高考数学知识点难题及答案
- 格式:docx
- 大小:37.15 KB
- 文档页数:2
【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。
高考最难的数学题及答案高考数学最难的题目及答案(1)1、利用数学归纳法证明平面向量a=(a1, a2)和b=(b1, b2)满足如下不等式:a1/b1 + a2/b2 > 0答案:设a=(a1, a2), b=(b1, b2),由数学归纳法,令n∈N,先给出基本情形:当n=1时:a1/b1 + a2/b2 = (a1 + a2)/(b1 + b2),由a1 + a2 > 0, b1 + b2 > 0可知a1/b1 + a2/b2 > 0进行归纳:假设n时成立,即a1/b1 + a2/b2 > 0,当n+1时,a1/b1 + a2/b2 > 0,根据a1/b1 + a2/b2 = [a1 + (n+1)a2]/[b1 + (n+1)b2],有[a1 + (n+1)a2]/[b1 + (n+1)b2] > 0,由a1 + (n+1)a2 > 0, b1 + (n+1)b2 > 0可知a1/b1 + a2/b2 > 0,因此,证明平面向量a=(a1, a2)和b=(b1, b2)满足a1/b1 + a2/b2 > 0。
2、求x的集合:A={x| x^2 + 6x + 9 ≠ 0 }答案:界说明:x∈R分析:x^2 + 6x + 9 = (x + 3)^2,表述:A={x| x^2 + 6x + 9 ≠ 0 } 等价于A={x| (x + 3)^2 ≠ 0 },即A={x| x ≠ -3 }答案:A={x| x ≠ -3 }3、求一元二次方程ax^2+bx+c=0中,b^2-4ac < 0时实根的取值范围答案:界说明:x∈R分析:b^2 - 4ac < 0⇒Δ= b^2 - 4ac < 0,表述:b^2-4ac < 0时实根没有解,取值范围为空集,即实根的取值范围为:空集。
答案:实根的取值范围为:空集。
4、设弦AB=12,角A=30°,则角C的度数为多少?答案:界说明:C∈[0,360](度)分析:弦AB=12,角A=30°,表述:根据余弦定理可得:cosC=12^2/2/2^2=12/4,即cosC=3/2,由cosC=3/2可以求出角C的度数。
《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
2021年10月18日姚杰的高中数学组卷一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.116.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.22.〔2007•四川〕设F1、F2分别是椭圆=1的左、右焦点.〔Ⅰ〕假设P是第一象限内该椭圆上的一点,且,求点P的作标;〔Ⅱ〕设过定点M〔0,﹣2〕的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角〔其中O为坐标原点〕,求直线l的斜率k的取值范围.23.〔2021•丰台区校级一模〕如图,△OFP的面积为m,且=1.〔I〕假设,求向量与的夹角θ的取值范围;〔II〕设,且.假设以O为中心,F为焦点的椭圆经过点P,当取得最小值时,求此椭圆的方程.24.设、为平面向量,假设存在不全为零的实数λ,μ使得λ+μ=0,那么称、线性相关,下面的命题中,、、均为平面M上的向量.①假设=2,那么、线性相关;②假设、为非零向量,且⊥,那么、线性相关;③假设、线性相关,、线性相关,那么、线性相关;④向量、线性相关的充要条件是、共线.上述命题中正确的选项是〔写出所有正确命题的编号〕25.〔2005•安徽〕椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A、B两点,与=〔3,﹣1〕共线.〔Ⅰ〕求椭圆的离心率;〔Ⅱ〕设M为椭圆上任意一点,且,证明λ2+μ2为定值.26.〔2021•江苏模拟〕如图,D是△ABC的中点,,那么λ1+λ2=.27.〔2021•泗县校级模拟〕单位圆⊙O:x2+y2=1,A〔1,0〕,B是圆上的动点,∥,.〔1〕求点P的轨迹E的方程;〔2〕求过A作直线l被E截得的弦长的最小值.28.〔2021•西安校级模拟〕向量,动点M到定直线y=1的距离等于d,并且满足,其中O是坐标原点,k是参数.〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当时,求的最大值和最小值;〔3〕如果动点M的轨迹是圆锥曲线,其离心率e满足,求实数k的取值范围.29.〔2021•上海〕在直角坐标平面xOy上的一列点A1〔1,a1〕,A2〔2,a2〕,…,A n〔n,a n〕,…,简记为{A n}、假设由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,那么称{A n}为T点列,〔1〕判断,,是否为T点列,并说明理由;〔2〕假设{A n}为T点列,且点A2在点A1的右上方、任取其中连续三点A k、A k+1、A k+2,判断△A k A k+1A k+2的形状〔锐角三角形、直角三角形、钝角三角形〕,并予以证明;〔3〕假设{A n}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:.30.〔2021•临川区校级一模〕设点F〔,0〕〔p为正常数〕,点M在x轴的负半轴上,点P 在y轴上,且,.〔Ⅰ〕当点P在y轴上运动时,求点N的轨迹C的方程;〔Ⅱ〕直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=﹣的垂线,对应的垂足分别为A1,B1,求的值;〔Ⅲ〕在〔Ⅱ〕的条件下,记,,,λ=,求λ的值.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得,=||•||=||2﹣〔a+1〕〕||,•=﹣a,于是•≥••恒成立,整理得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.应选:D.点评:此题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.考点:平面向量数量积的运算.专题:空间向量及应用.分析:由题意可得•==,同理可得•==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕,由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕.故有n=3,m=1,∴•==,应选C.点评:此题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈〔,1〕,是解题的关键,属于中档题.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]考点:相等向量与相反向量;平面向量共线〔平行〕的坐标表示.专题:压轴题.分析:利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.解答:解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得〔sinα﹣1〕2+〔16t2+18t+2〕=0可得﹣〔16t2+18t+2〕∈[0,4]解不等式得因而解得﹣6≤k≤1.应选A.点评:此题难度较大,题目涉及到向量、三角函数的有界性、还用到了换元和解不等式等知识,表达了化归的思想方法.4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈〔0,〕,故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈〔0,〕,∴cos2θ=∈〔0,〕,故m=n=1,∴•==,应选:D.点评:此题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.解答:解:由可得〔c,0〕=λ〔1,0〕,〔d,0〕=μ〔1,0〕,所以λ=c,μ=d,代入得〔1〕假设C是线段AB的中点,那么c=,代入〔1〕d不存在,故C不可能是线段AB 的中点,A错误;同理B错误;假设C,D同时在线段AB上,那么0≤c≤1,0≤d≤1,代入〔1〕得c=d=1,此时C和D点重合,与条件矛盾,故C错误.应选D点评:此题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的数量积公式表示出,有得到的夹角与夹角的关系,利用三角函数的诱导公式和条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.解答:解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos〔90°±θ〕|=||•||•sinθ,即为以,为邻边的平行四边形的面积.应选A.点评:此题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:压轴题.分析:本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.解答:解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴的最大值是.应选C.点评:启发学生在理解数量积的运算特点的根底上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,此题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.考点:平面向量数量积的性质及其运算律.专题:压轴题.分析:根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.解答:解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确应选C.点评:此题主要考查平面向量的数量积的定义.要会巧妙变形和等积变换.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.考点:数量积表示两个向量的夹角;等可能事件的概率.专题:计算题;压轴题.分析:由题意知此题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大局部内容考查的是向量的问题,这是一个综合题.解答:解:由题意知此题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=〔m,n〕与=〔1,﹣1〕不可能同向.∴夹角θ≠0.∵θ∈〔0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.应选C.点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份〞能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.考点:向量的共线定理;向量的模.专题:计算题;压轴题.分析:将向量沿与方向利用平行四边形原那么进行分解,构造出三角形,由题目,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,防止出错.解答:解:法一:如下图:=+,设=x,那么=.=∴==3.法二:如下图,建立直角坐标系.那么=〔1,0〕,=〔0,〕,∴=m+n=〔m,n〕,∴tan30°==,∴=3.应选B点评:对一个向量根据平面向量根本定理进行分解,关键是要根据平行四边形法那么,找出向量在基底两个向量方向上的分量,再根据条件构造三角形,解三角形即可得到分解结果.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题;压轴题.分析:此题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法那么,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.