2016-2017学年西藏拉萨市城关区北京实验中学七年级(下)期末数学试卷
- 格式:doc
- 大小:198.50 KB
- 文档页数:12
2016-2017学年西藏拉萨中学高一(下)期末数学试卷一、选择题:(每小题4分,共40分)1.(4分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.42.(4分)cos210°=()A.B.﹣C.D.﹣3.(4分)已知a>b,c>d,则()A.ac>bd B.ac<bd C.>D.a+c>b+d 4.(4分)当x>0时,f(x)=4x+的最小值为()A.4B.8C.8D.165.(4分)等差数列{a n}中,已知a4+a5=15,a7=12,则a2=()A.﹣3B.3C.D.6.(4分)不在3x+2y<6表示的平面区域内的一个点是()A.(0,0)B.(1,1)C.(0,2)D.(2,0)7.(4分)等差数列{a n}中,a1=1,公差不为0,若a2,a3,a6成等比,则S6=()A.﹣24B.﹣3C.3D.88.(4分)若a,b,c成等比数列,则函数y=ax2+bx+c的零点个数为()A.0B.1C.2D.以上都不对9.(4分)执行如图所示的程序框图,若输入A的值为2,则输出P的值为()A.2B.3C.4D.510.(4分)已知f(x)=ax2+bx是定义在[a﹣1,2a]上的偶函数,那么a+b的值是()A.B.C.D.二、填空题(每小题5分,共20分)11.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.12.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.13.(5分)若a,2a+2,3a+3成等比数列,则a=.14.(5分)不等式kx2﹣kx﹣1<0恒成立,则实数k的取值范围为.三、解答题15.(10分)解不等式(1)x>x2(2)<1.16.(10分)等差数列{a n}中,a1=3,且满足a n+1=a n+2.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.17.(10分)在△ABC中,角A、B、C所对的边分别为a,b,c,且a=1,c=,cos C =.(1)求sin A的值;(2)求△ABC的面积.18.(10分)已知f(x)=x2+ax+3﹣a.(1)若f(x)满足f(1+x)=f(1﹣x),求a的值.(2)若x∈[﹣2,2]时,f(x)≥0恒成立,求a的取值范围.2016-2017学年西藏拉萨中学高一(下)期末数学试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.【考点】1E:交集及其运算.【解答】解:∵集合A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4},∴A∩B中元素的个数为2.故选:B.【点评】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.【考点】GO:运用诱导公式化简求值.【解答】解:cos210°=cos(180°+30°)=﹣cos30°=﹣.故选:D.【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.3.【考点】71:不等关系与不等式.【解答】解:A.取a=c=0,b=d=﹣1,则不成立;B.取a=c=2,b=d=1,则不成立;C.取a=3,b=1,c=﹣1,d=﹣2,则不成立;D.∵a>b,c>d,∴a+c>b+d,因此D正确.故选:D.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4.【考点】7F:基本不等式及其应用.【解答】解:当x>0时,f(x)=4x+=8.当且仅当x=1时取等号.当x>0时,f(x)=4x+的最小值为:8.故选:B.【点评】本题考查基本不等式的应用,表达式的最值的求法,注意基本不等式成立的条件.5.【考点】84:等差数列的通项公式.【解答】解:等差数列{a n}中,设公差等于d,由题意可得2a1+7d=15,a1+6d=12,两式相减可得a2=a1+d=3,故选:B.【点评】本题主要考查等差数列的定义和性质,等差数列的通项公式,求出首项和公差d 的值,是解题的关键,属于基础题.6.【考点】7B:二元一次不等式(组)与平面区域.【解答】解:将点(0,0)点代入3x+2y<6,得0<6,显然成立,点(0,0)在不等式表示的区域内将点(1,1)代入3x+2y<6,得5<6,显然成立,点(1,1)在不等式表示的区域内将点(0,2)代入3x+2y<6,得4<6,显然成立,点(0,2)在不等式表示的区域内将点(2,0)代入3x+2y<6,得6=6,点(2,0)不在不等式表示的区域内故选:D.【点评】本题考查点与不等式表示的区域的位置关系,把点的坐标代入不等式,验证点的坐标是否满足不等式即可,满足时,点在不等式表示的区域内,否则不在.属简单题7.【考点】8M:等差数列与等比数列的综合.【解答】解:等差数列{a n}中,a1=1,公差不为0,若a2,a3,a6成等比,可得:(a2)2=a3a6,即:(1+d)2=(1+d)(1+5d),解得d2+2d=0,解得d=﹣2.(d=0舍去).则S6=6+=﹣24.故选:A.【点评】本题考查等差数列与等比数列的通项公式的应用,数列求和,考查计算能力.8.【考点】87:等比数列的性质.【解答】解:因为a,b,c成等比数列,所以b2=ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac=﹣3ac<0,所以此方程没有实数根,即函数y=ax2+bx+c的零点个数为0个,故选:A.【点评】本题考查等比中项的性质,函数的零点与方程的根的关系,注意判断式子的符号.9.【考点】EF:程序框图.【解答】解:A=2,P=1,S=0,满足条件S≤2,则P=2,S=,满足条件S≤2,则P=3,S=,满足条件S≤2,则P=4,S=不满足条件S≤2,退出循环体,此时P=4故选:C.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.10.【考点】3I:奇函数、偶函数.【解答】解:依题意得:f(﹣x)=f(x),∴b=0,又a﹣1=﹣2a,∴a=,∴a+b=.故选:B.【点评】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间2个端点互为相反数.二、填空题(每小题5分,共20分)11.【考点】9T:数量积判断两个平面向量的垂直关系.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量数量积坐标运算法则和向量垂直的性质的合理运用.12.【考点】HP:正弦定理;HR:余弦定理.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sin B==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.【点评】本题考查了三角形的内角和以及正弦定理,属于基础题13.【考点】87:等比数列的性质;88:等比数列的通项公式.【解答】解:因为a,2a+2,3a+3成等比数列,所以(2a+2)2=a(3a+3),化简得a2+5a+4=0,解得a=﹣1或﹣4,当a=﹣1时,2a+2=3a+3=0,不成立,舍去,所以实数a的值是﹣4.故答案为:﹣4.【点评】本题考查等比数列的性质,注意验证等比数列中项是否为零,属于易错题.14.【考点】7E:其他不等式的解法.【解答】解:①k=0时原表达式为﹣1<0成立;②k≠0,不等式kx2﹣kx﹣1<0恒成立等价于,解得﹣4<k<0;综上k的取值范围为﹣4<k≤0;故答案为:(﹣4,0].【点评】本题考查了表达式恒成立时参数范围的取值;关键是讨论二次项系数与0的关系.三、解答题15.【考点】7E:其他不等式的解法.【解答】解:(1)由不等式x>x2 ,可得x(x﹣1)<0,∴0<x<1,该不等式的解集为{x|0<x<1}.(2)由<1,可得<0,即<0,∴x+1>0,即x>﹣1,故该不等式的解集为{x|x>﹣1}.【点评】本题主要考查一元二次不等式、分式不等式的解法,属于基础题.16.【考点】84:等差数列的通项公式;8E:数列的求和.【解答】解:(1)由已知等差数列{a n}中,a1=3,且满足a n+1=a n+2.可得d=2,∴数列{a n}是以3为首项,以d=2为公差的等差数列.∵a n=a1+(n﹣1)d,∴a n=3+2(n﹣1)=2n+1(n∈N*).(2)由(1)得b n===.∴S n===.【点评】本题考查等差数列的判断及通项公式的判断,裂项求数列的和的应用.17.【考点】HP:正弦定理;HR:余弦定理.【解答】解:(1)∵cos C=,∴sin C=,∵,∴,即.(2)∵c2=a2+b2﹣2ab cosC,∴,即2b2﹣3b﹣2=0,解得b=2,∴三角形的面积S=.【点评】本题主要考查三角形的面积公式的计算以及正弦定理和余弦定理的应用,涉及的公式较多.18.【考点】3V:二次函数的性质与图象;5B:分段函数的应用.【解答】解:(1)∵f(1+x)=f(1﹣x)∴y=f(x)的图象关于直线x=1对称∴﹣=1即a=﹣2.(2)原不等式变成:x2+ax+3﹣a≥0,令f(x)=x2+ax+3﹣a,则由已知条件得:,或,或,解可得:a∈∅;解:,可得:﹣7≤a≤﹣4;解:,可得:﹣4<a≤2;综上:﹣7≤a≤2;∴a的取值范围为[﹣7,2].故答案为:[﹣7,2]【点评】本题主要了一元二次不等式恒成立的问题,考查二次函数和一元二次不等式的关系,一元二次不等式解的情况,可结合图象求解.。
一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 A .D7,E6 B .D6,E7 C .E7,D6 D .E6,D72.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)3.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,15.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-6.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 7.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 8.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限10.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的12 11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行D .平行、垂直相交 二、填空题12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).13.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.14.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.17.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.18.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 19.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.20.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.21.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题22.