2015届高考数学总复习 第二章 第三节函数的奇偶性与周期性课时精练 理
- 格式:doc
- 大小:214.50 KB
- 文档页数:4
第二章函数与导数第4课时函数的奇偶性及周期性(对应学生用书(文)、(理)13~14页)考点分析考点新知①函数奇偶性的考查一直是近几年江苏命题的热点,命题时主要是考查函数的概念、图象、性质等.②能综合运用函数的奇偶性、单调性及周期性分析和解决有关问题.①了解奇函数、偶函数的定义,并能运用奇偶性定义判断一些简单函数的奇偶性.②掌握奇函数与偶函数的图象对称关系,并能熟练地利用对称性解决函数的综合问题.③了解周期函数的意义,并能利用函数的周期性解决一些问题.1. (必修1P45习题8改编)函数f(x)=mx2+(2m-1)x+1是偶函数,则实数m=________.答案:12解析:由f(-x)=f(x),知m=12.2. (必修1P43练习5改编)函数f(x)=x3-x的图象关于________对称.答案:原点解析:由f(-x)=(-x)3-(-x)=-x3+x=-f(x),知f(x)是奇函数,则其图象关于原点对称.3. (原创)设函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2 015)=________.答案:1解析:由条件,f(2 015)=f(671×3+2)=f(2)=f(-1)=-f(1)=1.4. (必修1P43练习4)对于定义在R上的函数f(x),给出下列说法:① 若f(x)是偶函数,则f(-2)=f(2); ② 若f(-2)=f(2),则函数f(x)是偶函数; ③ 若f(-2)≠f(2),则函数f(x)不是偶函数; ④ 若f(-2)=f(2),则函数f(x)不是奇函数. 其中,正确的说法是________.(填序号) 答案:①③解析:根据偶函数的定义,①正确,而③与①互为逆否命题,故③也正确,若举例奇函数f(x)=⎩⎪⎨⎪⎧x -2,x>0,x +2,x<0,由于f(-2)=f(2),所以②④都错误.5. (必修1P 54练习测试10)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=x 3+x +1,则当x<0时,f(x)=________.答案:x 3+x -1解析:若x<0,则-x>0,f(-x)=-x 3-x +1,由于f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=x 3+x -1.1. 奇函数、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.2. 判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是:(1) 考查定义域是否关于原点对称.(2) 根据定义域考查表达式f(-x)是否等于f(x)或-f(x). 若f(-x)=-f(x),则f(x)为奇函数. 若f(-x)=f(x),则f(x)为偶函数.若f(-x)=f(x)且f(-x)=-f(x),则f(x)既是奇函数又是偶函数.若存在x 使f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数.3. 函数的图象与性质奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 4. 函数奇偶性和单调性的相关关系(1) 注意函数y =f(x)与y =kf(x)的单调性与k(k ≠0)有关.(2) 注意函数y =f(x)与y =1f (x )的单调性之间的关系. (3) 奇函数在[a ,b]和[-b ,-a]上有相同的单调性. (4) 偶函数在[a ,b]和[-b ,-a]上有相反的单调性. 5. 函数的周期性设函数y =f(x),x ∈D ,如果存在非零常数T ,使得对任意x ∈D ,都有f(x +T)=f(x),则称函数f(x)为周期函数,T 为函数f(x)的一个周期.(D 为定义域)题型1 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1) f(x)=x 3-1x ;(2) f(x)=1-x 2|x +2|-2;(3) f(x)=(x -1)1+x1-x; (4) f(x)=3-x 2+x 2-3.解:(1) 定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2) 去掉绝对值符号,根据定义判断.由⎩⎪⎨⎪⎧1-x 2≥0,|x +2|-2≠0,得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠0且x ≠-4. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0. 从而有f(x)=1-x 2x +2-2=1-x 2x, 这时有f(-x)=1-(-x )2-x=-1-x 2x=-f(x), 故f(x)为奇函数.(3) 因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4) 因为f(x)定义域为{-3,3},所以f(x)=0,则f(x)既是奇函数也是偶函数. 备选变式(教师专享) 判断下列函数的奇偶性: (1) f(x)=x 4+x ;(2) f(x)=⎩⎪⎨⎪⎧x 2+x (x<0),-x 2+x (x>0);(3) f(x)=lg(x +x 2+1).