解答:解:∵,那么由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心应选D点评:重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.该点叫做三角形的重心.外心定理:三角形的三边的垂直平分线交于一点.该点叫做三角形的外心.垂心定理:三角形的三条高交于一点.该点叫做三角形的垂心.内心定理:三角形的三内角平分线交于一点.该点叫做三角形的内心.12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.考点:数量积表示两个向量的夹角;向量在几何中的应用.专题:压轴题.分析:在边长为1的正方形中,减去要求的三角形以外的三角形的面积,把要求的结果表示为有三角函数的代数式,后面题目变为求三角函数的最值问题,逆用二倍角公式得到结果.解答:解:在直角坐标系里△OAB的面积=1﹣==∵θ∈〔0,],∴2θ∈〔0,π]∴当2θ=π时取得最大,即θ=应选D.点评:此题考查简单的图形面积和三角函数的最值问题,用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换,二倍角公式逆用.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;压轴题.分析:由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点解答:解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点应选D点评:此题考查向量的数量积及向量的运算,对学生有一定的能力要求14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,那么新坐标系的原点O′在原坐标系中的坐标为〔k,l〕那么据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为〔﹣m,m〕应选项为A点评:此题考查平移公式的应用.15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.1考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:利用向量的数量积求出的夹角;利用向量的运算法那么作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.解答:解:∵,∴的夹角为120°,设,那么;=如下图那么∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2应选A点评:此题考查向量的数量积公式、向量的运算法那么、四点共圆的判断定理、三角形的正弦定理.16.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.考点:平面向量的根本定理及其意义;二元一次不等式〔组〕与平面区域;向量的模.专题:压轴题;平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量根本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A〔〕,B〔〕.再设P〔x,y〕.由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,那么区域面积为.应选D.点评:此题考查了平面向量的根本定理及其意义,考查了二元一次不等式〔组〕所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为〔++〕•〔++〕的最小值、最大值,∴m<0,M<0应选D.点评:此题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.考点:平面向量的综合题.专题:综合题;压轴题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:〔1〕利用中点坐标公式求出点A1,A2的坐标,再利用向量的坐标公式求出的坐标.〔2〕由判断出y=f〔x〕的图象是由C按平移得到的;得到C是由f〔x〕左移两个单位,下移4个单位得到,利用图象变换求出C的解析式.〔3〕利用向量的运算法那么将有以P n为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.解答:解:〔1〕设点A0〔x,y〕,A1为A0关于点P1的对称点,A1的坐标为〔2﹣x,4﹣y〕,A1为P2关于点的对称点A2的坐标为〔2+x,4+y〕,∴={2,4}.〔2〕∵={2,4},∴f〔x〕的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,设曲线C是函数y=g〔x〕的图象,其中g〔x〕是以3为周期的周期函数,且当x∈〔﹣2,1]时,g〔x〕=lg〔x+2〕﹣4.于是,当x∈〔1,4]时,g〔x〕=lg〔x﹣1〕﹣4.〔3〕=++…+,由于=,得=2〔++…+〕=2〔{1,2}+{1,23}+…+{1,2n﹣1}〕=2{,}={n,}点评:此题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.考点:平面向量的综合题;复合三角函数的单调性.专题:计算题;压轴题;新定义.分析:〔1〕先利用诱导公式对其化简,再结合定义即可得到证明;〔2〕先根据定义求出其相伴向量,再代入模长计算公式即可;〔3〕先根据定义得到函数f〔x〕取得最大值时对应的自变量x0;再结合几何意义求出的范围,最后利用二倍角的正切公式即可得到结论.解答:解:〔1〕g〔x〕=3sin〔x+〕+4sinx=4sinx+3cosx,其‘相伴向量’=〔4,3〕,g〔x〕∈S.〔2〕h〔x〕=cos〔x+α〕+2cosx=〔cosxcosα﹣sinxsinα〕+2cosx=﹣sinαsinx+〔cosα+2〕cosx∴函数h〔x〕的‘相伴向量’=〔﹣sinα,cosα+2〕.那么||==.〔3〕的‘相伴函数’f〔x〕=asinx+bcosx=sin〔x+φ〕,其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f〔x〕取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan〔2kπ+﹣φ〕=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0〕∪〔0,].令m=,那么tan2x0=,m∈[﹣,0〕∪〔0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0〕∪〔0,].点评:本体主要在新定义下考查平面向量的根本运算性质以及三角函数的有关知识.是对根底知识的综合考查,需要有比拟扎实的根本功.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.考点:向量在几何中的应用.专题:立体几何.分析:〔1〕建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,通过,求出平面DMN的法向量为,,求出平面A1DN 的法向量为,推出〔1〕利用θ=90°求出M的坐标,然后求出AM 的长.〔2〕利用cos=以及,求出CM 的长.解答:解:建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,那么各点的坐标为A〔1,0,0〕,A1〔1,0,2〕,N〔,1,0〕,M〔0,1,t〕;所以=〔,1,0〕.=〔1,0,2〕,=〔0,1,t〕设平面DMN的法向量为=〔x1,y1,z1〕,那么,,即x1+2y1=0,y1+tz1=0,令z1=1,那么y1=﹣t,x1=2t所以=〔2t,﹣t,1〕,设平面A1DN的法向量为=〔x2,y2,z2〕,那么,,即x2+2z2=0,x2+2y2=0,令z2=1那么y2=1,x2=﹣2所以=〔﹣2,1,1〕,〔1〕因为θ=90°,所以解得t=从而M〔0,1,〕,所以AM=〔2〕因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和〔1〕的结论,可知t=,从而CM的长为.点评:此题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.考点:平面向量数量积的运算;圆的标准方程;轨迹方程;直线和圆的方程的应用.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:〔1〕由a⊥b,所以a•b=0,代入坐标化简整理即得轨迹E的方程mx2+y2=1.此为二元二次曲线,可分m=0、m=1、m>0且m≠1和m<0四种情况讨论;〔2〕当m=时,轨迹E的方程为=1,表示椭圆,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,由直线和圆相切可得k和t的关系,由OA⊥OB,所以x1x2+y1y1=0,只需联立直线和圆的方程,消元,维达定理,又可以得到k和t的关系,这样就可解出r.当切线斜率不存在时,代入检验即可.〔3〕因为l与圆C相切,故△OA1B1为直角△,故|A1B1|2=|OB1|2﹣|OA1|2,只需求出OB1和OA1的长度即可,直线l与圆C相切,且与椭圆相切找出关系,将|A1B1|表示为R的函数,转化为函数求最值.解答:解:〔Ⅰ〕因为a⊥b,所以a•b=0,即〔mx,y+1〕•〔x,y﹣1〕=0,故mx2+y2﹣1=0,即mx2+y2=1.当m=0时,该方程表示两条直线;当m=1时,该方程表示圆;当m>0且m≠1时,该方程表示椭圆;当m<0时,该方程表示双曲线.〔Ⅱ〕当时,轨迹E的方程为,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,A〔x1,y1〕,B〔x2,y2〕,所以,即t2=r2〔1+k2〕.①因为OA⊥OB,所以x1x2+y1y1=0,即x1x2+〔kx1+t〕〔kx2+t〕=0,整理得〔1+k2〕x1x2+kt〔x1+x2〕+t2=0.②由方程组消去y得〔1+4k2〕x2+8ktx+4t2﹣4=0.③由韦达定理代入②式并整理得〔1+k2〕,即5t2=4+4k2.结合①式有5r2=4,r=,当切线斜率不存在时,x2+y2=也满足题意,故所求圆的方程为x2+y2=.〔Ⅲ〕显然,直线l的斜率存在,设l的方程y=k1x+t1,B1〔x3,y3〕轨迹E的方程为.由直线l与圆相切得t12=R2〔1+k12〕,且对应③式有△=〔8k1t1〕2﹣4〔1+4k12〕〔4t12﹣4〕=0,即t12=1+4k12,由方程组,解得当l与轨迹E只有一个公共点时,对应的方程③应有两个相等的.由韦达定理x32===,又B1在椭圆上,所以,因为l与圆C相切,所以|A1B1|2=|OB1|2﹣|OA1|2=x32+y32﹣R2===≤,其中,等号成立的条件,。