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?23.如图,己知()(),2,53,3A C -,将三角形ABC 向右平移3个的单位长度,再向下平移4个单位长度,得到对应的三角形111A B C .(1)画出三角形111A B C ;(2)直接写出点111A B C 的坐标;(3)求三角形111A B C 的面积.24.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-; (2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.25.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:A→B ( +1,+3 ),从B 到A 记为:B→A ( -1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向.填空:(1)图中A→C ( , ) C→ ( , )(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M 的坐标为( , )(3)若图中另有两个格点P、Q,且P→A ( m+3,n+2),P→Q(m+1,n-2),则从Q到A记为(,)一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)5.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置6.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12507.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4) 9.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88610.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.13.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.14.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.15.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 16.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.20.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.已知点P(a ﹣2,2a+8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;(3)点P 到x 轴、y 轴的距离相等.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?24.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)2.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-4.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 5.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)6.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置7.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 8.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.14.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.15.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.16.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P第17次运动到的点的坐标为__________.20.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.21.已知点P在第四象限,且到x轴的距离是1,到y轴的距离是3,则P的坐标是______.三、解答题22.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A地,黄军的指挥所地B地,A地在B地的正西边(如图).部队司令部在C 地.C在A的北偏东60︒方向上、在B的北偏东30方向上.∠=______°;(1)BAC(2)请在图中确定(画出)C的位置,标出字母C;(3)演习前,司令部要蓝军、黄军派人到C地汇报各自的准备情况.黄军一辆吉普车从B 地出发、蓝军一部越野车在吉普车出发3分钟后从A地出发,它们同时到达C地.已知吉普车行驶了18分钟.A到C的距离是B到C的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B地到C地的距离(速度单位用:千米/时).23.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''∆A B C()2请以'A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点C及','B C的坐标.24.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB =20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点”P '的坐标为____________; ②若点P 的“k 之雅礼点”P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________; (2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值.。
北京北关中学七年级下册数学期末试卷专题练习(解析版)一、解答题1.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.2.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.3.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?4.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点. (1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ; (2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.二、解答题6.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤. ①在旋转过程中,若边//BG CD ,求t 的值;②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值. 7.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.8.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).9.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.10.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.三、解答题11.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)12.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n -1的度数.(用含m 、n 的代数式表示)13.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.14.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.15.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °; ②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、解答题1.(1)见解析;(2),证明见解析. 【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解析:(1)见解析;(2)902FME α∠=︒-,证明见解析.【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明://AB CD ,CEH EHB ∴∠=∠, GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠, FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠, FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.2.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC -∠DBC =60°-∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论. 【详解】解:(1)∵∠1=48°,∠BCA =90°, ∴∠3=180°-∠BCA -∠1=180°-90°-48°=42°, ∵a ∥b , ∴∠2=∠3=42°; (2)理由如下:过点B 作BD ∥a .如图2所示:则∠2+∠ABD =180°, ∵a ∥b , ∴b ∥BD , ∴∠1=∠DBC ,∴∠ABD =∠ABC -∠DBC =60°-∠1, ∴∠2+60°-∠1=180°, ∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C 作CP ∥a ,如图3所示:∵AC 平分∠BAM∴∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,又∵a ∥b ,∴CP ∥b ,∠1=∠BAM =60°,∴∠PCA =∠CAM =30°,∴∠BCP =∠BCA -∠PCA =90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.3.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.4.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A +∠C +∠APC =360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A +∠C +∠APC =360°;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据两直线平行,内错角相等,即可证得∠APC =∠A +∠C ;(3)由(2)知,∠APC =∠PAB -∠PCD ,先证∠BEF =∠PQB =110°、∠PEG =12∠FEG ,∠GEH =12∠BEG ,根据∠PEH =∠PEG -∠GEH 可得答案.