位寄存器可以用来控制显示的内容。
将需要显示的数据按照一定的格式存储在移位寄存器中,然后通过移位操作将数据逐位输出到显示模块,实现显示效果。
3. 数据传输:移位寄存器还可以用于数据传输场景。
例如,将传感器采集到的数据存储在移位寄存器中,通过移位操作将数据传输到其他模块进行处理或存储。
三、移位寄存器的设计注意事项1. 移位方向的选择:在设计中需要明确移位的方向,根据实际需求选择向左移位还是向右移位。
2. 移位速度的控制:移位的速度需要根据具体应用场景进行控制,过快或过慢都可能导致数据错误。
3. 寄存器位数的选择:根据需要存储的数据位数选择合适的移位寄存器。
位数过少可能导致数据丢失,位数过多则会浪费资源。
4. 级联的设计:如果需要存储的数据位数超过一个移位寄存器所能存储的范围,可以通过级联多个移位寄存器来实现,需要合理设计级联的方式和控制信号。
单片机移位寄存器在单片机中,移位寄存器是一种重要的功能模块,用于实现数据的移位操作。
移位寄存器通过改变数据的位序,可以实现数据在寄存器内部的移动和重排。
它在数字电路和信号处理中具有广泛的应用,如数据压缩、图像处理、通信等领域。
1. 移位寄存器的基本概念移位寄存器是一种特殊的寄存器,它具有多个存储单元(位),每个存储单元可以存储一个二进制位。
移位寄存器可以实现数据的左移和右移操作,通过改变数据的位置,可以将数据位重新排列。
移位寄存器可以分为串行移位寄存器和并行移位寄存器两种类型。
2. 串行移位寄存器串行移位寄存器是由多个触发器级联而成的,数据在寄存器内部逐个位地移动。
通常情况下,串行移位寄存器有一个输入端和一个输出端,数据通过输入端进入寄存器,经过一系列的触发器后,从输出端输出。
串行移位寄存器具有较小的尺寸和较低的功耗,适用于复杂的移位操作。
3. 并行移位寄存器并行移位寄存器是由多个存储单元并列连接而成的,数据同时在所有存储单元内进行移动。
并行移位寄存器具有较高的并行性和处理速度,但尺寸较大且功耗较高。
并行移位寄存器适合于对数据进行快速处理和重排。
4. 移位寄存器的应用移位寄存器在数字电路和信号处理中有广泛的应用。
在数字电路中,移位寄存器用于实现数据的序列操作,如数据的移动、重排、加密等。
在信号处理中,移位寄存器用于数据的滤波、压缩、编码/解码等操作。
5. 移位寄存器的扩展移位寄存器可以通过级联或并行连接的方式进行扩展。
级联连接是通过将多个移位寄存器的输出端与下一个移位寄存器的输入端相连,形成一个更大的移位寄存器。
并行连接是通过将多个移位寄存器的输入端同时连接到数据源,以实现更高的处理速度和并行性。
6. 总结移位寄存器作为一种重要的功能模块,在单片机中具有广泛的应用。
它可以实现数据的移位操作,改变数据的位序,从而实现数据的移动和重排。
串行移位寄存器和并行移位寄存器是常见的两种类型,各有优缺点。
移位寄存器可以通过级联或并行连接进行扩展,以满足不同场景的需求。
移位寄存器芯片74HC595实现LED动、静态显示的基本原理摘要:本文介绍了应用移位寄存器芯片74HC595实现LED动、静态显示的基本原理。
提出了一种用74HC595实现多位LED显示的新方法。
同时对该系统的硬件组成和软件实现作了详细说明。
实际应用表明,此方法连线简单方便,成本低廉,可用于24位LED或更多位LED显示。
关键词:LED 74HC595 动态显示静态显示1 引言单片机应用系统中使用的显示器主要有LED和LCD两种。
近年来也有用CRT显示的。
前者价格低廉,配置灵活,与单片机接口方便;后者可进行图形显示,但接口较复杂,成本也较高。
LED(Ling Emiting Diode)是发光二极管的缩写。
实际应用非常普遍的是八段LED显示器。
LED显示器在大型报时屏幕,银行利率显示,城市霓虹灯建设中,得到广泛应用。
在这些需要多位LED显示的场合,怎样实现系统稳定,价格低廉的显示,成为决定其成本的关键所在。
2 74HC595实现LED静、动态显示基本原理74HC595是美国国家半导体公司生产的通用移位寄存器芯片。
并行输出端具有输出锁存功能。
与单片机连接简单方便,只须三个I/O口即可。
而且通过芯片的Q7引脚和SER引脚,可以级联。