2021年10月18日姚杰的高中数学组卷一.选择题〔共15小题〕1.〔2021•绵阳模拟〕定义在[0,+∞〕上的函数f〔x〕满足f〔x〕=3f〔x+2〕,当x∈[0,2〕时,f〔x〕=﹣x2+2x,设f〔x〕在[2n﹣2,2n〕上的最大值为a n〔n∈N+〕且{a n}的前n项和为S n,那么=〔〕A.3 B.C.2 D.2.〔2021•安徽〕设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,那么以下等式中恒成立的是〔〕A.X+Z=2Y B.Y〔Y﹣X〕=Z〔Z﹣X〕C.Y2=XZ D.Y〔Y﹣X〕=X〔Z﹣X〕3.〔2005•广东〕数列{x n}满足x2=,x n=〔x n﹣1+x n﹣2〕,n=3,4,….假设=2,那么x1=〔〕A.B.3 C.4 D.54.〔2021•上海〕设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是〔〕A.25 B.50 C.75 D.1005.〔2007•陕西〕给出如下三个命题:①设a,b∈R,且ab≠0,假设>1,那么<1;②四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;③假设f〔x〕=log i x,那么f〔|x|〕是偶函数.其中正确命题的序号是〔〕A.①②B.②③C.①③D.①②③6.〔2006•北京〕设f〔n〕=2+24+27+210+…+23n+10〔n∈N〕,那么f〔n〕等于〔〕A.B.C.D.7.〔2005•江西〕将1,2,…,9这9个数平均分成三组,那么每组的三个数都可以成等差数列的概率为〔〕A.B.C.D.8.〔2005•黑龙江〕如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,那么〔〕A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a59.〔2004•湖南〕农民收入由工资性收入和其它收入两局部构成.2003年某地区农民人均收入为3150元〔其中工资性收入为1800元,其它收入为1350元〕,预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元.根据以上数据,2021年该地区农民人均收入介于〔〕A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元10.〔2002•北京〕假设一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,那么这个数列有〔〕A.13项B.12项C.11项D.10项11.〔2000•北京〕设等差数列{a n}满足a1+a2+…+a101=0,那么有〔〕A.a1+a101>0 B.a2+a102<0 C.a3+a99=0 D.a51=5112.〔2021•上海〕在数列〔a n〕中,a n=2n﹣1,假设一个7行12列的矩阵的第i行第j列的元素c ij=a i•a j+a i+a j〔i=1,2,…,7;j=1,2,…,12〕,那么该矩阵元素能取到的不同数值的个数为〔〕A.18 B.28 C.48 D.6313.〔2021•上海〕记椭圆围成的区域〔含边界〕为Ωn〔n=1,2,…〕,当点〔x,y〕分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,那么M n=〔〕A.0 B.C.2 D.214.〔2005•上海〕用n个不同的实数a1,a2,…,a n可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵,对第i行a i1,a i2,…,a in,记b i=﹣a i1+2a i2﹣3a i3++〔﹣1〕n na in,i=1,2,3,…,n!,例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=﹣12+2×12﹣3×12=﹣24,那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120等于〔〕A.﹣3600 B.1800 C.﹣1080 D.﹣72015.〔2001•北京〕根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量S n〔万件〕近似地满足关系式S n=〔21n﹣n2﹣5〕〔n=1,2,…,12〕,按此预测,在本年度内,需求量超过1.5万件的月份是〔〕A.5、6月B.6、7月C.7、8月D.8、9月二.填空题〔共15小题〕16.〔2021•江苏〕设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1〔n=1,2,…〕,假设数列{b n}有连续四项在集合{﹣53,﹣23,19,37,82}中,那么6q=.17.〔2021•四川〕设等差数列{a n}的前n项和为S n,假设S4≥10,S5≤15,那么a4的最大值为.18.〔2021•福建〕商家通常依据“乐观系数准那么〞确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b〔b>a〕以及常数x〔0<x<1〕确定实际销售价格c=a+x〔b﹣a〕,这里,x被称为乐观系数.经验说明,最正确乐观系数x恰好使得〔c﹣a〕是〔b﹣c〕和〔b﹣a〕的等比中项,据此可得,最正确乐观系数x的值等于.19.〔2021•江苏〕设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,那么q的最小值是.20.〔2021•北京〕{a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*那么a2021=;a2021=.21.〔2021•宁夏〕等差数列{a n}的前n项和为S n,2a m﹣a m2=0,s2m﹣1=38,那么m=.22.〔2021•四川〕设数列{a n}中,a1=2,a n+1=a n+n+1,那么通项a n=.23.〔2007•海南〕{a n}是等差数列,a4+a6=6,其前5项和S5=10,那么其公差d=.24.〔2006•广东〕在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成假设干堆“正三棱锥〞形的展品,其中第1堆只有一层,就一个球,第2、3、4、…堆最底层〔第一层〕分别按以下图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f〔n〕表示第n堆的乒乓球总数,那么f〔3〕=;f〔n〕=〔答案用n表示〕.25.〔2005•广东〕设平面内有n条直线〔n≥3〕,其中有且仅有两条直线互相平行,任意三条直线不过同一点,假设用f〔n〕表示这n条直线交点个数,那么f〔4〕=,当n>4时f〔n〕=〔用n表示〕26.〔2004•上海〕假设干个能惟一确定一个数列的量称为该数列的“根本量〞.设{a n}是公比为q的无穷等比数列,以下{a n}的四组量中,一定能成为该数列“根本量〞的是第组.〔写出所有符合要求的组号〕①S1与S2;②a2与S3;③a1与a n;④q与a n.〔其中n为大于1的整数,S n为{a n}的前n 项和.〕27.〔2002•上海〕假设数列{a n}中,a1=3,且a n+1=a n2〔n∈N*〕,那么数列的通项a n=.28.〔2021•上海〕点O〔0,0〕、Q0〔0,1〕和点R0〔3,1〕,记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足〔|OQ1|﹣2〕〔|OR1|﹣2〕<0,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足〔|OQ2|﹣2〕〔|OR2|﹣2〕<0.依次下去,得到P1,P2,…,P n,…,那么=.29.〔2021•湖北〕数列{a n}满足:a1=m〔m为正整数〕,a n+1=假设a6=1,那么m所有可能的取值为.30.〔2004•北京〕定义“等和数列〞:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.数列{a n}是等和数列,且a1=2,公和为5,那么a18的值为,这个数列的前n项和S n的计算公式为.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共15小题〕1.〔2021•绵阳模拟〕定义在[0,+∞〕上的函数f〔x〕满足f〔x〕=3f〔x+2〕,当x∈[0,2〕时,f〔x〕=﹣x2+2x,设f〔x〕在[2n﹣2,2n〕上的最大值为a n〔n∈N+〕且{a n}的前n项和为S n,那么=〔〕A.3 B.C.2 D.考点:数列的求和;数列的极限.专题:计算题;压轴题.分析:由题意可知,函数f〔x〕按照2单位向右平移,只是改变函数的最大值,求出a1,公比,推出a n,然后求出S n,即可求出极限.解答:解:因为f〔x〕=3f〔x+2〕,所以f〔x+2〕=f〔x〕,就是函数向右平移2个单位,最大值变为原来的,a1=f〔1〕=1,q=,所以a n=,S n=,==应选D点评:此题是中档题,考查函数与数列以及数列的极限的交汇题目,注意函数的图象的平移,改变的是函数的最大值,就是数列的公比,考查计算能力,发现问题解决问题的能力.2.〔2021•安徽〕设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,那么以下等式中恒成立的是〔〕A.X+Z=2Y B.Y〔Y﹣X〕=Z〔Z﹣X〕C.Y2=XZ D.Y〔Y﹣X〕=X〔Z﹣X〕考点:等比数列.专题:压轴题.分析:取一个具体的等比数列验证即可.解答:解:取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入验算,只有选项D满足.应选D点评:对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,假设能排除3个选项,剩下唯一正确的就一定正确;假设不能完全排除,可以取其他数字验证继续排除.3.〔2005•广东〕数列{x n}满足x2=,x n=〔x n﹣1+x n﹣2〕,n=3,4,….假设=2,那么x1=〔〕A.B.3 C.4 D.5考点:数列的求和;数列的函数特性.专题:压轴题.分析:要求极限,先求通项,而条件只是一个递推关系且复杂,故宜采用归纳法猜想通项.并注意无穷递缩等比数列的极限解答:解:∵令n=3,得,令n=4,得,∴,…,,于是x n=x1+〔x2﹣x1〕+…+〔x n﹣x n﹣1〕=∴,x1=3.应选B点评:求出前几项后,从什么角度求通项呢,一般是看差和商,采用叠加或累乘法.4.〔2021•上海〕设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是〔〕A.25 B.50 C.75 D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:由于f〔n〕=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f〔n〕=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f〔n〕=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f〔n〕=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,应选D点评:此题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.5.〔2007•陕西〕给出如下三个命题:①设a,b∈R,且ab≠0,假设>1,那么<1;②四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;③假设f〔x〕=log i x,那么f〔|x|〕是偶函数.其中正确命题的序号是〔〕A.①②B.②③C.①③D.①②③考点:等比数列;不等关系与不等式.专题:压轴题.分析:要明确等比数列和偶函数的定义,明白什么是“充要条件〞.解答:解:①,所以<1成立;②ad=bc不一定使a、b、c、d依次成等比数列,如取a=d=﹣1,b=c=1;③由偶函数定义可得.应选C.点评:做这类题要细心,读清题干,对根本概念要掌握牢固.6.〔2006•北京〕设f〔n〕=2+24+27+210+…+23n+10〔n∈N〕,那么f〔n〕等于〔〕A.B.C.D.考点:等比数列的前n项和.专题:压轴题.分析:首先根据题意分析出f〔n〕是首项为2,公比为8的等比数列的前n+4项和,然后由等比数列前n项和公式求之即可.解答:解:由题意知,f〔n〕是首项为2,公比为8的等比数列的前n+4项和,所以f〔n〕==.应选D.点评:此题考查等比数列的定义及前n项和公式.7.〔2005•江西〕将1,2,…,9这9个数平均分成三组,那么每组的三个数都可以成等差数列的概率为〔〕A.B.C.D.考点:等差关系确实定;等可能事件的概率.专题:计算题;压轴题.