【详解】解:(1)∠A +∠C +∠APC =360°如图1所示,过点P 作PQ ∥AB ,∴∠A +∠APQ =180°,∵AB ∥CD ,∴PQ ∥CD ,∴∠C +∠CPQ =180°,∴∠A +∠APQ +∠C +∠CPQ =360°,即∠A +∠C +∠APC =360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE=a,则∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=12∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.二、解答题6.(1)60°;(2)①6s;②s或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当解析:(1)60°;(2)①6s;②103s或703s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.【详解】解:(1)如图①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=1∠ACN=75°,2∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如图②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋转过程中,若边BG∥CD,t的值为6s.②如图③中,当BG∥HK时,延长KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=103s.如图③-1中,当BG∥HK时,延长HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=703s.综上所述,满足条件的t的值为103s或703s.【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.7.(1)80;(2)①;②【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由:过P 作PQ ∥DF ,∵DF ∥CG ,∴PQ ∥CG ,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ -∠EPQ =∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.8.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.故答案为垂;(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),12∠∠∴=,33∠=∠(角平分线的定义),//AB CD (已知),ABC BCD ∴∠=∠(两直线平行,内错角相等),2223∴∠=∠(等量代换),23∴∠=∠(等式性质),//BE CF ∴(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.9.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,//DE BA ∴;(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.10.(1);(2)①,②,理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.三、解答题11.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.12.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.13.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.14.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.15.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
北京市西城区2017— 2017学年度第二学期期末试卷七年级数学 2017.7试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.4的平方根是( ).A .16±B .2±C .2-D .2 2. 已知b a <,下列不等式中,变形正确的是( ). A .33->-b a B .33ba > C .b a 33->- D .1313->-b a3.如图,为了估计一池塘岸边两点A ,B 之间的距离,小丽同学在池塘一侧选取了一点P ,测得P A =5m ,PB =4m ,那么点A 与点B 之间的距离不可能...是( ). A .6mB .7mC .8mD .9m 4.在下列运算中,正确的是( ).A. 426()x x = B. 326x x x ⋅= C. 2242x x x += D. 624x x x ÷= 5.如图,直线AB ,CD 被直线EF 所截,AB ∥CD ,∠1=110°,则∠2等于( ).A .65°B .70°C .75°D .80°6. 一个多边形的内角和是900°,这个多边形的边数是( ). A .7 B .8 C .9 D .107. 如图,在平面直角坐标系xOy 中,将线段AB 平移得到线段MN ,若点A (-1,3)的对应点为M (2,5),则点B (-3,-1)的对应点N 的坐标是( ). A .(1,0) B .(0,1) C .(-6,0) D .(0,-6)8.下列命题是假命题的是().A.所有的实数都可以用数轴上的点表示B.过直线外一点有且只有一条直线与已知直线平行C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一条直线的两条直线互相平行9.右图是表示某地区2017~2017年生产总值(简称GDP,单位:亿元)的统计图,根据统计图所提供的信息,判断下列说法正确的是().A.2017年该地区的GDP未达到5500亿元B.2017年该地区的GDP比2017年翻一番C.2017~2017年该地区每年GDP增长率相同D.2017~2017年该地区的GDP逐年增长10.周末,小明与小文相约一起到游乐园去游玩,下图是他俩在微信中的一段对话:小文,你下了625路公交车后,先向前走500米,再向右转走200米,就到游乐园门口了,我现在在游乐园门口等你呢!小明,我按你说的路线走到了M超市,不是游乐园门口呀?小文,你会走到M超市,是因为你下车后先向东走了,如果你先向北走就能到游乐园门口了.根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是().A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11. 不等式组315247x x x -≥⎧⎨+<+⎩,的解集是 ___.12.在生活中,我们常常看到在电线杆的两侧拉有两根钢线用来固定电线杆(如图所示),这样做的数学原理是_ _ _.13,上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是 .14.如图,将一个三角板的直角顶点放在直尺的一条边上,若∠1=50°,则∠2的度数为 .15.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”,“朋”,“森”等,请你开动脑筋,再写出两个具有平移变换现象的 汉字 .16.已知两点A (m ,5),B (-3,n ),AB ∥y 轴,则m 的值是 ,n 的取值范围是 .17.已知2()16x y +=,2xy =,则2()x y -= .18.如图,在平面直角坐标系xOy 中,A ,B ,C ,D 四点的坐标分别是A (-2,3), B (4,3),C (0,1),D (1,2),动点P 从点A 出发,在线段AB 上以每秒1个单 位长度的速度向点B 运动,到达点B 时停止运动.射线PC ,PD 与x 轴分别 交于点M ,点N ,设点P 运动的时间为t秒,若以点C ,D ,M ,N 为顶点能围成一个四边形,则t 的取值范围是 .191.解:20.解不等式211143x x +-≤+,并把解集在数轴上表示出来. 解:21.先化简,再求值:2()()()(23)a b a b a b a a b +-+---,其中a =12-,b =1.解:22.如图,在△ABC 中,∠A =∠C ,∠ABC =70º,EF ∥BD ,∠1=∠2,求∠ADG 的度数.解:23.某学校在暑假期间安排了“心怀感恩•孝敬父母”的实践活动,倡导学生在假期中多帮父母干家务.开学以后,校学生会的老师们在学校随机抽取了部分学生,就暑假期间 “平均每天帮助父母干家务所用时长”进行了调查,以下是根据相关数据绘制的统计图 的一部分(每段时长均含最小值,不含最大值):根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是 人; (2)补全扇形统计图,补全频数分布直方图;(3)如果该校共有学生3000人,请你估计“平均每天帮助父母干家务的时长不少于 30分钟”的学生大约有多少人?并给出一条合理化建议. 解:(3)10~2040分钟20~30分钟分钟 平均每天帮助父母干家务所用时长分布统计图平均每天帮助父母干家务所用时长学生人数统计图时间/分钟频数24.已知△ABC的三个顶点的坐标分别是A(0,1),B(2,0),C(2,3) .(1)在所给的平面直角坐标系xOy中画出△ABC,△ABC的面积为;(2)点P在x轴上,且△ABP的面积等于△ABC的面积,求点P的坐标.解:(2)25.为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:居民用水阶梯水价表单位:元/立方米(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?解:(3)26.在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对乘法公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性.根据课堂学习的经验,解决下列问题:(1)如图①,边长为(k+3)的正方形纸片,剪去一个边长为k的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),则这个长方形的面积是(用含k的式子表示);(2)有3张边长为a的正方形纸片,4张边长分别为a,b (a <b) 的长方形纸片,5张边长为b的正方形纸片,现从其中取出若干张纸片(每种纸片至少取一张),拼成一个正方形(不重叠无缝隙),则所拼成的正方形的边长最长可以为;A.a+b B.2a+b C.3a+b D.a+2b(3)一个大正方形和4个大小完全相同的小正方形按图②,图③两种方式摆放,求图③中,大正方形中未被4个小正方形覆盖部分的面积(用含m,n的式子表示).解:(3)五、解答题(本题6分)27.如图,在四边形ABCD中,AD∥BC,∠BAD=∠BCD.(1)求证AB∥CD;(2)连接AC,作∠DAC的平分线交CD于点E,过点C作CF⊥AE交AE的延长线于点F,交AD的延长线于点H.请画出完整的图形,并证明∠BAC+∠ADC =2∠H.证明:(1)(2)。