而且价格低廉,每片单价为1.5元左右.2.1 静态显示每位LED显示器段选线和74HC595的并行输出端相连,每一位可以独立显示(见图1)。
在同一时间里,每一位显示的字符可以各不相同(每一位由一个74HC595的并行输出口控制段选码)。
N位LED显示要求N个74HC595芯片及N+3条I/O口线,占用资源较多,而且成本较高。
这对于多位LED显示很不利。
2.2 动态显示在多位LED显示时,为了简化电路,降低成本,节省系统资源,将所有的N位段选码并联在一起,由一片74HC595控制(见图2)。
由于所有LED的段选码皆由一个74HC595并行输出口控制,因此,在每一瞬间,N位LED会显示相同的字符。
74ls595 (8位输出锁存移位寄存器)的使用方法1推荐单片机与74LS595(8位输出锁存移位寄存器)的使用方法<>google_render_ad();74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
QH': 级联输出端。
我将它接下一个595的SI端。
SI: 串行数据输入端。
74595的控制端说明:/SCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
我通常都选微秒级)RCK(12脚):上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。
通常我将RCK置为低点平,当移位结束后,在RCK端产生一个正脉冲(5V时,大于几十纳秒就行了。
我通常都选微秒级),更新显示数据。
/G(13脚): 高电平时禁止输出(高阻态)。
如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。
比通过数据端移位控制要省时省力。
注:1)74164和74595功能相仿,都是8位串行输入转并行输出移位寄存器。
74164的驱动电流(25mA)比74595(35mA)的要小,14脚封装,体积也小一些。
2)74595码管没有闪烁感。
3)595是串入并出带有锁存功能移位寄存器,它的使用方法很简单,在正常使用时SCLR为高电平,G为低电平。
从一位数据,串行输595是串入并出带有锁存功能移位寄存器,它的使用方法很简单,如下面的真值表,在正常使用时SCLR为高电平,G为低电平。
从SER每输入一位数据,串行输入时钟SCK上升沿有效一次,直到八位数据输入完毕,输出时钟上升沿有效一次,此时,输入的数据就被送到了输出端。
入时钟SCK上升沿有效一次,直到八位数据输入完毕,输出时钟上升沿有效一次,此时,输入的数据就被送到了输出端。
单片机移位寄存器1. 什么是单片机移位寄存器单片机移位寄存器(Shift Register)是一种具有移位功能的寄存器,在数字电子电路中被广泛应用。
它由一组触发器(Flip-Flop)组成,可以将数据按照特定的方式进行移位操作。
2. 移位寄存器的工作原理移位寄存器通常由串行输入、串行输出、并行输入和并行输出四个主要部分组成。
其工作原理如下:•串行输入:数据输入信号逐位地经过寄存器,通过串行输入端口输入。
每当输入一个新的数据位时,原有的数据位将向左移位,腾出位置存放新的数据位。
•串行输出:从移位寄存器的串行输出端口输出数据。
当整个移位寄存器被移位后,最右边的数据位将从串行输出端口输出,同时,原有数据位向右移位填充空出的位置。
•并行输入:通过并行输入端口将整个数据一次性输入到移位寄存器中,不进行移位操作。
•并行输出:通过并行输出端口将整个移位寄存器的内容一次性输出。
3. 移位寄存器的应用场景移位寄存器在数字电子电路中具有广泛的应用,例如:3.1. 数据传输与存储移位寄存器可以用于将数据从一个地方传输到另一个地方,实现数据的序列化和反序列化。
在通信系统中,可以使用移位寄存器将并行数据转换为串行数据进行传输,或者将串行数据转换为并行数据进行处理。
3.2. 并行输入/输出扩展通过移位寄存器,可以将单片机的并行输入/输出引脚扩展为更多的输入/输出引脚。
通过将多个移位寄存器级联,可以实现更多的输入/输出引脚扩展。
3.3. 状态存储移位寄存器可以用于存储状态信息,例如程序计数器(Program Counter)和状态寄存器(Status Register)等。