分析:先把9个数分成3组,根据排列组合的性质可求得所有的组的数,然后把三个数成等差数列的组,分别枚举出来,可知共有5组,然后利用概率的性质求得答案.解答:解:9个数分成三组,共有组,其中每组的三个数均成等差数列,有{〔1,2,3〕,〔4,5,6〕,〔7,8,9〕}、{〔1,2,3〕,〔4,6,8〕,〔5,7,9〕}、{〔1,3,5〕,〔2,4,6〕,〔7,8,9〕}、{〔1,4,7〕,〔2,5,8〕,〔3,6,9〕}、{〔1,5,9〕,〔2,3,4〕,〔6,7,8〕},共5组.∴所求概率为.应选A点评:此题主要考查了等差关系确实定和概率的性质.对于数量比拟小的问题中,可以用枚举的方法解决问题直接.8.〔2005•黑龙江〕如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,那么〔〕A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a5考点:等差数列的性质.专题:压轴题;分析法.分析:先根据等差中项的性质可排除C;然后可令a n=n一个具体的数列进而可验证D、A不对,得到答案.解答:解:∵1+8=4+5∴a1+a8=a4+a5∴排除C;假设令a n=n,那么a1a8=1•8<20=4•5=a4a5∴排除D,A.应选B点评:此题主要考查等差数列的性质.属根底题.9.〔2004•湖南〕农民收入由工资性收入和其它收入两局部构成.2003年某地区农民人均收入为3150元〔其中工资性收入为1800元,其它收入为1350元〕,预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元.根据以上数据,2021年该地区农民人均收入介于〔〕A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元考点:数列的应用.专题:应用题;压轴题.分析:根据题意算出2004年农民收入;算出2005年农民收入;根据数列的特点总结出规律得到2021年的农民收入,估算出范围即可.解答:解:由题知:2004年农民收入=1800×〔1+6%〕+〔1350+160〕;2005年农民收入=1800×〔1+6%〕2+〔1350+2×160〕;…所以2021年农民收入=1800×〔1+6%〕5+〔1350+5×160〕≈4559应选B点评:考查学生利用数列解决数学问题的能力,以及会根据条件归纳总结出一般性规律的能力.10.〔2002•北京〕假设一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,那么这个数列有〔〕A.13项B.12项C.11项D.10项考点:等差数列的性质.专题:计算题;压轴题.分析:先根据题意求出a1+a n的值,再把这个值代入求和公式,进而求出数列的项数n.解答:解:依题意a1+a2+a3=34,a n+a n﹣1+a n﹣2=146∴a1+a2+a3+a n+a n﹣1+a n﹣2=34+146=180又∵a1+a n=a2+a n﹣1=a3+a n﹣2∴a1+a n==60∴S n===390∴n=13应选A点评:此题主要考查了等差数列中的求和公式的应用.注意对Sn═和Sn=a1•n+这两个公式的灵活运用.11.〔2000•北京〕设等差数列{a n}满足a1+a2+…+a101=0,那么有〔〕A.a1+a101>0 B.a2+a102<0 C.a3+a99=0 D.a51=51考点:等差数列的性质.专题:计算题;压轴题.分析:根据特殊数列a n=0可直接得到a3+a99=0,进而看得到答案.解答:解:取满足题意的特殊数列a n=0,即可得到a3+a99=0选C.点评:此题主要考查等差数列的性质.做选择题时要合理选择最恰当的方法可节省做题时间.12.〔2021•上海〕在数列〔a n〕中,a n=2n﹣1,假设一个7行12列的矩阵的第i行第j列的元素c ij=a i•a j+a i+a j〔i=1,2,…,7;j=1,2,…,12〕,那么该矩阵元素能取到的不同数值的个数为〔〕A.18 B.28 C.48 D.63考点:数列的函数特性.专题:压轴题.分析:由于该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=〔2i﹣1〕〔2j﹣1〕+2i﹣1+2j﹣1=2i+j ﹣1〔i=1,2,…,7;j=1,2,…,12〕,要使a ij=a mn〔i,m=1,2,…,7;j,n=1,2,…,12〕.那么满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.解答:解:该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=〔2i﹣1〕〔2j﹣1〕+2i﹣1+2j﹣1=2i+j ﹣1〔i=1,2,…,7;j=1,2,…,12〕,当且仅当:i+j=m+n时,a ij=a mn〔i,m=1,2,…,7;j,n=1,2,…,12〕,因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3,…,19,共18个不同数值.应选A.点评:由题意得出:当且仅当i+j=m+n时,a ij=a mn〔i,m=1,2,...,7;j,n=1,2, (12)是解题的关键.13.〔2021•上海〕记椭圆围成的区域〔含边界〕为Ωn〔n=1,2,…〕,当点〔x,y〕分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,那么M n=〔〕A.0 B.C.2 D.2考点:数列的极限;椭圆的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先由椭圆得到这个椭圆的参数方程为:〔θ为参数〕,再由三角函数知识求x+y的最大值,从而求出极限的值.解答:解:把椭圆得,椭圆的参数方程为:〔θ为参数〕,∴x+y=2cosθ+sinθ,∴〔x+y〕max==.∴M n==2.应选D.点评:此题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.14.〔2005•上海〕用n个不同的实数a1,a2,…,a n可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵,对第i行a i1,a i2,…,a in,记b i=﹣a i1+2a i2﹣3a i3++〔﹣1〕n na in,i=1,2,3,…,n!,例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=﹣12+2×12﹣3×12=﹣24,那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120等于〔〕A.﹣3600 B.1800 C.﹣1080 D.﹣720考点:数列的求和;高阶矩阵.专题:计算题;压轴题.分析:先根据题意算出数阵的行数5!和每一列数字之和5!÷5×〔1+2+3+4+5〕,再根据b1+b2+…+b120=360×〔﹣1+2﹣3+4﹣5〕求得答案.解答:解:由题意可知数阵中行数5!=120,在用1,2,3,4,5形成的数阵中,每一列各数字之和都是5!÷5×〔1+2+3+4+5〕=360,∴b1+b2+…+b120=360×〔﹣1+2﹣3+4﹣5〕=360×〔﹣3〕=﹣1080.应选C点评:此题主要考查了数列的求和问题.此题给学生创设了一个很好的发现、研究型学习的平台.15.〔2001•北京〕根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量S n〔万件〕近似地满足关系式S n=〔21n﹣n2﹣5〕〔n=1,2,…,12〕,按此预测,在本年度内,需求量超过1.5万件的月份是〔〕A.5、6月B.6、7月C.7、8月D.8、9月考点:数列的应用.专题:应用题;压轴题.分析:此题考查了数列的前n项和知识和二次不等式的求解问题.既可以直接求解二次不等式得到n的范围,再根据n∈Z找到满足题意的n;即可得到答案.解答:解:由S n解出a n=〔﹣n2+15n﹣9〕,再解不等式〔﹣n2+15n﹣9〕>1.5,得6<n<9.答案:C点评:此题考查了数列前n项和的知识,二次不等式的知识.解答时要充分体会二次不等式在解答中的作用以及验证法在解答选择题时的妙用.二.填空题〔共15小题〕16.〔2021•江苏〕设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1〔n=1,2,…〕,假设数列{b n}有连续四项在集合{﹣53,﹣23,19,37,82}中,那么6q=﹣9.考点:等比数列的性质;数列的应用.专题:等差数列与等比数列.分析:根据B n=A n+1可知A n=B n﹣1,依据{Bn}有连续四项在{﹣53,﹣23,19,37,82}中,那么可推知那么{A n}有连续四项在{﹣54,﹣24,18,36,81}中,按绝对值的顺序排列上述数值,相邻相邻两项相除发现﹣24,36,﹣54,81是{A n}中连续的四项,求得q,进而求得6q.解答:解:{Bn}有连续四项在{﹣53,﹣23,19,37,82}中B n=A n+1 A n=B n﹣1那么{A n}有连续四项在{﹣54,﹣24,18,36,81}中{A n}是等比数列,等比数列中有负数项那么q<0,且负数项为相隔两项等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,﹣24,36,﹣54,81相邻两项相除=﹣=﹣=﹣=﹣很明显,﹣24,36,﹣54,81是{A n}中连续的四项q=﹣或q=﹣〔|q|>1,∴此种情况应舍〕∴q=﹣∴6q=﹣9故答案为:﹣9点评:此题主要考查了等比数列的性质.属根底题.17.〔2021•四川〕设等差数列{a n}的前n项和为S n,假设S4≥10,S5≤15,那么a4的最大值为4.考点:等差数列的前n项和;等差数列.专题:压轴题.分析:利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.解答:解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.点评:此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;18.〔2021•福建〕商家通常依据“乐观系数准那么〞确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b〔b>a〕以及常数x〔0<x<1〕确定实际销售价格c=a+x〔b ﹣a〕,这里,x被称为乐观系数.经验说明,最正确乐观系数x恰好使得〔c﹣a〕是〔b﹣c〕和〔b﹣a〕的等比中项,据此可得,最正确乐观系数x的值等于.考点:数列的应用.专题:计算题;压轴题.分析:根据题设条件,由〔c﹣a〕是〔b﹣c〕和〔b﹣a〕的等比中项,知[x〔b﹣a〕]2=〔b ﹣a〕2﹣x〔b﹣a〕2,由此能求出最正确乐观系数x的值.解答:解:∵c﹣a=x〔b﹣a〕,b﹣c=〔b﹣a〕﹣x〔b﹣a〕,〔c﹣a〕是〔b﹣c〕和〔b﹣a〕的等比中项,∴[x〔b﹣a〕]2=〔b﹣a〕2﹣x〔b﹣a〕2,∴x2+x﹣1=0,解得,∵0<x<1,∴.故答案为:.点评:此题考查等比数列的性质和应用,解题时要注意等比中项的计算.19.〔2021•江苏〕设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,那么q的最小值是.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.解答:解:方法1:∵1=a1≤a2≤…≤a7;a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.点评:解决等差数列、等比数列的综合问题一般利用通项公式、前n项和公式列出方程组,解方程组求解.即根本量法.20.〔2021•北京〕{a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*那么a2021=1;a2021=0.考点:数列的概念及简单表示法.专题:压轴题.