解:(1) 定义域为R ,f(-1)=0,f(1)=2,由于f(-1)≠f(1),f(-1)≠-f(1),所以f(x)既不是奇函数也不是偶函数;(2) 因为函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x <0时,-x >0,所以f(-x)=-(-x)2+(-x)=-(x 2+x)=-f(x)(x <0).当x >0时,-x <0,所以f(-x)=(-x)2+(-x)=-(-x 2+x)=-f(x)(x >0).故函数f(x)为奇函数.(3) 由x +x 2+1>0,得x ∈R ,由f(-x)+f(x)=lg(-x +x 2+1)+lg(x +x 2+1)=lg1=0,所以f(-x)=-f(x),所以f(x)为奇函数.题型2 函数奇偶性的应用例2 (1) 设a ∈R ,f(x)=a·2x +a -22x +1(x ∈R ),试确定a 的值,使f(x)为奇函数;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a -2)-f(4-a 2)<0,求实数a 的取值范围.解:(1) 要使f(x)为奇函数, ∵ x ∈R ,∴ 需f(x)+f(-x)=0. ∵ f(x)=a -22x +1,∴ f(-x)=a -22-x +1=a -2x +12x +1.由⎝ ⎛⎭⎪⎫a -22x +1+⎝ ⎛⎭⎪⎫a -2x +12x +1=0,得2a -2(2x +1)2x +1=0, ∴ a =1.(2) 由f(x)的定义域是()-1,1,知⎩⎪⎨⎪⎧-1<a -2<1,-1<4-a 2<1,解得3<a< 5.由f(a -2)-f(4-a 2)<0,得f(a -2)<f(4-a 2). 因为函数f(x)是偶函数,所以f(|a -2|)<f(|4-a 2|).由于f(x)在(0,1)上是增函数,所以|a -2|<|4-a 2|,解得a<-3或a>-1且a ≠2. 综上,实数a 的取值范围是3<a<5且a ≠2. 变式训练(1) 已知函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x>0是奇函数,求a +b 的值;(2) 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,若f(1-m)+f(1-m 2)<0,求实数m 的取值范围.解:(1) 当x>0时,-x<0,由题意得f(-x)=-f(x),所以x 2-x =-ax 2-bx. 从而a =-1,b =1,所以a +b =0. (2) 由f(x)的定义域是[-2,2],知⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.因为函数f(x)是奇函数,所以f(1-m)<-f(1-m 2),即f(1-m)<f(m 2-1). 由奇函数f(x)在区间[-2,0]内递减, 所以在[-2,2]上是递减函数, 所以1-m>m 2-1,解得-2<m<1. 综上,实数m 的取值范围是-1≤m<1. 题型3 函数奇偶性与周期性的综合应用例3 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x),当x ∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x ∈[2,4]时,求f(x)的解析式;(3) 计算f(0)+f(1)+f(2)+…+f(2 014)的值.(1) 证明:因为f(x +2)=-f(x),所以f(x +4)=-f(x +2)=f(x), 所以f(x)是周期为4的周期函数. (2) 解:因为x ∈[2,4],所以-x ∈[-4,-2],4-x ∈[0,2], 所以f(4-x)=2(4-x)-(4-x)2=-x 2+6x -8.又f(4-x)=f(-x)=-f(x),所以-f(x)=-x 2+6x -8,即f(x)=x 2-6x +8,x ∈[2,4]. (3) 解:因为f(0)=0,f(1)=1,f(2)=0,f(3)=-1, 又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=0, 所以f(0)+f(1)+f(2)+…+f(2 014)=f(0)+f(1)+f(2)=1.备选变式(教师专享)已知定义在R 上的函数f(x)对任意实数x 、y 恒有f(x)+f(y)=f(x +y),且当x >0时,f(x)<0,又f(1)=-23.(1) 求证:f(x)为奇函数;(2) 求证:f(x)在R 上是减函数;(3) 求f(x)在[-3,6]上的最大值与最小值.(1) 证明:令x =y =0,可得f(0)+f(0)=f(0+0),从而f(0)=0.令y =-x ,可得f(x)+f(-x)=f(x -x)=0,即f(-x)=-f(x),故f(x)为奇函数.(2) 证明:设x 1、x 2∈R ,且x 1>x 2,则x 1-x 2>0,于是f(x 1-x 2)<0.从而f(x 1)-f(x 2)=f[(x 1- x 2)+x 2]- f(x 2) = f (x 1- x 2) +f(x 2)- f(x 2) = f (x 1- x 2)<0.所以f(x)为减函数.(3) 解:由(2)知,所求函数的最大值为f(-3),最小值为f(6).f(-3)=-f(3)=-[f(2)+f(1)]=-2f(1)-f(1)=-3f(1)=2,f(6)=-f(-6)=-[f(-3)+f(-3)]=-4.