4. 移位寄存器的类型根据移位寄存器的工作方式和结构特点,常见的移位寄存器包括以下几种类型:4.1. 并行入/串行出移位寄存器(PISO)并行入/串行出移位寄存器有多个并行输入引脚和一个串行输出引脚。
多个并行输入信号可以一次性并行输入到寄存器中,然后按位进行移位,输出到串行输出引脚上。
单片机寄存器总结我们知道单片机的内部有ROM、有RAM、有并行I/O口,那么,除了这些东西之外,单片机内部究竟还有些什么?这些个零碎的东西怎么连在一起的?下面就让我们来对单片机内部作一个完整的分析吧!从图中我们可以看出,在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。
在一个51单片机的内部包含了这么多的东西。
对图进行进一步的分析,我们已知,对并行I/O口的读写只要将数据送入到相应I/O口的锁存器就可以了,那么对于定时/计数器,串行I/O口等怎么用呢?在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。
事实上,我们已接触过P1这个特殊功能寄存器了,还有哪些呢?看表1下面,我们介绍一下几个常用的SFR。
1、ACC---是累加器,通常用A表示。
这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。
它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。
自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。
该标志常用作程序分枝转移的判断条件。
2、B--一个寄存器。
在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。
3、PSW-----程序状态字。
这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。
它的各位功能请看表2下面我们逐一介绍各位的用途CY:进位标志。
8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。
单片机移位寄存器
单片机移位寄存器
单片机中的移位寄存器是一种特殊的寄存器,它可以对数据进行移位操作。
在单片机中,移位寄存器通常用于串行通信、数字信号处理和数据转换等应用场合。
由于单片机中的移位寄存器只能处理二进制数据,因此在进行移位操作时需要将十进制数转换为二进制数。
例如,将十进制数5转换为二进制数为101。
在单片机中,有两种类型的移位寄存器:左移寄存器和右移寄存器。
左移寄存器可以将数据向左移动一定的位数,而右移寄存器则可以将数据向右移动一定的位数。
在进行左移操作时,最高位被丢弃,并在最低位补上0。
例如,在一个8位的左移寄存器中,如果向左移动3个位置,则最高3个位置上的数据被丢弃,并在最低3个位置上补0。
在进行右移操作时,则是将最低位被丢弃,并在最高位补上0或1。
例如,在一个8位的右移寄存器中,如果向右移动3个位置,则最低
3个位置上的数据被丢弃,并根据需要在最高3个位置上补0或1。
除了基本的左、右移操作外,单片机中的移位寄存器还可以进行逻辑
移位、算术移位和循环移位等操作。
逻辑移位是指在进行移位操作时,只对数据的位置进行改变,并不改
变数据本身。
例如,在一个8位的左移寄存器中,将数据向左移动3
个位置,则最高3个位置上的数据被丢弃,并在最低3个位置上补0,但是数据本身并没有发生变化。
算术移位则是在进行移位操作时,根据数据的符号进行相应的处理。
例如,在一个8位的右移寄存器中,如果向右移动3个位置,则最低
3个位置上的数据被丢弃,并根据需要在最高3个位置上补0或1。
如果原始数据是有符号数,则需要将符号扩展到高位。
循环移位则是指在进行移位操作时,将被丢弃的数据重新放到另一端。
例如,在一个8位的左循环移位寄存器中,将数据向左循环移动3个
位置,则最高3个位置上的数据被丢弃,并重新放到最低3个位置上。
总之,单片机中的移位寄存器具有广泛的应用场合和功能。
熟练掌握
它们的使用方法和技巧可以提高单片机程序设计效率和优化程序性能。
(注:以上内容仅供参考,具体应用需要根据不同的单片机型号和实际需求进行适当调整和修改。
)。