分析:由a4n=1,a4n﹣1=0,a2n=a n,知第一项为哪一项1,第二项是1,第三项是0,第2021﹣3项的2021可写为503×4﹣3,故第2021项是1,第2021项等于1007项,而1007=252×4﹣1,所以第2021项是0.解答:解:∵2021=503×4﹣3,∴a2021=1,∵a2021=a1007,1007=252×4﹣1,∴a2021=0,故答案为:1,0.点评:培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.21.〔2021•宁夏〕等差数列{a n}的前n项和为S n,2a m﹣a m2=0,s2m﹣1=38,那么m=10.考点:等差数列的前n项和.专题:计算题;压轴题.分析:根据题意先解出a m,再利用等差数列的前n项和与特殊项之间的关系S2m﹣1=〔2m﹣1〕a m,建立方程,求解即可.解答:解:∵2a m﹣a m2=0,解得a m=2或a m=0,∵S2m﹣1=38≠0,∴a m=2;∵S2m﹣1=×〔2m﹣1〕=a m×〔2m﹣1〕=2×〔2m﹣1〕=38,解得m=10.故答案为10.点评:此题主要考查了等差数列前n项和公式与等差数列性质的综合应用,熟练掌握公式是解题的关键.22.〔2021•四川〕设数列{a n}中,a1=2,a n+1=a n+n+1,那么通项a n=.考点:数列递推式.专题:计算题;压轴题.分析:根据数列的递推式,依次写出n=1,2,3…n的数列相邻两项的关系,进而各式相加即可求得答案.解答:解:∵a1=2,a n+1=a n+n+1∴a n=a n﹣1+〔n﹣1〕+1,a n﹣1=a n﹣2+〔n﹣2〕+1,a n﹣2=a n﹣3+〔n﹣3〕+1,…,a3=a2+2+1,a2=a1+1+1,a1=2=1+1将以上各式相加得:a n=[〔n﹣1〕+〔n﹣2〕+〔n﹣3〕+…+2+1]+n+1=故答案为;点评:此题重点考查由数列的递推公式求数列的通项公式.重视递推公式的特征与解法的选择;抓住a n+1=a n+n+1中a n+1,a n系数相同是找到方法的突破口;此题可用累和法,迭代法等;23.〔2007•海南〕{a n}是等差数列,a4+a6=6,其前5项和S5=10,那么其公差d=.考点:等差数列的性质.专题:计算题;压轴题.分析:先根据a4+a6=2a5=求得a5的值,再根据,进而求得a1,进而根据求得d.解答:解:a4+a6=2a5=6∴a5=3,∴故答案为点评:此题主要考查了等差数列中的等差中项的性质和通项公式的运用.24.〔2006•广东〕在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成假设干堆“正三棱锥〞形的展品,其中第1堆只有一层,就一个球,第2、3、4、…堆最底层〔第一层〕分别按以下图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f〔n〕表示第n堆的乒乓球总数,那么f〔3〕=10;f〔n〕=n〔n+1〕〔n+2〕〔答案用n表示〕.考点:数列的求和.专题:压轴题;规律型.分析:由题意知第一堆乒乓球只有1层,个数为1,第二堆乒乓球有两层,个数分别为1,1+2,第三堆乒乓球有三层,个数分别为1,1+2,1+2+3,第四堆乒乓球有四层,个数分别为1,1+2,1+2+3,1+2+3+4,因此可以推知第n堆乒乓球有n层,个数分别为1,1+2,1+2+3,…,1+2+3+…+n,据此解答.解答:解:由题意知,f〔1〕=1,f〔2〕=1+1+2,f〔3〕=1+1+2+1+2+3,…,f〔n〕=1+1+2+1+2+3+…+1+2+3+…+n,分析可得:f〔n〕﹣f〔n﹣1〕=1+2+3+…+n==+;f〔n〕=[f〔n〕﹣f〔n﹣1〕]+[f〔n﹣1〕﹣f〔n﹣2〕]+[f〔n﹣2〕﹣f〔n﹣3〕]+…+f 〔2〕﹣f〔1〕+f〔1〕==n〔n+1〕〔2n+1〕+n〔n+1〕=n〔n+1〕〔n+2〕.故答案为:10;n〔n+1〕〔n+2〕.点评:此题主要考查数列求和在实际中的应用,解决问题的关键是先由f〔1〕、f〔2〕、f〔3〕的值通过归纳推理得到f〔n〕的表达式,在求和时注意累加法的运用.25.〔2005•广东〕设平面内有n条直线〔n≥3〕,其中有且仅有两条直线互相平行,任意三条直线不过同一点,假设用f〔n〕表示这n条直线交点个数,那么f〔4〕=5,当n>4时f〔n〕=〔用n表示〕考点:等差数列的前n项和;数列的应用.专题:压轴题;规律型.分析:要想求出f〔4〕的值,我们画图分析即可得到答案,但要求出n>4时f〔n〕的值,我们要逐一给出f〔3〕,f〔4〕,…,f〔n﹣1〕,f〔n〕然后分析项与项之间的关系,然后利用数列求和的方法进行求解.解答:解:如图,4条直线有5个交点,故f〔4〕=5,由f〔3〕=2,f〔4〕=f〔3〕+3…f〔n﹣1〕=f〔n﹣2〕+n﹣2f〔n〕=f〔n﹣1〕+n﹣1累加可得f〔n〕=2+3+…+〔n﹣2〕+〔n﹣1〕==故答案为5,点评:此题考查的知识点是归纳推理与数列求和,根据f〔3〕,f〔4〕,…,f〔n﹣1〕,f〔n〕然后分析项与项之间的关系,找出项与项之间的变化趋势是解决问题的关键.26.〔2004•上海〕假设干个能惟一确定一个数列的量称为该数列的“根本量〞.设{a n}是公比为q的无穷等比数列,以下{a n}的四组量中,一定能成为该数列“根本量〞的是第①④组.〔写出所有符合要求的组号〕①S1与S2;②a2与S3;③a1与a n;④q与a n.〔其中n为大于1的整数,S n为{a n}的前n 项和.〕考点:等比数列.专题:计算题;压轴题.分析:由根据等差数列性质可知,利用S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“根本量〞;由a2与S3,设其公比为q,首项为a1,可得把a1和S3代入整理得a2q2+〔a2﹣S3q〕+a2=0q不能确定,不一定是数列的根本量;由a1与a n,可得a n=a1q n﹣1,当n为奇数时,q可能有两个值,故不一定能确定数列;根据等比数列通项公式,数列{a n} 能够确定,是数列{a n} 的一个根本量.解答:解:〔1〕由S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“根本量〞,故①对;〔2〕由a2与S3,设其公比为q,首项为a1,可得a2=a1q,a1=,S3=a1+a1q+a1q2,∴S3=+a2+a2q,∴a2q2+〔a2﹣S3q〕+a2=0;满足条件的q可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列的根本量,②不对;〔3〕由a1与a n,可得a n=a1q n﹣1,当n为奇数时,q可能有两个值,故不一定能确定数列,所以也不一定是数列的一个根本量.〔4〕由q与a n由a n=a1q n﹣1,故数列{a n} 能够确定,是数列{a n} 的一个根本量;故答案为:①④.点评:此题主要考查等比数列的性质.考查了学生分析问题和解决问题的能力.27.〔2002•上海〕假设数列{a n}中,a1=3,且a n+1=a n2〔n∈N*〕,那么数列的通项a n=32n﹣1.考点:数列递推式.专题:计算题;压轴题.分析:由递推公式a n+1=a n2屡次运用迭代可求出数列a n=a n﹣12=a n﹣24=…=a12n﹣1解答:解:因为a1=3屡次运用迭代,可得a n=a n﹣12=a n﹣24=…=a12n﹣1=32n﹣1,故答案为:点评:此题主要考查利用迭代法求数列的通项公式,迭代中要注意规律,灵活运用公式,熟练变形是解题的关键28.〔2021•上海〕点O〔0,0〕、Q0〔0,1〕和点R0〔3,1〕,记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足〔|OQ1|﹣2〕〔|OR1|﹣2〕<0,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足〔|OQ2|﹣2〕〔|OR2|﹣2〕<0.依次下去,得到P1,P2,…,P n,…,那么=.考点:数列与解析几何的综合;数列的极限.专题:综合题;压轴题.分析:由题意〔|OQ1|﹣2〕〔|OR1|﹣2〕<0,〔|OQ2|﹣2〕〔|OR2|﹣2〕<0.依次下去,那么Q1、R1;Q2、R2,…中必有一点在〔〕的左侧,一点在右侧,根据题意推出P1,P2,…,P n,…,的极限为:〔〕,然后求出.解答:解:由题意〔|OQ1|﹣2〕〔|OR1|﹣2〕<0,所以第一次只能取P1R0一条,〔|OQ2|﹣2〕〔|OR2|﹣2〕<0.依次下去,那么Q1、R1;Q2、R2,…中必有一点在〔〕的左侧,一点在右侧,由于P1,P2,…,P n,…,是中点,根据题意推出P1,P2,…,P n,…,的极限为:〔〕,所以=|Q0P1|=,故答案为:.点评:此题是根底题,考查数列的极限,数列与解析几何的综合,极限的思想的应用,注意分析题意,P n的规律是此题解答的关键,考查逻辑推理能力.29.〔2021•湖北〕数列{a n}满足:a1=m〔m为正整数〕,a n+1=假设a6=1,那么m所有可能的取值为4,5,32.考点:数列递推式.专题:压轴题.分析:由题设知a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.解答:解:∵数列{a n}满足:a1=m〔m为正整数〕,a n+1=,a6=1,∴a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.故答案为:4,5,32.点评:此题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.30.〔2004•北京〕定义“等和数列〞:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.数列{a n}是等和数列,且a1=2,公和为5,那么a18的值为3,这个数列的前n项和S n的计算公式为当n为偶数时,;当n为奇数时,.考点:数列的求和;数列的应用.专题:压轴题;创新题型.分析:由题意可知,a n+a n+1=5,且a1=2,所以,a2=3,a3=2,a4=3,进而找出这个数列的奇数项为2,偶数项为3,所以a18的数值为3.由于该数列为2,3,2,3,2,3…所以求和时要看最后一项为哪一项2还是3,就需对n分奇数还是偶数进行讨论,解答:解:由题意知,a n+a n+1=5,且a1=2,所以,a1+a2=5,得a2=3,a3=2,a4=3,…a17=2,a18=3,当n为偶数时s n=〔2+3〕+〔2+3〕+〔2+3〕+…+〔2+3〕=5×=当n为奇数时s n=〔2+3〕+〔2+3〕+…〔2+3〕+2=5×+2=故答案为:3;当n为偶数时S n=,当n为奇数时S n=点评:此题由新定义考查数列的求和,在求和时一定注意对n分奇数和偶数讨论。
高考数学必考难题试题答案一、选择题1. 若函数f(x) = ax^2 + bx + c在x=1和x=-1处取得相同的值,且a<0,那么a、b、c之间的关系是()。
A. a = -b + cB. a + b + c = 0C. b = -2a - cD. 2a + b + c = 0答案:C解析:由题意可知,f(1) = f(-1),即a + b + c = a - b + c,化简得2b = 0,所以b = 0。
又因为a < 0,所以c = -a。
代入b = 0,得c = -a,进一步得出b = -2a - c。
2. 已知数列{an}满足a1 = 1,an = (1/2)^(n-1) * (an-1 + 1),若bn = an - 1,则求证:数列{bn}是等比数列。
答案:证明如下:由题意,an = (1/2)^(n-1) * (an-1 + 1),可得:bn = an - 1 = (1/2)^(n-1) * (an-1 + 1) - 1将n-1代入,得:bn-1 = (1/2)^(n-2) * (an-2 + 1) - 1将两个式子相除,得:bn / bn-1 = [(1/2)^(n-1) * (an-1 + 1) - 1] / [(1/2)^(n-2) * (an-2 + 1) - 1] = 1/2所以bn / bn-1 = 1/2为常数,故数列{bn}是首项为b1 = a2 - 1 = (1/2) * (a1 + 1) - 1 = 1/2,公比q = 1/2的等比数列。