2016-2017学年北京七年级(下)月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.4的平方根是()A.±16 B.2 C.±2 D.±2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>23.如图,直线a∥b,直角三角板的直角顶点P在直线b上,若∠1=56°,则∠2为()A.24° B.34° C.44° D.54°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.若a>b,则下列不等式变形正确的是()A.a+5<b+5 B.<C.﹣4a>﹣4b D.3a﹣2>3b﹣26.如图,点A,B,E在一条直线上,下列条件中不能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠A=∠5 D.∠A+∠ABC=180°7.有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直其中所有正确的命题是()A.①② B.②③ C.①④ D.③④8.在下列各式中,正确的是()A.=﹣0.4 B.=2 C.=±2 D.(﹣)2+()3=09.如图,在△ABC中,D为AB边上一点,点E 在BC的延长线上,DE交AC于点F,设∠DFC=∠1,下列关于∠A、∠B、∠E、∠1的关系式中,正确的()A.∠A+∠B=∠1+∠E B.∠A+∠B=∠1﹣∠E C.∠A﹣∠B=∠1﹣∠E D.∠A﹣∠B=∠1+∠E10.若关于x的不等式mx﹣n>0的解集是,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x>D.x<二、填空题(本大题共8小题,每小题2分,共16分)11.用不等式表示“x的2倍与3的和不大于2”为.12.已知一个三角形的三个内角度数的比是1:5:6,则它的最大内角的度数为度.13.在0.,,﹣,π,这五个实数中,无理数是.14.如图所示:∠1=30°,直线AB与CD相交于点O,已知,OE是∠BOC的平分线,则∠2=,∠3=.15.如图,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为.16.如图,在长方形草地内修建了宽为2米的道路,则草地面积为米2.17.已知关于x的不等式组的整数解共有4个,则a的取值范围是.18.如图,在第1个△ABA1中,∠B=20°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第三个三角形中,以A3为顶点的内角的度数为;第n个三角形中以A n为顶点的内角的度数为.三、解答题(本大题共9小题,每小题6分,共54分)19.计算:.20.若+(3x+y﹣1)2=0,求的平方根.21.解不等式:﹣,并把它的解集在数轴上表示出来.22.解不等式组并求出不等式组的整数解.23.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.已知:如图,∠AGF=∠ABC,∠1+∠2=180°,DE⊥AC于点E.求证:BF⊥AC.25.如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=°;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为.26.列方程组和不等式解应用题小明所在的学校为加强学生的体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个蓝球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?27.如图,已知△ABC,D为AB边上一点,∠BDC=∠ACB,过点D作直线DF.(1)若DF∥AC,判断∠FDA与∠BCD之间存在的数量关系,并证明;(2)若将直线DF绕这点D旋转(不含与AB,CD重合的情况),交射线CA于点H,判断∠ADH,∠AHD,∠BCD之间存在的数量关系并证明.一、填空题(本大题共1小题,共6分)28.已知如图:△ABC中,∠ABC的三等分线与∠ACB的三等分线分别相交于G1,G2,(1)若∠A=75°,则∠BG1C=°;∠BG2C=°;(2)试猜想:∠BG1C与∠A的关系.∠BG1C=;(3)试猜想:∠BG2C与∠A的关系.∠BG2C=.二、解答题(本大题共2小题,第29题6分,第30题8分,共14分)29.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).30.已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP 于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.2016-2017学年北京七年级(下)月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.4的平方根是()A.±16 B.2 C.±2 D.±考点:平方根.分析:根据平方根的定义,求数4的平方根即可.解答:解:4的平方根是±2.故选:C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.如图,直线a∥b,直角三角板的直角顶点P在直线b上,若∠1=56°,则∠2为()A.24° B.34° C.44° D.54°考点:平行线的性质.分析:先根据平角的定义求出∠3的度数,然后根据两直线平行同位角相等,即可求出∠2的度数.解答:解:如图,∵∠1+∠3+∠4=180°,∠1=56°,∠4=90°,∴∠3=34°,∵a∥b,∴∠2=∠3=34°.故选B.点评:此题考查了平行线的性质,熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,是解题的关键.4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短考点:垂线段最短.专题:应用题.分析:根据垂线段的性质:垂线段最短进行解答.解答:解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.点评:此题主要考查了垂线段的性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.5.若a>b,则下列不等式变形正确的是()A.a+5<b+5 B.<C.﹣4a>﹣4b D.3a﹣2>3b﹣2考点:不等式的性质.分析:根据不等式的性质1,可判断A;根据不等式的性质2,可判断B;根据不等式的性质3,可判断C,;根据不等式的性质1和2,可判断D.解答:解:A、在不等式a>b的两边同时加上5,不等式仍成立,即a+5>b+5.故A选项错误;B、在不等式a>b的两边同时除以3,不等式仍成立,即<.故B选项错误;C、在不等式a>b的两边同时乘以﹣4,不等号方向改变,即﹣4a<﹣4b.故C选项错误;D、在不等式a>b的两边同时乘以3,再减去2,不等式仍成立,即3a﹣2>3b﹣2.故D选项正确;故选:D.点评:本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.如图,点A,B,E在一条直线上,下列条件中不能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠A=∠5 D.∠A+∠ABC=180°考点:平行线的判定.分析:根据平行线的判定定理对各选项进行逐一判断即可.解答:解:A、∵∠1=∠2,∴AD∥BC,故本选项错误;B、∵∠3=∠4,∴AB∥CD,故本选项正确;C、∵∠1=∠2,∴AD∥BC,故本选项错误;D、∵∠A+∠ABC=180°,∴AD∥BC,故本选项错误.故选B.点评:本题考查的是平行线的判定定理,用到的知识点为:同旁内角互补,两直线平行;同位角相等,两直线平行;内错角相等,两直线平行是解答此题的关键.7.有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直其中所有正确的命题是()A.①② B.②③ C.①④ D.③④考点:命题与定理.分析:根据平行线的判定方法对①③进行判断;根据平行线的性质对②进行判断;根据垂直公理对④进行判断.解答:解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①正确;两条平行直线被第三条直线所截,同旁内角互补,所以②错误;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线平行,所以③错误;在同一平面内,过一点有且只有一条直线与已知直线垂直,所以④正确.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.在下列各式中,正确的是()A.=﹣0.4 B.=2 C.=±2 D.(﹣)2+()3=0考点:立方根;算术平方根.分析:分别利用立方根以及二次根式的性质化简各数进而判断得出即可.解答:解:A、=﹣0.4,正确;B、=﹣2,故此选项错误;C、=2,故此选项错误;D、(﹣)2+()3=2+2=4,故此选项错误.故选:A.点评:此题主要考查了立方根以及平方根的性质,正确把握相关概念是解题关键.9.如图,在△ABC中,D为AB边上一点,点E 在BC的延长线上,DE交AC于点F,设∠DFC=∠1,下列关于∠A、∠B、∠E、∠1的关系式中,正确的()A.∠A+∠B=∠1+∠E B.∠A+∠B=∠1﹣∠E C.∠A﹣∠B=∠1﹣∠E D.∠A﹣∠B=∠1+∠E考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠ACE即可得解.解答:解:在△ABC中,由三角形的外角性质得,∠ACE=∠A+∠B,在△CEF中,由三角形的外角性质得,∠ACE=∠1﹣∠E,所以∠A+∠B=∠1﹣∠E.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图表示出∠ACE是解题的关键.10.若关于x的不等式mx﹣n>0的解集是,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x>D.x<考点:不等式的解集.分析:先解关于x的不等式mx﹣n>0得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.解答:解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,,解得m=7n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<,故选:A.点评:本题考查了不等式的解集以及不等式的性质,要熟练掌握不等式的性质3.二、填空题(本大题共8小题,每小题2分,共16分)11.用不等式表示“x的2倍与3的和不大于2”为2x+3≤2.考点:由实际问题抽象出一元一次不等式.分析:首先表示“x的2倍”为2x,再表示“与3的和”为2x+3,最后表示“不大于2”可得2x+3≤2.解答:解:由题意得:2x+3≤2,故答案为:2x+3≤2.点评:此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.12.已知一个三角形的三个内角度数的比是1:5:6,则它的最大内角的度数为90度.考点:三角形内角和定理.分析:根据比例设出三个内角,再根据三角形的内角和等于180°列出方程求解即可.解答:解:根据题意,设三个内角为k、5k、6k,则k+5k+6k=180°,解得k=15°,所以,最大内角度数为6k=6×15°=90°.故答案为:90.点评:本题考查了三角形的内角和定理,根据比例,利用“设k法”表示出三个内角是解题的关键.13.在0.,,﹣,π,这五个实数中,无理数是,﹣,π.考点:无理数.分析:无限不循环小数为无理数,由此可得出无理数.解答:解:在0.,,﹣,π,这五个实数中,无理数是,﹣,π,故答案为:,﹣,π点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14.如图所示:∠1=30°,直线AB与CD相交于点O,已知,OE是∠BOC的平分线,则∠2= 30°,∠3=75°.考点:对顶角、邻补角.分析:由对顶角的性质可求得∠2=30°,由邻补角的定义可求得∠COB=150°,然后根据角平分线的定义可求得∠3.