于是f(x)在[-3,6]上的最大值为2,最小值为-4.1. (2013·苏州期初)已知f(x)是定义在R 上的奇函数,且f(x +4)=f(x).当x ∈(0,2)时,f(x)=-x +4,则f(7)=________.答案:-3解析:f(7)=f(3+4)=f(3)=f(3-4)=f(-1)=-f(1)=-3.2. (2013·江苏)已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.答案:(-5,0)∪(5,+∞)解析:作出f(x)=x 2-4x(x>0)的图象,如图所示.由于f(x)是定义在R 上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x 表示函数y =f(x)的图象在y =x 的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞).3. (2013·天津)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)内单调递增.若实数a 满足f(log 2a)+f(log 12a)≤2f(1),则a 的取值范围是________.答案:⎣⎡⎦⎤12,2解析:因为f(log 12a)=f(-log 2a)=f(log 2a),所以原不等式可化为f(log 2a)≤f(1).又f(x)在区间[0,+∞)上单调递增, 所以|log 2a|≤1,解得12≤a ≤2.4. (2013·盐城二模)设函数y =f(x)满足对任意的x ∈R ,f(x)≥0且f 2(x +1)+f 2(x)=9.已知当x ∈[0,1)时,有f(x)=2-|4x -2|,则f ⎝⎛⎭⎫2 0136=________.答案:5解析:由题知f ⎝⎛⎭⎫12=2,因为f(x)≥0且f 2(x +1)+f 2(x)=9,故f ⎝⎛⎭⎫32=5,f ⎝⎛⎭⎫52=2,f ⎝⎛⎭⎫72=5,如此循环得f ⎝⎛⎭⎫6712=f ⎝ ⎛⎭⎪⎫4×168-12=5,即f ⎝⎛⎭⎫2 0136= 5.1. 定义在R 上的函数f(x)满足f(x)=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x>0,则f(2 014)=________.答案:1解析:由已知得f(-1)=log 22=1,f(0)=0,f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0,所以函数f(x)的值以6为周期重复性出现,所以f(2 014)=f(4)=1. 2. 已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x 3-x ,则函数y =f(x)的图象在区间[0,6]上与x 轴的交点个数为________.答案:7解析:由条件,当0≤x <2时,f(x)=x(x +1)(x -1),即当0≤x <2时,f(x)=0有两个根0,1,又由周期性,当2≤x<4时,f(x)=0有两个根2,3,当4≤x<6时,f(x)=0有两个根4,5,而6也是f(x)=0的根,故y =f(x)的图象在区间[0,6]上与x 轴的交点个数为7. 3. 设函数f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=x 2,若对任意的x ∈[t ,t +2],不等式f(x +t)≥2f(x)恒成立,则实数t 的取值范围是________.答案:[2,+∞)解析:∵ 当x ≥0时,f(x)=x 2且f(x)是定义在R 上的奇函数,又f(x +t)≥2f(x)=f(2x),易知f(x)在R 上是增函数,∴ x +t ≥2x ,∴ t ≥(2-1)x.∵ x ∈[t ,t +2],∴ t ≥(2-1)(t +2),∴ t ≥ 2.4. 已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x ∈⎣⎡⎦⎤12,1时,不等式f(1+xlog 2a)≤f(x -2)恒成立,求实数a 的取值范围.解:∵ f(x)是偶函数,当x ∈⎣⎡⎦⎤12,1时,不等式f(1+xlog 2a)≤f(x -2)等价于f(|1+xlog 2a|)≤f(2-x).又f(x)在[0,+∞)上是增函数,∴ |1+xlog 2a|≤2-x , ∴ x -2≤1+xlog 2a ≤2-x ,∴ 1-3x ≤log 2a ≤1x -1,上述不等式在x ∈⎣⎡⎦⎤12,1上恒成立, ∴ ⎝⎛⎭⎫1-3x max≤log 2a ≤⎝⎛⎭⎫1x -1min,∴ -2≤log 2a ≤0,解得14≤a ≤1.1. 函数奇偶性的判断,本质是判断f(x)与f(-x)是否具有等量关系,前提是定义域关于原点对称,运算中,也可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0或f(x)-f(-x)=0)是否成立.2. 若f(x)是偶函数,则f(-x)=f(x)=f(|x|).3. 奇偶函数的不等式求解时,要注意到:奇函数在对称的区间上有相同的单调性,偶函数在对称的区间上有相反的单调性.请使用课时训练(A )第4课时(见活页).[备课札记]。