二、填空题1. 已知圆的方程为(x-2)^2 + (y-3)^2 = 16,点P(5,0)到圆心的距离为______。
答案:√13解析:圆心坐标为(2,3),点P(5,0),根据两点间距离公式,有:d = √[(5-2)^2 + (0-3)^2] = √[3^2 + (-3)^2] = √(9 + 9) =√18 = √13三、解答题1. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,在x∈[-2,3]上的最大值为7,求函数在该区间上的最小值。
高考预测:五个可能出现的数学难题
题目一:小明有3个苹果,小红有5个橘子,问:如果把小红的3个橘子换成小明的2个苹果,两人谁比较高兴?
答案:水果店老板最开心,因为他卖掉了6个水果。
题目二:有一道长为10米的围墙,墙上有一只老鼠,老鼠要从一个角跳到另一个角,问:老鼠需要跳多高?
答案:这也太难了吧,老鼠不会跳高,它能找个门进去吗?
题目三:如果一支笔的一半加上两支笔的一半等于3支笔的一半,问:一支笔的一半是多少?
答案:这题在考试中一定会引起笔记,真的不知道怎么算,不如用铅笔试试?
题目四:如果A车和B车同时从同一地点出发,A车速度为60公里/小时,B车速度为40公里/小时,A车比B车提前出发30分钟,问:多长时间后A车追上B车?
答案:谁追谁啊?他们出发前先决定好不追就不追。
题目五:有一条河宽20米,一只小船静水中的速度为2米/秒,问:小船顺流下游需要多长时间才能到达对岸?
答案:靠,不会游泳的小船还怎么能划到对岸呢?得找个有艇证的帮忙。
以上预测为虚构内容,请勿当真,希望给大家带来一些笑声。
祝愿所有考生都能在高考中取得优异的成绩!。
【高中数学】数学《数列》期末复习知识要点一、选择题1.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( )A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.2.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-, ∴()1510105511 24S S S S S -=--=,∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.3.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.4.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤15=斤,1斤16=两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( ) A .9两 B .266127两 C .26663两 D .250127两 【答案】B 【解析】 【分析】先计算出银的质量为266两,设分银最少的为a 两,由题意可知7人的分银量构成首项为a ,公比为2的等比数列,利用等比数列的求和公式可求得a 的值.【详解】共有银161610266⨯+=两,设分银最少的为a 两,则7人的分银量构成首项为a ,公比为2的等比数列, 故有()71226612a -=-,所以266127a =, 故选:B . 【点睛】本题以元代数学家朱世杰在《算学启蒙》中提出的问题为背景,贴近生活,考查了等比数列的求和问题,本题注重考查考生的阅读理解能力、提取信息能力、数学建模能力以及通过计算解决问题的能力,属中等题.5.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.6.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.7.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<,当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.8.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.9.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.10.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35 B .33C .31D .29【答案】C 【解析】试题分析:由题意得,设等比数列的公比为q ,则2231112a a a q a q a =⋅=,所以42a =,又3474452224a a a a q +=+=⨯,解得11,162q a ==,所以5515116(1())(1)2311112a q S q --===--,故选C . 考点:等比数列的通项公式及性质.11.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.12.在数列{}n a 中,()111,1nn n a a a n +==++-,则2018a 的值为( )A .2017⨯1008B .2017⨯1009C .2018⨯1008D .2018⨯1009【答案】B 【解析】 【分析】根据已知条件()nn 1n a a n 1+-=+-,利用累加法并结合等差数列的前n 项和公式即可得到答案. 【详解】()nn 1n a a n 1+-=+-,()()20182017201720162016201520152014a a 20171,a a 20161,a a 20151,a a 20141,-=+--=+-=+--=+⋅⋅⋅32a a 21-=+,()21a a 11,-=+-将以上式子相加得20181a a 20172016-=++⋅⋅⋅+2, 即2018a 20172016=++⋅⋅⋅+2+1=2017(12017)201710092+=⨯,故选:B. 【点睛】本题考查数列递推关系式的应用和累加法求和,考查等差数列前n 项和公式的应用.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C.【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.15.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a =∴1999()272a a S ⨯+== 故选D.16.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.17.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.18.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项.【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.19.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715 【答案】B【解析】【分析】计算出3a 的值,推导出()3n n a a n N*+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和.【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=, 202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.20.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
世界最难的10道数学题加答案高中1.求三角形三边a,b,c。
将任意两边的平方和加和求出:a²+b²=c²答案:即求三角形三边关系式,即勾股定理。
2.如果x的平方减2的平方等于4,求x的值?解:x²-2²=4x²=8x=√8答案:√83.如果一个等比数列的首项为a,公比为r,求该等比数列的前n项和?解:Sn=a[(1-rⁿ)÷(1-r)]a=首项,r=公比,n=项数答案:Sₙ=a[(1-rⁿ)÷(1-r)]4.以x,y,z三个变量来表示三条边,用何种等式表示三角形的充要条件?解:x+y > z, y+z > x, z+x > y答案:三角形充要条件等式为:x+y > z, y+z > x, z+x > y5.已知函数f(x)=2x⁴+5,求f(2)的值解:f(x)=2x⁴+5f(2)=2*2⁴+5f(2)=2⁵+5f(2)=33答案:f(2)=336.给定四边形ABCD的两个对角线,如何求出此四边形的周长?解:周长=AB+BC+CD+DA答案:先计算四边形各边的长度,然后求和即可求出四边形的周长。
7.已知一元二次方程ax²+bx+c=0有两个不等实根x₁和x₂,若其系数b处以解公式中的Δ,求ax²-2bx+2c=0的解?解:ax²-2bx+2c=0ax²-2bx+2c=0即可化为2x²-2(b/Δ)x+2c/Δ=0x₁= b/Δ+√(b²-4ac/Δ)/2x₂= b/Δ-√(b²-4ac/Δ)/2答案:x₁= b/Δ+√(b²-4ac/Δ)/2x₂= b/Δ-√(b²-4ac/Δ)/28.已知正太分布的数据有n个,求该数据的平均数和标准差?解:平均数:X¯=Σ(Xᵢ)/n标准差:σ=√((Σ(Xᵢ²)-nX¯²)/(n-1))答案:平均数X¯=Σ(Xᵢ)/n;标准差σ=√((Σ(Xᵢ²)-nX¯²)/(n-1))9.如果f(x)=4x²+2x+1,求函数f(x)的极值?解:f'(x)=8x+2f'(x)=0 -> 8x+2=0 ->x=-1/4在x=-1/4处取得极值,再代入f(x)求值f(-1/4)=4(-1/4)²+2(-1/4)+1f(-1/4)=1/2答案:f(x)在x=-1/4处取得极值,值为f(-1/4)=1/210.三角形有三条边,求三角形的面积?解:三角形面积公式为S=√(p(p-a)(p-b)(p-c))其中p=(a+b+c)/2,a、b、c为三边答案:三角形面积公式为S=√(p(p-a)(p-b)(p-c)),其中p=(a+b+c)/2,a、b、c为三边。
2015年10月18日姚杰的高中数学组卷一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=.8.(2011•浙江)若数列中的最大项是第k项,则k=.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=,((a n)+)+=.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为;第2009棵树种植点的坐标应为.14.(2008•天津)已知数列{a n}中,,则=.15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f (a n)﹣2005|取得最小值时,n=.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.二.解答题(共13小题)18.(2008•安徽)设数列{a n}满足a1=a,a n+1=ca n+1﹣c,n∈N*,其中a,c为实数,且c≠0 (Ⅰ)求数列{a n}的通项公式;(Ⅱ)设N*,求数列{b n}的前n项和S n;(Ⅲ)若0<a n<1对任意n∈N*成立,证明0<c≤1.19.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)25.(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.26.(2009•广东)已知点(1,)是函数f(x)=a x(a>0,且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=(n≥2).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{}前n项和为T n,问满足T n>的最小正整数n是多少?27.