正交试验方差分析(通俗易懂)
- 格式:doc
- 大小:429.00 KB
- 文档页数:12
正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
4.1.8 正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
第三节正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题。
正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果。
1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格。
比如表9—17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2) L4(23)表的用法:做4次试验,最多可安排2水平的因素3个。
最多能安排的因素数↓L4(23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的。
L4(23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表。
用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n—1)+1.下面通过实例来说明如何用正交表来安排试验。
5因素4水平正交试验方差分析
5因素4水平正交试验方差分析是一种统计方法,旨在确定多个因素对于特定结果的影响程度。
在这种试验方案中,有5个因素,每个因素有4个水平,通过对所有因素以及它们不同水平的组合进行试验观察,然后对结果进行方差分析,从而找出对结果影响最显著的因素和水平。
这种试验方案的主要优点在于它具有正交性,即每个因素及其水平相互独立,不会发生干扰。
此外,正交试验方案可以极大地减少试验次数,节约成本和时间。
需要注意的是,这种试验方案只能用来确定特定结果的影响因素和水平,无法确定因果关系或预测未来趋势。
同时,应注意控制其他可能影响结果的因素,以确保结果可靠。
第十一章正交设计试验资料的方差分析在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
第一节、正交设计原理和方法(一) 正交设计的基本概念正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。
它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。
例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响:A因素是氮肥施用量,设A1、A2、A3 3个水平;B因素是磷肥施用量,设B1、B2、B3 3个水平;C因素是钾肥施用量,设C1、C2、C3 3个水平。
这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。
如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。
但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。
如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。
正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。
一、正交设计的基本原理表11-1 33试验的全面试验方案正交设计就是从全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
图1中标有‘9 ’个试验点,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。
即:(1)A1B1C1(2)A1B2C2(3)A1B3C3(4)A2B1C2(5)A2B2C3 (6)A2B3C1(7)A3B1C3(8)A3B2C1(9)A3B3C2上述选择,保证了A因素的每个水平与B因素、C 因素的各个水平在试验中各搭配一次。
从图1中可以看到,9个试验点分布是均衡的,在立方体的每个平面上有且仅有3个试验点;每两个平面的交线上有且仅有1个试验点。
9个试验点均衡地分布于整个立方体内,有很强的代表性,能够比较全面地反映全面试验的基本情况。
二、正交表及其特性(一) 正交表表11-2 是L8(27)正交表,其中“L”代表正交表;L 右下角的数字“8”表示有8行,用这张正交表安排试验包含8个处理(水平组合) ;括号内的底数“2” 表示因素的水平数,括号内2的指数“7”表示有7列,用这张正交表最多可以安排7个2水平因素。
表11-2 L8(27)正交表2水平正交表还有L4(23)、L16(215)等;3水平正交表有L9(34)、L27(313) 、…、等。
(二) 正交表的特性1、任一列中,不同数字出现的次数相同例如L8(27)中不同数字只有1和2,它们各出现4次;L9(34)中不同数字有1、2和3,它们各出现3次。
2、任两列中,同一横行所组成的数字对出现的次数相同例如L8(27)的任两列中(1, 1), (1, 2), (2, 1), (2, 2)各出现两次;L9(34)任两列中(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出现1次。
即每个因素的一个水平与另一因素的各个水平互碰次数相等,表明任意两列各个数字之间的搭配是均匀的。
用正交表安排的试验,具有均衡分散和整齐可比的特点。
均衡分散,是指用正交表挑选出来的各因素水平组合在全部水平组合中的分布是均衡的。
由图11-1可以看出,在立方体中,任一平面内都包含 3 个试验点,任两平面的交线上都包含1个试验点。
整齐可比是指每一个因素的各水平间具有可比性。
因为正交表中每一因素的任一水平下都均衡地包含着另外因素的各个水平,当比较某因素不同水平时,其它因素的效应都彼此抵消。