2009~2013年高考真题备选题库第二章 函 数第三节 函数的奇偶性及周期性考 点 函数的奇偶性及周期性1.(2013山东,5分)已知函数f (x )为奇函数,且当x >0时, f (x ) =x 2+1x,则f (-1)=( ) A .2B .1C .0D .-2解析:本题主要考查函数奇偶性的应用,考查运算求解能力和转化思想.由f (x )为奇函数知f (-1)=-f (1)=-2.答案:D2.(2013广东,5分)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( )A .4B .3C .2D .1解析:本题考查函数的奇偶性,考查考生对函数性质——奇偶性的了解.由奇函数的概念可知,y =x 3,y =2sin x 是奇函数.答案:C3.(2013湖南,5分)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1解析:本题主要考查奇函数与偶函数的定义和解方程组,意在考查考生的化简能力.由已知可得,-f (1)+g (1)=2,f (1)+g (1)=4,两式相加解得,g (1)=3.答案:B4. (2013安徽,5分)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:本题主要考查函数解析式的求法,意在考查考生对函数解析式的理解,以及对抽象函数的化归与转化能力.当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ).又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-x (x +1)2. 答案:-x (x +1)25.(2012山东,5分)定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 012)=() A.335B.338C.1 678 D.2 012解析:由f(x+6)=f(x)可知,函数f(x)的周期为6,所以f(-3)=f(3)=-1,f(-2)=f(4)=0,f(-1)=f(5)=-1,f(0)=f(6)=0,f(1)=1,f(2)=2,所以在一个周期内有f(1)+f(2)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2 012)=f(1)+f(2)+335×1=1+2+335=338.答案:B6.(2011广东,5分)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.|f(x)|-g(x)是奇函数B.|f(x)|+g(x)是偶函数C.f(x)-|g(x)|是奇函数D.f(x)+|g(x)|是偶函数解析:设F(x)=f(x)+|g(x)|,由f(x)和g(x)分别是R上的偶函数和奇函数,得F(-x)=f(-x)+|g(-x)|=f(x)+|g(x)|=F(x),∴f(x)+|g(x)|是偶函数,又可判断其他选项不恒成立.答案:D7.(2011安徽,5分)设f(x)是定义在R上的奇函数,当x≤0时,f(x) =2x2-x,则f(1)=()A.-3 B.-1C.1 D.3解析:法一:∵f(x)是定义在R上的奇函数,且x≤0时,f(x)=2x2-x,∴f(1)=-f(-1)=-2×(-1)2+(-1)=-3.法二:设x>0,则-x<0,∵f(x)是定义在R上的奇函数,且x≤0时,f(x)=2x2-x,∴f(-x)=2(-x)2-(-x)=2x2+x,又f(-x)=-f(x),∴f(x)=-2x2-x,∴f(1)=-2×12-1=-3.答案:A8.(2010山东,5分)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.-3 B.-1C.1 D.3解析:因为f(x)为定义在R上的奇函数,所以有f(0)=20+2×0+b=0,解得b=-1,因为当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3.答案:A9.(2010安徽,5分)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=()A.-1 B.1C.-2 D.2解析:由于函数f(x)的周期为5,所以f(3)-f(4)=f(-2)-f(-1),又f(x)为R上的奇函数,∴f(-2)-f(-1)=-f(2)+f(1)=-2+1=-1.答案:A10.(2011浙江,4分)若函数f(x)=x2-|x+a|为偶函数,则实数a=________.解析:由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),∴1-|1+a|=1-|-1+a|,∴a=0.答案:0。