(2009•江西)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n.(1)求S n;(2)b n=,求数列{b n}的前n项和T n.28.(2009•重庆)已知,(Ⅰ)求b1,b2,b3的值;(Ⅱ)设c n=b n b n+1,S n为数列{c n}的前n项和,求证:S n≥17n;(Ⅲ)求证:.29.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.30.(2007•福建)等差数列{a n}的前n项和为S n,,.(1)求数列{a n}的通项a n与前n项和为S n;(2)设(n∈N+),求证:数列{b n}中任意不同的三项都不可能成为等比数列.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.考点:等差数列的性质.专题:压轴题.分析:由a1,a3,a9成等比数列求得a1与d的关系,再代入即可.解答:解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1•(a1+8d),∴a1=d,∴=,故答案是:.点评:本题主要考查等差数列的通项公式及等比数列的性质.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.考点:等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n项和.专题:等差数列与等比数列.分析:设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.解答:解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12点评:本题考查等比数列的求和公式和一元二次不等式的解法,属中档题.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:压轴题;等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题;压轴题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣1+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.考点:数列与函数的综合.专题:综合题;压轴题.分析:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.解答:解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:点评:本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=1006.考点:数列与不等式的综合;等差数列的性质.专题:综合题;压轴题.分析:设,,由,根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012)=2(2a1006)=4a1006,由此能求出结果.﹣n解答:解:设,,∵,∴根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,当且仅当a n=a2012﹣n时,b n取到最大值,此时n=1006,所以k=1006.故答案为:1006.点评:本题考查数列与不等式的综合应用,具体涉及到等差数列的通项公式、基本不等式的性质等基本知识,解题时要认真审题,仔细解答,注意合理地进行等价转化.8.(2011•浙江)若数列中的最大项是第k项,则k=4.考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.解答:解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.点评:本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=4.考点:等比数列的前n项和;等比数列的性质.专题:等差数列与等比数列.分析:首先用公比q和a1分别表示出S n和S2n,代入T n易得到T n的表达式.再根据基本不等式得出n0解答:解:==因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时T n有最大值.故答案为:4.点评:本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题.本题的实质是求T n取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为17.考点:数列的求和;交集及其运算.专题:压轴题;新定义.分析:(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.解答:解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足P i+P i+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17﹣1)×6,∴共有17相同的元素.故答案分别为2,17.点评:正确理解“特征数列”的定义是解题的关键.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=2,((a n)+)+=n2.考点:数列的应用.专题:计算题;压轴题;新定义.分析:根据题意,若a m<5,而a n=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((a n)+)+=n2.解答:解:∵a m<5,而a n=n2,∴m=1,2,∴(a5)+=2.∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1,(a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2,(a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3,∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,猜想:((a n)+)+=n2.答案:2,n2.点评:本题考查数列的性质和应用,解题时要认真审题.仔细解答.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.考点:数列递推式;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为点评:本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).考点:数列的应用.专题:压轴题;规律型.分析:由题意可知,数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…;数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标.解答:解:∵组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).点评:本题考查数列的性质和应用,解题时要注意创新题的灵活运用.14.(2008•天津)已知数列{a n}中,,则=.考数列的求和;极限及其运算.点:计算题;压轴题.专题:分首先由求a n可以猜想到用错位相加法把中间项消去,即析:可得到a n的表达式,再求极限即可.解解:因为答:所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.点评:15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=1.考点:数列的极限.专题:综合题;压轴题.分析:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),则能推导出S n=,由此能导出.解答:解:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量=,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn=,则=1.点评:本题考查数列的极限和运算,解题时要注意三角函数的灵活运用.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f (a n)﹣2005|取得最小值时,n=110.考点:数列的函数特性;等差数列的通项公式.专题:压轴题.分析:要使|f(a n)﹣2005|取得最小值,可令|f(a n)﹣2005|=0,即20.1n+log20.1n=2005,对n值进行粗略估算可得答案.解答:解:|f(a n)﹣2005|=|f(0.n)﹣2005|=|20.1n+log20.1n﹣2005|,(1)要使(1)式取得最小值,可令(1)式等于0,即|20.1n+log20.1n﹣2005|=0,20.1n+log20.1n=2005,又210=1024,211=2048,则当n=100时,210=1024,log210≈3,(1)式约等于978,当n=110时,211≈2048,log211≈3,(1)式约等于40,当n<100或n>110式(1)式的值会变大,所以n=110,故答案为:110.点评:本题考查数列的函数特性、指数函数对数函数的性质,考查学生灵活运用知识解决问题的能力.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.考数列的求和;极限及其运算.点:计算题;压轴题;探究型.专题:分析:通过观察可得=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕=1﹣+﹣=+﹣.进而可得.解:第一个空通过观察可得.解答:==(1+﹣1)+()+(+﹣)+(+﹣)+…+(+﹣)+(+﹣)=(1+++…+)+(++++…+)﹣2(++…+)=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕 =1﹣+﹣ =+﹣所以=.答案:.点评: 本题考查数列的性质和应用,解题时要认真审题,仔细解答.二.解答题(共13小题) 18.(2008•安徽)设数列{a n }满足a 1=a ,a n+1=ca n +1﹣c ,n ∈N*,其中a ,c 为实数,且c ≠0 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设N*,求数列{b n }的前n 项和S n ;(Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.考点:数列的求和;数列的函数特性. 专题:压轴题. 分析: (Ⅰ)需要观察题设条件进行恒等变形,构造a n ﹣1=c (a n ﹣1﹣1)利用迭代法计算出数列的通项公式;(Ⅱ)由(Ⅰ)的结论求出数列的通项,观察知应用错位相减法求和;(Ⅲ)由(Ⅰ)的结论知a n =(a ﹣1)c n ﹣1+1.接合题设条件得出,.然后再用反证法通过讨论得出c 的范围.解答: 解:(Ⅰ)由题设得:n ≥2时,a n ﹣1=c (a n ﹣1﹣1)=c 2(a n ﹣2﹣1)=…=c n ﹣1(a 1﹣1)=(a﹣1)c n ﹣1. 所以a n =(a ﹣1)c n ﹣1+1.当n=1时,a 1=a 也满足上式.故所求的数列{a n }的通项公式为:a n =(a ﹣1)c n ﹣1+1. (Ⅱ)由(Ⅰ)得:.,∴.∴所以∴.(Ⅲ)证明:由(Ⅰ)知a n =(a ﹣1)c n ﹣1+1.若0<(a ﹣1)c n ﹣1+1<1,则0<(1﹣a )c n ﹣1<1. 因为0<a 1=a <1,∴.由于c n ﹣1>0对于任意n ∈N +成立,知c >0. 下面用反证法证明c ≤1.假设c >1.