解答:解:由对顶角的性质可知:∠2=∠1=30°,∵∠1+∠COB=180°,∴∠COB=180°﹣30°=150°∵OE是∠BOC的平分线,∴∠3=∠COB==75°.故答案为:30°;75°.点评:本题主要考查的是对顶角、邻补角的性质、角平分线的定义,求得∠COB的度数是解题的关键.15.如图,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为80°.考点:平行线的性质;三角形的外角性质.分析:由直线AB∥CD,∠C=125°,根据两直线平行,同位角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.解答:解:∵直线AB∥CD,∠C=125°,∴∠1=∠C=125°,∵∠1=∠A+∠E,∠A=45°,∴∠E=∠1﹣∠A=125°﹣45°=80°.故答案为:80°.点评:此题考查了平行线的性质与三角形外角的性质.此题比较简单,解题的关键是注意掌握两直线平行,同位角相等定理的应用.16.如图,在长方形草地内修建了宽为2米的道路,则草地面积为144米2.考点:有理数的混合运算.专题:应用题.分析:本题已知道路宽,可以计算道路长,得出道路面积,用总面积减去道路面积即可.解答:解:道路的总长为:(20+10﹣2)米,即28米.则道路所占面积为28×2=56米2,则草地面积为20×10﹣56=144米2.点评:此题求出道路的总长是关键,注意应减去重合的部分.17.已知关于x的不等式组的整数解共有4个,则a的取值范围是﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:将a看做已知数,求出不等式组的解集,根据解集中整数解有4个,即可确定出a 的范围.解答:解:解不等式组由①得x≥a,由②得x<2.由不等式组有整数解知,不等式组的解集为a≤x<2.又∵不等式组共有4个整数解,∴不等式组的整数解为﹣2,﹣1,0,1,∴﹣3<a≤﹣2.故答案为:﹣3<a≤﹣2.点评:本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.18.如图,在第1个△ABA1中,∠B=20°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第三个三角形中,以A3为顶点的内角的度数为20°;第n个三角形中以A n为顶点的内角的度数为.考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以A n为顶点的内角的度数.解答:解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×80°=40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴第n个三角形的以A n为顶点的内角的度数=.故答案为;20°,.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.三、解答题(本大题共9小题,每小题6分,共54分)19.计算:.考点:立方根;算术平方根.专题:计算题.分析:根据x3=a,则x=,x2=b(b≥0)则x=,进行解答.解答:解:=9﹣3+=.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.20.若+(3x+y﹣1)2=0,求的平方根.考点:非负数的性质:算术平方根;非负数的性质:偶次方;平方根.分析:先根据非负数的性质求出x,y的值,代入代数式即可得出结论.解答:解:∵+(3x+y﹣1)2=0,∴,解得,∴原式==3.∴的平方根为±.点评:本题考查的是非负数的性质,熟知非负数之和等于0时,各项都等于0是解答此题的关键.21.解不等式:﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式.专题:计算题.分析:根据一元一次不等式的解法,将不等式去分母、去括号、移项、合并同类项、系数化1,解出不等式的值即可.解答:解:去分母得,3(x+5)﹣2(2x+3)≥12,去括号得,3x+15﹣4x﹣6≥12,移项得,3x﹣4x≥12﹣15+6,合并得,﹣x≥3,系数化1得,x≤﹣3;不等式的解集在数轴上表示如下:点评:本题考查了解一元一次不等式和不等式的性质.(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.解不等式组并求出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出每个不等式的解集,再求出其公共部分,然后得到其整数解.解答:解:解不等式(1)得x>﹣2,解不等式(2)得x≤1,∴不等式组的解集为﹣2<x≤1,∴不等式组的整数解为﹣1、0、1.点评:本题考查了解一元一次不等式组和一元一次不等式组的整数解,熟悉不等式的性质是解题的关键.23.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.考点:平行线的性质;角平分线的定义.分析:由角平分线的定义,结合平行线的性质,易求∠EDC的度数.解答:解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°(两直线平行,同位角相等),∵CD平分∠ACB,∴∠BCD=∠ACB=40°,∵DE∥BC,∴∠EDC=∠BCD=40°(两直线平行,内错角相等).点评:这类题首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.24.已知:如图,∠AGF=∠ABC,∠1+∠2=180°,DE⊥AC于点E.求证:BF⊥AC.考点:平行线的判定与性质.分析:要证BF⊥AC,只要证得DE∥BF即可,由平行线的判定可知只需证∠2+∠3=180°,根据平行线的性质结合已知条件即可求证.解答:证明:∵∠AGF=∠ABC,∴BC∥GF(同位角相等,两直线平行),∴∠1=∠3;又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF∥DE;∵DE⊥AC,∴BF⊥AC.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=90°;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为 4.8.考点:作图—基本作图.分析:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)利用两直线平行同位角相等即可确定答案;(5)利用等积法即可求得线段AC的长.解答:解:(1)如图;(2)如图;(3)如图;(4)∵CD∥OA,∴∠CDB=∠OAB=90°;(5)AC==4.8.点评:本题考查了基本作图的知识,正确的根据题意作出图形是解答本题的关键,难度不大.26.列方程组和不等式解应用题小明所在的学校为加强学生的体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个蓝球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.解答:解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(60﹣m)个足球,由题意得,80,m+50(60﹣m)≤4000,解得:m≤33,∵m为整数,∴m最大取33,答:最多可以买33个篮球.点评:本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.27.如图,已知△ABC,D为AB边上一点,∠BDC=∠ACB,过点D作直线DF.(1)若DF∥AC,判断∠FDA与∠BCD之间存在的数量关系,并证明;(2)若将直线DF绕这点D旋转(不含与AB,CD重合的情况),交射线CA于点H,判断∠ADH,∠AHD,∠BCD之间存在的数量关系并证明.考点:平行线的性质.分析:(1)根据DF∥AC,得到∠CDE=∠ACD,由∠BDC=∠ACB,得到∠BDE=∠BCD,根据对顶角相等得到∠FDA=∠BDE,所以∠FDA=∠BCD.(2)分两种情况,分别画出图形,利用三角形的内角和与外角的性质即可解答.解答:解:(1)如图1,∵DF∥AC,∴∠CDE=∠ACD,∵∠BDC=∠ACB,∴∠BDE+∠CDE=∠ACD+BCD,∴∠BDE=∠BCD,∵∠FDA=∠BDE,∴∠FDA=∠BCD.(2)当DF交AC于点H时,如图2,在△BDC中,∠B+∠BDC+∠BCD=180°,在△ABC中,∠B+∠ACB+∠A=180°,∵∠BDC=∠ACB,∴∠A=∠BCD,∵在△ADH中,∠A+∠ADH+∠AHD=180°,∴∠BCD+∠ADH+∠AHD=180°.当DF交射线CA与点H时,如图3,∵∠BAC=∠ADH+∠AHD(外角的性质),∠BAC=∠BCD,∴∠BCD=∠ADH+∠AHD.点评:本题考查了平行线的性质,三角形的内角和,外角的性质,在(2)中,分两种情况画出图形是解决本题的关键.一、填空题(本大题共1小题,共6分)28.已知如图:△ABC中,∠ABC的三等分线与∠ACB的三等分线分别相交于G1,G2,(1)若∠A=75°,则∠BG1C=145°;∠BG2C=110°;(2)试猜想:∠BG1C与∠A的关系.∠BG1C=120°+∠A;(3)试猜想:∠BG2C与∠A的关系.∠BG2C=60°+∠A.考点:三角形内角和定理.分析:(1)根据三角形的内角和定理可得∠ABC+∠ACB=138°,再由角的三等分线可得G2∠BC+∠G2CB,即可求得∠BG2C的度数;进一步在△BG1C中,得出∠G1BC+∠G1CB,求得∠BG1C;(2)(3)由(1)得出结论直接猜想得出答案即可.解答:解:(1)∵∠A=75°,∴∠ABC+∠ACB=180°﹣75°=105°,∴∠G2BC+∠G2CB=(∠ABC+∠ACB)°=70°,∴∠BG2C=180°﹣70°=110°.∴∠G1BC+∠G1CB=(∠ABC+∠ACB)=35°,∴∠BG1C=180°﹣35°=145°.(2)∠BG1C=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A;∠BG2C=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=60°+∠A.故答案为:145°,110°(2)(3).点评:本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.二、解答题(本大题共2小题,第29题6分,第30题8分,共14分)29.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).考点:一元一次不等式组的应用.专题:阅读型.分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;(2)理解解题过程,按照解题思路求解.解答:解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.30.已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP 于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.考点:三角形内角和定理;三角形的外角性质.分析:根据三角形内角和定理可求出∠CBA+∠ACB,根据邻补角的性质可求出∠MBC+∠NGB,再根据角平分线的性质∠PBC+∠PCB,根据三角形内角和定理算出结果.解答:解:(1)∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α∴∠CBA+∠ACB=180°﹣∠BAC=180°﹣α∵∠MBC+∠ABC=180°,∠NCB+∠ACB=180°∴∠MBC+∠NGB=360°﹣∠ABC﹣∠ACB=360°﹣(180°﹣α)=180°+α∵BP,CP分别平分△ABC的外角∠CBM和∠BCN∴∠PBC=∠MBC,∠PCB=∠NCB∴∠PBC+∠PCB=∠MBC+∠NCB=(180°+α)=90°+α∵∠BPC+∠PBC+∠PCB=180°∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(90°+α)=90°﹣α∵∠BAC=α,∠ACB=β,∵∠MBC是△ABC的外角∴∠MBC=α+β∵BP平分∠MBC∴∠MBP=∠MBC=(α+β)∵∠MBP是△ABP的外角,AP 平分∠BAC∴∠BAP=α,∠MBP=∠BAP+∠APB∴∠PBD=90°﹣∠APB=90°﹣(∠MBP﹣∠BAP)=90°﹣∠MBP+∠BAP=90°﹣(α+β)+α=90°﹣β;(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论已发生变化;∠PBD=.点评:本题考查了三角形内角和定理,角平分线,外角的性质.注意知识的灵活运用.。