如在A、B、C 3个因素中,A因素的3 个水平A1、A2、A3条件下各有B、C 的3 个不同水平,即:在这9个水平组合中,A因素各水平下包括了B、C因素的3个水平,虽然搭配方式不同,但B、C皆处于同等地位,当比较A因素不同水平时,B因素不同水平的效应相互抵消,C因素不同水平的效应也相互抵消。
所以A因素3个水平间具有可比性。
同样,B、C因素3个水平间亦具有可比性。
(三) 正交表的类别1、相同水平正交表各列中出现的最大数字相同的正交表称为相同水平正交表。
L4(23)、L8(27)、L12(211)等各列中最大数字为2,称为两水平正交表;L9(34)、L27(313)等各列中最大数字为3,称为3水平正交表。
2、混合水平正交表各列中出现的最大数字不完全相同的正交表称为混合水平正交表。
L8(41×24)表中有一列最大数字为4,有4列最大数字为2。
也就是说该表可以安排1个4水平因素和4个2水平因素。
L16(44×23),L16(4×212)等都混合水平正交表。
三、正交设计方法【例11·1】某水稻栽培试验选择了3个水稻优良品种(A):二九矮、高二矮、窄叶青,3种密度(B):15、20、25(万苗/666.7m2);3种施氮量(C):3、5、8(kg/666.7m2),试采用正交设计安排一个试验方案。
(一) 确定试验因素及其水平, 列出因素水平表表11-3 因素水平表(二) 选用合适的正交表根据因素、水平及需要考察的交互作用的多少来选择合适的正交表。
选用正交表的原则是:既要能安排下试验的全部因素(包括需要考查的交互作用),又要使部分水平组合数(处理数)尽可能地少。
一般情况下,试验因素的水平数应恰好等于正交表记号中括号内的底数;因素的个数(包括需要考查交互作用)应不大于正交表记号中括号内的指数;各因素及交互作用的自由度之和要小于所选正交表的总自由度,以便估计试验误差。
若各因素及交互作用的自由度之和等于所选正交表总自由度,则可采用有重复正交试验来估计试验误差。
此例有3个3水平因素,若不考察交互作用,则各因素自由度之和为因素个数×(水平数-1) = 3 ×(3-1) =6,小于L9(34)总自由度9-1=8,故可以选用L9(34);若要考察交互作用,则应选用L27(313),此时所安排的试验方案实际上是全面试验方案。
(三) 表头设计表头设计就是把挑选出的因素和要考察的交互作用分别排入正交表的表头适当的列上。
在不考察交互作用时,各因素可随机安排在各列上;若考察交互作用,就应按该正交表的交互作用列表安排各因素与交互作用。
此例不考察交互作用,可将品种(A)、密度(B)和施氮量(C)依次安排在L9(34)的第1、2、3列上,第4 列为空列,见表2-4。
表11-4 表头设计L9(34)表头设计L8(27) 表头设计(四) 列出试验方案把正交表中安排因素的各列(不包含欲考察的交互作用列)中的每个数字依次换成该因素的实际水平,就得到一个正交试验方案。
表11-5 正交试验方案第二节正交试验资料的方差分析若各号试验处理都只有一个观测值,则称之为单个观测值正交试验;若各号试验处理都有两个或两个以上观测值,则称之为有重复观测值正交试验。
一、单个观测值正交试验资料的方差分析对【例11-1】用L9(34)安排试验方案后,各号试验只进行一次,试验结果列于表2-6。
试对其进行方差分析。
表11-6 正交试验结果计算表T i为各因素同一水平试验指标之和,T为9个试验号的试验指标之和;x为各因素同一水平试验指标的平均数。
该试验的9个观测值总变异由A因素、B因素、C因素及误差变异4部分组成,因而进行方差分析时平方和与自由度的分解式为:SS T = SS A + SS B + SS C+SSedf T= df A+ df B+ df C + dfe用n表示试验(处理)数;a、b、c表示A、B、C因素的水平数;k a、k b、k c表示A、B、C因素的各水平重复数。
本例,n=9、a=b=c=3、k a=k b=k c=3。
1、计算各项平方和与自由度矫正数C = T2/n = 37112/9 = 1530169.00总平方和SST =Σx2-C=(340.02+422.52+…+462.52)-1530169.00=21238.00A因素平方和T/k a-CSS A=Σ2A=(1201.52+1291.52+1218.02)/3 -1530169.00=1530.50B因素平方和T/k b-CSS B= Σ2B=(1092.02+1278.52+1340.52)/3 -1530169.00=11153.17C因素平方和T/k c-CSS C=Σ2C=(1142.52+1245.02+1323.52)/3 -1530169.00=5492.17误差平方和SS e=SS T-SS A-SS B-SS C=21238.00-1530.5-11153.17 -5492.17=3062.16总自由度df T=n-1=9-1=8A因素自由度df A=a-1=3-1=2B因素自由度df B=b-1=3-1=2C因素自由度df C=c-1=3-1=2误差自由度df e= df T-df A-df B-df C= 8-2-2-2 = 22、列出方差分析表,进行F检验表11-7 方差分析表F 检验结果表明,三个因素对产量的影响都不显著。
究其原因可能是本例试验误差大且误差自由度小(仅为2),使检验的灵敏度低,从而掩盖了考察因素的显著性。
由于各因素对增重影响都不显著,不必再进行各因素水平间的多重比较。
此时,可从表11-6中选择平均数大的水平A2、B3、C3组合成最优水平组合A2B3C3。
若F检验结果3个因素对试验指标的影响显著或极显著,进行各因素水平间多重比较常采用SSR法。
本例是选用相同水平正交表L9(34)安排的试验,A、B、C因素各水平重复数相同,即k a=k b=k c=3,它们的标准误相同,即单个观测值正交试验资料的方差分析,其误差是由“空列”来估计的。
然而“空列”并不空,实际上是被未考察的交互作用所占据。
这种误差既包含试验误差,也包含交互作用,称为模型误差。
若交互作用不存在,用模型误差估计试验误差是可行的;若因素间存在交互作用,则模型误差会夸大试验误差,有可能掩盖考察因素的显著性。
试验误差应通过重复试验值来估计。
所以,进行正交试验最好能有二次以上的重复。
正交试验的重复,可采用完全随机或随机区组设计。