由函数f (x )=c x 的图象知,当n →+∞时,c n ﹣1→+∞,所以不能对任意n ∈N +恒成立,导致矛盾.∴c ≤1.因此0<c ≤1点评: 本题主要考查数列的概念、数列通项公式的求法以及不等式的证明等;考查运算能力,综合运送知识分析问题和解决问题的能力.第三问中特值法与反证法想接合,对做题方向与方法选取要求较高.是一个技能性较强的题.19.(2011•广东)设b >0,数列{a n}满足a 1=b ,a n =(n ≥2)(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n ,2a n ≤b n+1+1.考点: 数列递推式;数列与不等式的综合. 专题: 等差数列与等比数列. 分析: (1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的. 解答:解:(1)∵(n ≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.考点:等差数列的通项公式;等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n =,②①﹣②得S n=1+2(++…+)﹣,则===.点本题主要考查等差数列的通项公式和用错位相减法求和.评:21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c ﹣.(Ⅰ)设c=,b n =,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.考点:数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)令c=代入到a n+1=c ﹣中整理并令b n =进行替换,得到关系式b n+1=4b n+2,进而可得到{}是首项为﹣,公比为4的等比数列,先得到{}的通项公式,即可得到数列{b n}的通项公式.(2)先求出n=1,2时的c的范围,然后用数学归纳法分3步进行证明当c>2时a n <a n+1,然后当c>2时,令α=,根据由可发现c >时不能满足条件,进而可确定c的范围.解答:解:(1),,即b n+1=4b n +2,a1=1,故所以{}是首项为﹣,公比为4的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1得c>2.用数学归纳法证明:当c>2时a n<a n+1.(ⅰ)当n=1时,a2=c﹣>a1,命题成立;(ii)设当n=k时,a k<a k+1,则当n=k+1时,故由(i)(ii)知当c>2时,a n<a n+1当c>2时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c的取值范围是(2,].点评:本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.考点:等比数列的前n项和;对数的运算性质;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)设{a n}的公比为q,当q=1时根据S n•S n+2﹣S n+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得S n•S n+2﹣S n+12<0,进而推断S n•S n+2,<S n+12.根据对数函数的单调性求得lg(S n•S n+2)<lgS n+12,原式得证.(2)要使.成立,则有进而分两种情况讨论当q=1时根据(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2求得﹣a12<0不符合题意;当q≠1时求得(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2=﹣a1q n[a1﹣c(1﹣q)],进而推知a1﹣c(1﹣q)=0,判断出0<q<1,但此时不符合题意,最后综合可得结论.解答:(1)证明:设{a n}的公比为q,由题设a1>0,q>0.(i)当q=1时,S n=na1,从而S n•S n+2﹣S n+12=na1•(n+2)a1﹣(n+1)2a12=﹣a12<0(ⅱ)当q≠1时,,从而S n•S n+2﹣S n+12==﹣a12q n<0.由(i)和(ii)得S n•S n+2,<S n+12.根据对数函数的单调性,知lg(S n•S n+2)<lgS n+12,即.(2)解:不存在.要使.成立,则有分两种情况讨论:(i)当q=1时,(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2=(na1﹣c)[(n+2)a1﹣c]﹣[(n+1)a1﹣c]2=﹣a12<0.可知,不满足条件①,即不存在常数c>0,使结论成立.(ii)当q≠1时,若条件①成立,因为(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2==﹣a1q n[a1﹣c(1﹣q)],且a1q n≠0,故只能有a1﹣c(1﹣q)=0,即此时,因为c>0,a1>0,所以0<q<1.但0<q<1时,,不满足条件②,即不存在常数c>0,使结论成立.综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使.点评:本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.考点:数列的求和;等比关系的确定.专题:压轴题.分析:(1)求直线倾斜角的正弦,设C n的圆心为(λn,0),得λn=2r n,同理得λn+1=2r n+1,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即{r n}中r n+1与r n 的关系,证明{r n}为等比数列;(2)利用(1)的结论求{r n}的通项公式,代入数列,然后用错位相减法求和.解答:解:(1)将直线y=x的倾斜角记为,则有tanθ=,sinθ=,设C n的圆心为(λn,0),则由题意得知,得λn=2r n;同理λn+1=2r n+1,从而λn+1=λn+r n+r n+1=2r n+1,将λn=2r n代入,解得r n+1=3r n故|r n|为公比q=3的等比数列.(Ⅱ)由于r1=1,q=3,故r n=3n﹣1,从而,记,则有S n=1+2•3﹣1+3•3﹣2+…+n•31﹣n①﹣②,得=,∴点评:本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象概括能力以及推理论证能力.对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n与a n+1之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和S n乘以公比,然后错位相减解决.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)考点:数列的求和;等比数列的性质. 专题:综合题;压轴题. 分析: (1)根据表1,表2,表3的规律可写出表4,然后求出各行的平均数,可确定等比数列的首项和公比,进而推广到n .(2)先求出表n 的首项的平均数,进而可确定它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列,进而得到表中最后一行的数b n =n •2n ﹣1,再化简通项,最后根据裂项法求和.解答: 解:(I )表4为 13 5 74 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列将这一结论推广到表n (n ≥3),即 表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(II )表n 的第1行是1,3,5,…,2n ﹣1,其平均数是=n由(I )知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中数的平均数是n •2k ﹣1),于是,表中最后一行的唯一一个数为b n =n •2n ﹣1. 因此====(k=1,2,…,n )故++…+=(﹣)+(﹣)+…+[﹣]=﹣=4﹣.点评: 本题主要考查数列求和和等比数列的性质.数列求和是高考的必考点,一般有公式法、裂项法、错位相减法等,都要熟练掌握.25.(2010•湖北)已知数列{a n }满足:,a n a n+1<0(n ≥1),数列{b n }满足:b n =a n+12﹣a n 2(n ≥1). (Ⅰ)求数列{a n },{b n }的通项公式(Ⅱ)证明:数列{b n }中的任意三项不可能成等差数列.考点: 数列递推式;数列的概念及简单表示法;等差数列的性质. 专题: 计算题;应用题;压轴题. 分析:(1)对化简整理得,令c n =1﹣a n 2,进而可推断数列{c n }是首项为,公比为的等比数列,根据等比数列通项公式求得c n ,则a 2n 可得,进而根据a n a n+1<0求得a n .(2)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }为等比数列,于是有b r >b s >b t ,则只有可能有2b s =b r +b t 成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾. 解答:解:(Ⅰ)由题意可知,令c n =1﹣a n 2,则又,则数列{c n }是首项为,公比为的等比数列,即,故,又,a n a n+1<0故因为=,故(Ⅱ)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列, 由于数列{b n }是首项为,公比为的等比数列,。
高考数学知识点难题及答案
是每个学生都需要面对的考试之一,而其中的难题更是让许多学
生头疼不已。
在此,我们将探讨一些中的难点,并提供相应的解答。
首先,我们来谈谈函数与方程的复合运算。
这是一个经常出现在
中的知识点。
考生往往会在复合运算中遇到许多困惑。
例如,给出一
个函数f(x) = 2x + 3,问f(f(f(2)))的值。
这个问题需要从内向外
计算,先计算f(2),得到7,然后再计算f(f(7)),最后计算f(17)。
答案是37。
通过这个例子,我们可以看出,对于复合运算,要从内到
外逐步计算,将结果代入下一个函数中。
接下来,我们将探讨立体几何中的难题。
在中,涉及到空间几何
的题目常常用立体几何的知识来解答。
例如,给出一个正方体的棱长
为a,求其对角线的长度。
对于这个问题,我们可以通过勾股定理来解答。
将正方体的对角线看做是一个直角三角形的斜边,而每个棱长为a 的正方体面可以看做是一个直角三角形的一条直角边。
根据勾股定理,正方体对角线的长度等于根号下3乘以a。
因此,答案是a乘以根号下3。
再来谈谈碰撞问题。
在动力学的考察中,碰撞问题是非常常见的。
例如,有两个小球,质量分别为m1和m2,在水平面上相向运动,速度分别为V1和V2,两球发生碰撞后,速度交换。
那么,两个小球碰撞后的速度分别是多少?对于这个问题,我们可以利用动量守恒和动能守
恒两个定律来解答。
根据动量守恒可得,m1V1 + m2V2 = m1V2 + m2V1,根据动能守恒可得,m1V1^2 + m2V2^2 = m1V2^2 + m2V1^2。
通过联立
这两个方程,可以得到两球碰撞后的速度。
最后,让我们来讨论一下函数的极值问题。
在中,极值问题是一
个挑战性较大的知识点。
例如,给出一个函数f(x) = x^3 - 3x + 2,求f(x)的极值和极值点。
对于这个问题,我们需要先求出f'(x),即函数f(x)的导数。
然后,通过解方程f'(x) = 0,可以得到函数f(x)的极值点。
接着,我们将这些极值点代入函数f(x),可以得到相应的极值。
综上所述,中的难题有很多,但只要我们掌握了一定的解题方法和技巧,就能够迎难而上。
无论是复合运算,立体几何,碰撞问题还是函数的极值,都可以通过逐步分析和合理求解来解答。
希望这篇文章对你在中遇到的难题有所帮助。
祝愿你在考场上取得好成绩!。