D 第5 题S ( 千30O 2 第 8 题t ( 2016—2017 学年下学期期末水平质量检测初一数学试卷(全卷满分:120 分钟 考试时间:120 分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题 3 分,共计 24 分)1. 计算: (2x + 3y )2 =;(2a - b )(- b - 2a ) =.A2. 如果 x 2 + kx +1是一个完全平方式,那么k 的值是.B 3. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题E时说,2006 年中央财政用于“三农”的支出将达到 33970000万元,这个数据用科学记数法可表示为 万元.4. 等腰三角形一边长是 10㎝,一边长是 6㎝,则它的周长是.C小5. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC≌△ADE,还需要添加的条件是.6.现在规定两种新的运算“﹡”和“◎”:a ﹡b= a 2 + b 2 ;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= . 7. 某物体运动的路程 s (千米)与运动的时间 t (小时)关系如图所示,则当 t=3 小时时,物体运动所经过的路程为 千米.8. 某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示, 则该汽车的号码是 .9. 下列图形中不是正方体的展开图的是()AB C D10. 下列运算正确的是( )二、相信你的选择(每小题只有一个正确的选项,每小题 3 分,共 27 分)A . a 5 + a 5 = a 10B . a 6 ⨯ a 4 = a 24C . a 0 ÷ a -1 = aD . a 4 - a 4 = 111. 下列结论中,正确的是( ) A. 若a ≠ b,则a 2 ≠ b 2B. 若a > b ,则a 2 > b 2C. 若a 2 = b2,则a = ±bD. 若a > b,则1 > 1a b12. 如图,在△ABC 中,D 、E 分别是 AC 、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数是( ) A.15°B.20°C.25°D.30°BE C13. 观察一串数:0,2,4,6,….第 n 个数应为()第 14 题ADc 1 2 3 4 5 t 第 15 题A.2(n -1)B.2n -1C.2(n +1)D.2n +114.下列关系式中,正确的是( )A. (a - b )2= a 2 - b 2C. (a + b )2= a 2 + b 2B. (a + b )(a - b ) = a 2 - b 2 D. (a + b )2= a 2 - 2ab + b 215. 如图表示某加工厂今年前 5 个月每月生产某种产品的产量 c (件)与时间 t (月)之间的关系,则对这种产品来说,该厂( )A.1 月至 3 月每月产量逐月增加,4、5 两月产量逐月减小B.1 月至 3 月每月产量逐月增加,4、5 两月产量与 3 月持平C.1 月至 3 月每月产量逐月增加,4、5 两月产量均停止生产D. 1 月至 3 月每月产量不变,4、5 两月均停止生产 O 16. 下列图形中,不一定是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角 D.直角三角形 17. 长度分别为 3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为()A.1B.2C. 3D.4三、精心算一算(18 题 5 分,19 题 6 分,共计 11 分)18. 2(y6 )2- (y 4 )319. 先化简(2x - 1)2 - (3x + 1)(3x - 1) + 5x (x - 1),再选取一个你喜欢的数代替 x ,并求原代数式的值.四、认真画一画(20 题 5 分,21 题 5 分,共计 10 分)20. 如图,某村庄计划把河中的水引到水池 M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是:M第 23 题21. 两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)第一种第二种第三种 第四种第 24 题五、请你做裁判(第 22 题小 5 分,第 23 小题 5 分,共计 10 分)⎩22. 在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成 6 份,如图所示.游戏规定:随意转动转盘,若指针指到 3,则小丽去;若指针指到 2,则小芳去.若你是小芳,会同意这个办法吗?为什么?第 25 题23. 一个长方形的养鸡场的长边靠墙,墙长 14 米,其它三边用竹篱笆围成,现有长为 35 米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多 5 米; 小赵也打算用它围成一个鸡场,其中长比宽多 2 米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(8 分),24. 某种产品的商标如图所示,O 是线段 AC 、BD 的交点,并且 AC = 在△ABO 和△DCO 中⎧AC = BD⎪⎨∠AOB = ∠DOC ⎪AB = CD − → ∆ABO ≅ ∆DCO你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.(请将答案写在右侧答题区)七.探究拓展与应用 满分 30 分,第 28 题25.几何探究题(30 分)请将题答在右侧区域。
2016-2017学年北京市北师大实验中学七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)的平方根是()A.3B.±3C.D.±2.(3分)用不等式表示:x的2倍与4的差是负数()A.2x﹣4>0B.2x﹣4<0C.2(x﹣4)<0D.4﹣2x<0 3.(3分)已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4C.﹣4a<﹣4b D.a﹣4<b﹣4 4.(3分)下列四个数中,无理数是()A.B.C.D.5.(3分)要调查下面几个问题,你认为不应做抽样调查的是()A.调查某电视剧的收视率B.调查“神舟七号”飞船重要零部件的产品质量C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵6.(3分)下列说法正确的是()A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c7.(3分)如图所示,下列推理不正确的是()A.若∠1=∠C,则AE∥CDB.若∠2=∠BAE,则AB∥DEC.若∠B+∠BAD=180°,则AD∥BCD.若∠C+∠ADC=180°,则AE∥CD8.(3分)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)9.(3分)如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG,②为折线段AIG,③为折线段AJHG.三条路的长依次为a、b、c,则()A.a>b>c B.a=b>c C.a>c>b D.a=b<c 10.(3分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.25B.2.5C.2.95D.3二、填空题:(每小题2分,共20分)11.(2分)﹣27的立方根是.12.(2分)﹣1的相反数是.13.(2分)若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.14.(2分)若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为.15.(2分)已知点P(3a﹣8,a﹣1),若点P在y轴上,则点P的坐标为.16.(2分)如图,直线a∥b,AC分别交直线a、b于点B、C,AC⊥DC,若∠α=25°,那么∠β=°.17.(2分)若关于x的方程7x+6﹣2a=5x的解是负数,则a的取值范围是.18.(2分)若不等式组的解集为x>3,则a的取值范围是.19.(2分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间1~2分钟表示大于或等于1分钟而小于2分钟,其余类似),这个时间段内顾客等待时间低于3分钟的有人.20.(2分)在平面直角坐标系中,点A的坐标为(3,3),点B在坐标轴上,S =6,则B点的坐标为.△AOB三、解答题(共50分)21.(4分)计算:.22.(8分)解不等式(组).(1)求不等式的正整数解.(2).23.(4分)按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.24.(6分)完成下面的证明.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC.证明:∵∠1=∠2(已知),∠1=∠3,∠2=∠4 ()∴∠3=∠4(等量代换).∴∥()∴∠C=∠ABD ()∵∠C=∠D ()∴∠D=∠ABD ()∴AC∥DF ()25.(6分)某商场去年前五个月销售额共计600万元.下表表示该商场去年前五个月的月销售额(统计信息不全).图①表示该商场服装部各月销售额占商场当月销售额的百分比情况统计图.商场月销售额统计表单位:万元(1)商场5月份的销售额是万元.(2)服装部5月份的销售额是万元.小明同学观察图①后认为,服装部5月份的销售额比服装部4月份的销售额减少了,你同意他的看法吗?请说明理由.答:.(3)在该商场服装部,下设A、B、C、D、E五个卖区,图②表示在5月份,服装部各卖区销售额占5月份服装部销售额的百分比情况统计图.则卖区的销售额最高,销售额最高的卖区占5月份商场销售额的百分比是.26.(5分)已知:△ABC的三个顶点坐标A(﹣2,0),B(5,0),C(4,3),在平面直角坐标系中画出△ABC,并求△ABC的面积.27.(5分)列不等式解应用题:在一次奥运知识竞赛中,共有25道选择题,每道题的四个选项中,有且只有一个答案正确,选对得4分,不选或错选扣2分,如果得分不低于60分才能得奖,那么要得奖至少应答对多少道题?28.(6分)已知:如图,EF⊥BC,AB∥DG,∠1=∠2.求证:AD⊥BC.29.(6分)在平面直角坐标系中,△ABC的三个顶点位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A移动到点A′,且点B′,C′分别是B,C的对应点.(1)请画出平移后的△A′B′C′(不写画法).并直接写出点B′,C′的坐标:B′,C′.(2)若三角形内部有一点P(a,b),则P的对应点P′的坐标是P′.(3)如果坐标平面内有一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请直接写出点D的坐标.四、附加题(本大题共20分,第30小题6分,第31、32小题各7分)30.(6分)如图,在平面直角坐标系中,一动点A从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),则点A9的坐标为,点A2018的坐标为,点A4n(n是自然数)的坐标为.+331.(7分)作图题:(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线l是一条河,A、B是两个村庄,欲在l上的某处修建一个水泵站M,向A、B两地供水,要使所需管道MA+MB的长度最短,在图中标出M 点.(3)如图3,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.画出示意图,并用平移的原理说明理由.32.(7分)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品用80件.已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?2016-2017学年北京市北师大实验中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)的平方根是()A.3B.±3C.D.±【解答】解:∵=3,∴的平方根是±.故选:D.2.(3分)用不等式表示:x的2倍与4的差是负数()A.2x﹣4>0B.2x﹣4<0C.2(x﹣4)<0D.4﹣2x<0【解答】解:x的2倍是2x与4的差是2x﹣4,因为是负数,所以是2x﹣4<0,故选:B.3.(3分)已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4C.﹣4a<﹣4b D.a﹣4<b﹣4【解答】解:A、不等式的两边都乘以一个正数,不等号的方向不变,故A正确;B、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:C.4.(3分)下列四个数中,无理数是()A.B.C.D.【解答】解:A、是有限循环小数,故A错误;B、是有理数,故B错误;C、﹣是无理数,故C正确;D、,是有理数,故D错误;故选:C.5.(3分)要调查下面几个问题,你认为不应做抽样调查的是()A.调查某电视剧的收视率B.调查“神舟七号”飞船重要零部件的产品质量C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵【解答】解:A、调查某电视剧的收视率适合抽样调查;B、调查“神舟七号”飞船重要零部件的产品质量适合全面调查;C、调查一批炮弹的杀伤力适合抽样调查;D、调查一片森林的树木有多少棵适合抽样调查;故选:B.6.(3分)下列说法正确的是()A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c【解答】解:A、只有在两直线平行这一前提下,同位角才相等,故A选项错误;B、在同一平面内,如果a⊥b,b⊥c,则a∥c,故B选项错误;C、相等的角不一定是对顶角,因为对顶角还有位置限制,故C选项错误;D、由平行公理的推论知,故D选项正确.故选:D.7.(3分)如图所示,下列推理不正确的是()A.若∠1=∠C,则AE∥CDB.若∠2=∠BAE,则AB∥DEC.若∠B+∠BAD=180°,则AD∥BCD.若∠C+∠ADC=180°,则AE∥CD【解答】解:A、∵∠1=∠C,∴AE∥CD(同位角相等,两直线平行),故正确;B、∵∠2=∠BAE,∴AB∥DE(内错角相等,两直线平行),故正确;C、∵∠B+∠BAD=180°,∴AD∥BC(同旁内角互补,两直线平行),故正确;D、∵∠C+∠ADC=180°,∴AD∥BC(同旁内角互补,两直线平行),故错误.故选:D.8.(3分)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)【解答】解:根据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),可得:原点是中和殿,所以可得景仁宫(2,4),养心殿(﹣2,3),保和殿(0,1),武英殿(﹣3.5,﹣3),故选:B.9.(3分)如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG,②为折线段AIG,③为折线段AJHG.三条路的长依次为a、b、c,则()A.a>b>c B.a=b>c C.a>c>b D.a=b<c【解答】解:观察图形,可知:①②相等,③最短,a、b、c的大小关系是:a=b>c.故选:B.10.(3分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.25B.2.5C.2.95D.3【解答】解:总人数为12÷30%=40人,∴3分的有40×42.5%=17人2分的有8人∴平均分为:=2.95故选:C.二、填空题:(每小题2分,共20分)11.(2分)﹣27的立方根是﹣3.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.12.(2分)﹣1的相反数是1﹣.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.13.(2分)若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.14.(2分)若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为﹣2.【解答】解:由题意得,a﹣2=0,﹣b2=0,解得a=2,b=0,所以,b﹣a=0﹣2=﹣2.故答案为:﹣2.15.(2分)已知点P(3a﹣8,a﹣1),若点P在y轴上,则点P的坐标为(0,).【解答】解:∵点P(3a﹣8,a﹣1)在y轴上,∴3a﹣8=0,解得a=,∴a﹣1=﹣1=,点P的坐标为(0,).故答案为:(0,).16.(2分)如图,直线a∥b,AC分别交直线a、b于点B、C,AC⊥DC,若∠α=25°,那么∠β=65°.【解答】解:如图,∵AC⊥DC,∴∠1+∠α=90°,∵∠α=25°,∴∠1=90°﹣∠α=90°﹣25°=65°,∵a∥b,∴∠β=∠1=65°.故答案为:65°.17.(2分)若关于x的方程7x+6﹣2a=5x的解是负数,则a的取值范围是a<3.【解答】解:∵7x+6﹣2a=5x,∴x=a﹣3,∵解是负数,∴a﹣3<0,∴a<3.故答案为a<3.18.(2分)若不等式组的解集为x>3,则a的取值范围是a≤3.【解答】解:不等式组的解集为x>3,则a≤3.故答案为:a≤3.19.(2分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间1~2分钟表示大于或等于1分钟而小于2分钟,其余类似),这个时间段内顾客等待时间低于3分钟的有60人.【解答】解:这个时间段内顾客等待时间低于3分钟的有10+35+15=60(人).故答案为60.20.(2分)在平面直角坐标系中,点A的坐标为(3,3),点B在坐标轴上,S =6,则B点的坐标为(4,0)或(﹣4,0).△AOB【解答】解:B点在x轴上,∵S=6,△AOB=|y A|•OB,∴S△AOB∵|y A|=3,∴,∴OB=4,∴B(4,0)或(﹣4,0).B点在y轴上,∵S△AOB=6,=|x A|•OB,∴S△AOB∵|x A|=3,∴,∴OB=4,∴B(0,4)或(0,﹣4).故答案为:(4,0)或(﹣4,0)或(0,4)或(0,﹣4).三、解答题(共50分)21.(4分)计算:.【解答】解:原式=4+2+0﹣=.22.(8分)解不等式(组).(1)求不等式的正整数解.(2).【解答】解:(1),5(x﹣1)﹣6<2(x+2),5x﹣5﹣6<2x+4,5x﹣2x<4+11,3x<15,x<5.所以正整数解为:1,2,3,4;(2)∵解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1≤x≤4.23.(4分)按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.【解答】解:(1)如图所示:BE即为所求;(2)如图所示:BF即为所求;(3)如图所示:AG即为所求.24.(6分)完成下面的证明.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC.证明:∵∠1=∠2(已知),∠1=∠3,∠2=∠4 (对顶角相等)∴∠3=∠4(等量代换).∴DB∥CE(内错角相等,两直线平行)∴∠C=∠ABD (两直线平行,同位角相等)∵∠C=∠D (已知)∴∠D=∠ABD (等量代换)∴AC∥DF (内错角相等,两直线平行)【解答】解:∵∠1=∠2(已知),∠1=∠3,∠2=∠4 (对顶角相等)∴∠3=∠4(等量代换).∴DB∥CE(内错角相等,两直线平行)∴∠C=∠ABD (两直线平行,同位角相等)∵∠C=∠D (已知)∴∠D=∠ABD (等量代换)∴AC∥DF (内错角相等,两直线平行)故答案是:对顶角相等;DB;CE;内错角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.25.(6分)某商场去年前五个月销售额共计600万元.下表表示该商场去年前五个月的月销售额(统计信息不全).图①表示该商场服装部各月销售额占商场当月销售额的百分比情况统计图.商场月销售额统计表单位:万元(1)商场5月份的销售额是 120 万元.(2)服装部5月份的销售额是 36 万元.小明同学观察图①后认为,服装部5月份的销售额比服装部4月份的销售额减少了,你同意他的看法吗?请说明理由.答: 不同意,4月和5月销售额分别是95万元和120万元,服装销售额各点当月的32%和30%,则4月为95×32%=30.4(万元),5月为36万元 .(3)在该商场服装部,下设A 、B 、C 、D 、E 五个卖区,图②表示在5月份,服装部各卖区销售额占5月份服装部销售额的百分比情况统计图.则 B 卖区的销售额最高,销售额最高的卖区占5月份商场销售额的百分比是 28% .【解答】解:(1)商场5月份的销售额是600﹣(180+90+115+95)=120(万元), 故答案为:120.(2)120×30%=36(万元).4月和5月销售额分别是95万元和120万元,服装销售额各点当月的32%和30%,则4月为95×32%=30.4(万元),5月为36万元,故小明说法错误,故答案为:36;不同意,4月和5月销售额分别是95万元和120万元,服装销售额各点当月的32%和30%,则4月为95×32%=30.4(万元),5月为36万元.(3)B卖区最高,最高卖区的销售额占商场5月份销售额的百分比是28%,故答案为:B、28%.26.(5分)已知:△ABC的三个顶点坐标A(﹣2,0),B(5,0),C(4,3),在平面直角坐标系中画出△ABC,并求△ABC的面积.【解答】解:如图,△ABC为所作.△ABC的面积=×7×3=.27.(5分)列不等式解应用题:在一次奥运知识竞赛中,共有25道选择题,每道题的四个选项中,有且只有一个答案正确,选对得4分,不选或错选扣2分,如果得分不低于60分才能得奖,那么要得奖至少应答对多少道题?【解答】解:设做对x道,则做错或不做有(25﹣x)道,依题意有4x﹣2(25﹣x)≥60,4x﹣50+2x≥60,6x≥110,x≥18.∵x为整数,∴至少应答对19道题.答:至少应答对19道题.28.(6分)已知:如图,EF⊥BC,AB∥DG,∠1=∠2.求证:AD⊥BC.【解答】证明:∵AB∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥AD,∵EF⊥BC,∴AD⊥BC.29.(6分)在平面直角坐标系中,△ABC的三个顶点位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A移动到点A′,且点B′,C′分别是B,C的对应点.(1)请画出平移后的△A′B′C′(不写画法).并直接写出点B′,C′的坐标:B′(﹣4,1),C′(﹣1,﹣1).(2)若三角形内部有一点P(a,b),则P的对应点P′的坐标是P′(a﹣5,b ﹣2).(3)如果坐标平面内有一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请直接写出点D的坐标.【解答】解:(1)如图所示:△A′B′C′即为所求,已知A点坐标(3,4),A′是(﹣2,2),所以判断A到A′是向左移5个单位,向下移2个单位.所以∵B(1,3),C(4,1),∴B′(﹣4,1),C′(﹣1,﹣1).故答案为:(﹣4,1),(﹣1,﹣1);(2)由(1)问知P′(a﹣5,b﹣2).故答案为:(a﹣5,b﹣2);(3)①∵四边形ACBD,知C向A,向上移3位,向左移1位,∴B向D,上移3位,左移1位得D1(0,6).②∵四边形BCD2A知B向C,向下移2位,向右移3位,∴A 向D 2下移2位,右移3位得D 2(6,2).③∵四边形BD 3CA ,知A 向C 下移3位,右移1位,∴B 向D 3下移3位,右移1位得D 3(2,0).四、附加题(本大题共20分,第30小题6分,第31、32小题各7分)30.(6分)如图,在平面直角坐标系中,一动点A 从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),则点A 9的坐标为 A 9(4,1) ,点A 2018的坐标为 A 2018(1009,1), ,点A 4n +3(n 是自然数)的坐标为 A 4n +3(2n +1,0) .【解答】解:由题意,点A 按照每四次一个循环来运动,则A 9为(4,1); ∵2018=504×4+2∴点A 2018向右运动504×2+1=1009单位,点A 2018的坐标为A 2018(1009,1); 按此规律点A 4n +3(n 是自然数)向右运动2n +1个单位,且在x 轴上故答案为:A 9(4,1);A 2018(1009,0),A 4n +3(2n +1,0)31.(7分)作图题:(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线l 是一条河,A 、B 是两个村庄,欲在l 上的某处修建一个水泵站M ,向A 、B 两地供水,要使所需管道MA +MB 的长度最短,在图中标出M 点.(3)如图3,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.画出示意图,并用平移的原理说明理由.【解答】解:(1)如图1.(2)如图2.(3)如图3,先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.理由:由作图过程可知,四边形ADCA′为平行四边形,AD平移至A′C即可得到线段A′B,两点之间,线段最短,由于河宽不变,CD即为桥.32.(7分)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品用80件.已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?【解答】解:(1)设A种产品生产x件,B种产品生产80﹣x件,由题意可列不等式组:,解得38≤x≤40,所以工厂可以有3种方案.①生产A型号产品38件,生产B型产品42件;②生产A型号产品39件,生产B型产品41件;③生产A型号产品40件,生产B型产品40件.(2)因为A产品获利较高,所以当x=40时获利最大为35×40+25×(80﹣40)=2400(元).。
2016-2017学年西藏拉萨市城关区北京实验中学七年级(下)期末数学试卷
一.选择题(10*3=30) 1.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B. C. D. 2.(3分)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是( ) A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27 3.(3分)如图,已知AC⊥AB,∠1=30°,则∠2的度数是( )
A.40° B.50° C.60° D.70° 4.(3分)不等式2x>﹣3的解是( ) A.x< B.x>﹣ C.x<﹣ D.x>﹣ 5.(3分)下列方程是二元一次方程的是( ) A.2x+y=z﹣3 B.xy=5 C.+5=3y D.x=y
6.(3分)二元一次方程组的解为( ) A. B. C. D. 7.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(3分)下列叙述正确的是( ) A.0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在 C.±6是36的算术平方根 D.﹣27的立方根是﹣3 9.(3分)在直角坐标中,点P(2,﹣3)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.(3分)小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有( )人.
A.1080 B.900 C.600 D.108 二、填空题(5*4=20) 11.(4分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由 .
12.(4分)如图,若AB∥CD,∠1=65°,则∠2的度数为 °.
13.(4分)的平方根是 . 14.(4分)已知方程2x+y=4,用含x的代数式表示y为: . 15.(4分)在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统 计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是 .
三、解答题 16.(6分)如图,已知A、B、C、D是平面内四个点,请根据下列要求在所给图中作图. ①画直线AB; ②画线段BC; ③画射线AC.
四、计算题 17.(10分)解方程组:. 18.(10分)解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.
19.(10分)解不等式组:. 20.(14分)为了调查居民的生活水平,有关部门对某居委会的50户居民的家庭存款额进行了调查,数据(单位:万元)如下: 1.7 3.5 2.3 6.4 2.0 1.9 6.7 4.8 5.0 4.7 2.3 3.4 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8 3.0 5.1 7.0 3.1 2.9 4.9 5.8 3.6 3.0 4.2 4.0 3.9 5.1 6.3 1.8 3.2 5.1 5.7 3.9 3.1 2.5 2.8 4.5 4.9 5.3 2.6 7.2 1.9 5.0 3.8 (1)这50个家庭存款额的最大值、最小值分别是多少?它们相差多少? (2)填表: 存款额x(万元) 划记 户数 1.0≤x<2.0 2.0≤x<3.0 3.0≤x<4.0 4.0≤x<5.0 5.0≤x<6.0 6.0≤x<7.0 7.0≤x<8.0 (3)根据上表谈谈这50户家庭存款额的分布情况. 2016-2017学年西藏拉萨市城关区北京实验中学七年级(下)期末数学试卷 参考答案与试题解析
一.选择题(10*3=30) 1.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B. C. D. 【解答】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是. 故选:C.
2.(3分)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是( ) A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27 【解答】解:∵贵阳市今年5月份的最高气温为27℃,最低气温为18℃,某一天的气温为t℃, ∴18≤t≤27. 故选D.
3.(3分)如图,已知AC⊥AB,∠1=30°,则∠2的度数是( )
A.40° B.50° C.60° D.70° 【解答】解:∵AC⊥AB, ∴∠BAC=90°, ∴∠1+∠2=90°, ∵∠1=30°, ∴∠2=60°, 故选:C.
4.(3分)不等式2x>﹣3的解是( ) A.x< B.x>﹣ C.x<﹣ D.x>﹣ 【解答】解:不等式2x>﹣3, 解得:x>﹣, 故选B
5.(3分)下列方程是二元一次方程的是( ) A.2x+y=z﹣3 B.xy=5 C.+5=3y D.x=y 【解答】解:A.2x+y=z﹣3有3个未知数,故此选项错误; B.xy=5是二元二次方程,故此选项错误; C.+5=3y是分式方程,不是整式方程.故此项错误; D.x=y是二元一次方程,故此选项正确. 故选:D.
6.(3分)二元一次方程组的解为( ) A. B. C. D. 【解答】解: ①+②得:3x=6, 解得:x=2, 把x=2代入②得:2﹣y=3, 解得:y=﹣1, 即方程组的解是, 故选B.
7.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2), ∴点P(3,﹣2)关于y轴的对称点在第三象限. 故选C.
8.(3分)下列叙述正确的是( ) A.0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在 C.±6是36的算术平方根 D.﹣27的立方根是﹣3 【解答】解:A、应为0.04的平方根是±0.2,故本选项错误; B、﹣(﹣2)3=8,立方根是2,存在,故本选项错误; C、应为6是36的算术平方根,故本选项错误; D、﹣27的立方根是﹣3,正确. 故选D.
9.(3分)在直角坐标中,点P(2,﹣3)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:∵在直角坐标中,点P(2,﹣3), ∴点P在第四象限, 故选D.
10.(3分)小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有( )人. A.1080 B.900 C.600 D.108 【解答】解:根据题意得: 抽取的总人数是:45÷30%=150(人), 体育所占的百分比是:×100%=20%, 则娱乐所占的百分比是:1﹣6%﹣8%﹣20%﹣30%=36%, 全校喜欢娱乐类节目的学生大约有3000×36%=1080(人). 故选A.
二、填空题(5*4=20) 11.(4分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由 垂线段最短 .
【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短, ∵PB⊥AD, ∴PB最短. 故答案为:垂线段最短.
12.(4分)如图,若AB∥CD,∠1=65°,则∠2的度数为 65 °. 【解答】解:如图所示: ∵AB∥CD,∠1=65°, ∴∠3=∠1=65°, ∴∠2=∠3=65°, 故答案为:65.
13.(4分)的平方根是 ±2 . 【解答】解:的平方根是±2. 故答案为:±2
14.(4分)已知方程2x+y=4,用含x的代数式表示y为: y=4﹣2x . 【解答】解:方程2x+y=4, 解得:y=4﹣2x, 故答案为:y=4﹣2x
15.(4分)在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是 600 . 【解答】解:该校1500名学生一周的课外阅读时间不少于7小时的人数是1500×=600人, 故答案为:600.
三、解答题 16.(6分)如图,已知A、B、C、D是平面内四个点,请根据下列要求在所给图中作图. ①画直线AB; ②画线段BC; ③画射线AC.
【解答】解:如图所示: . 四、计算题 17.(10分)解方程组:.