2015届高考数学一轮总复习 2-3函数的奇偶性与周期性基础巩固强化一、选择题1.(文)下列各函数中,( )是R 上的偶函数( ) A .y =x 2-2x B .y =2x C .y =cos2x D .y =1|x |-1[答案] C[解析] A 、B 不是偶函数,D 的定义域{x ∈R |x ≠±1}不是R ,故选C.(理)(2012·洛阳示范高中联考)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2-|x |[答案] B[解析] y =x 3是奇函数,y =-x 2+1与y =2-|x |在(0,+∞)上为减函数,故选B.2.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是( )A .(-∞,2)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(2,+∞)[答案] B[解析] ∵f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,∴f (x )在(0,+∞)上为增函数,由f (x )<f (2)得f (|x |)<f (2),∴|x |<2,∴-2<x <2.3.(文)若奇函数f (x )(x ∈R )满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32等于( ) A .0 B .1 C.12 D .-12[答案] C[解析] 在f (x +3)=f (x )+f (3)中取x =-32得,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32+f (3),∵f (x )是奇函数,且f (3)=1, ∴f ⎝⎛⎭⎫32=12.[点评] 解答此类题目,一般先看给出的值和待求值之间可以通过条件式怎样赋值才能产生联系,赋值时同时兼顾奇偶性或周期性的运用.(理)(2013·湖南)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1 [答案] B[解析] 本题考查的是函数的奇偶性及方程组的解法. ∵f (x )是奇函数,g (x )是偶函数,∴f (-1)=-f (1),g (-1)=g (1)由⎩⎪⎨⎪⎧ f (-1)+g (1)=2,f (1)+g (-1)=4,得⎩⎪⎨⎪⎧-f (1)+g (1)=2,f (1)+g (1)=4,所以g (1)=3.故选B. 4.(文)(2013·宁夏育才中学模拟)已知函数f (x )=sin(2x -π4),若存在α∈(0,π)使得f (x +α)=f (x+3α)恒成立,则α等于( )A.π6B.π3C.π4D.π2[答案] D[解析] 由f (x +α)=f (x +3α)得f (x )=f (x +2α), ∴f (x )周期为2α,又α∈(0,π),所以α=π2.(理)(2014·华师附中检测)已知函数f (x )是定义域为R 的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上是减函数,那么f (x )在[1,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] D[解析] 由f (x +1)=-f (x )得,f (x +2)=f (x ), ∴f (x )的周期为2.∵f (x )在[-1,0]上为减函数,f (x )为偶函数,∴f (x )在[0,1]上为增函数,∴f (x )在[1,2]上单调递减,在[2,3]上单调递增,故选D. 5.(2013·宁夏育才中学模拟)若奇函数f (x )在R 上是增函数,且a +b >0,则有( ) A .f (a )-f (b )>0 B .f (a )+f (b )<0 C .f (a )+f (b )>0 D .f (a )-f (b )<0[答案] C[解析] 由a +b >0得a >-b ,因为f (x )在R 上是奇函数且为增函数,所以f (a )>f (-b ),即f (a )>-f (b ),故选C.6.(2013·琼海市嘉积中学质检)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )在区间[0,6]上零点的个数有( )A .6个B .7个C .8个D .9个[答案] B[解析] 当0≤x <2时,f (x )=x 3-x ,则有f (0)=f (1)=0,又f (x )是R 上最小正周期为2的周期函数,所以函数y =f (x )在区间[0,6]上有f (0)=f (2)=f (4)=f (6)=0,f (1)=f (3)=f (5)=0,所以有7个.二、填空题7.已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0,g (x )>0.或⎩⎪⎨⎪⎧f (x )>0,g (x )<0.观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.8.若函数f (x )=a -e x1+a e x (a 为常数)在定义域上为奇函数,则实数a 的值为________.[答案] 1或-1[解析] f (-x )=a -e -x 1+a e -x =a e x -1e x +af (x )+f (-x )=(a -e x )(a +e x )+(1+a e x )(a e x -1)(1+a e x )(e x +a )=a 2-e 2x +a 2e 2x -1(1+a e x )(e x +a )=0恒成立, 所以a =1或-1.9.(2013·银川质检)已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 以上命题中所有正确命题的序号为________. [答案] ①②④[解析] 令x =-2,得f (2)=f (-2)+f (2),即f (-2)=0.又函数f (x )是偶函数,故f (2)=0,①正确;根据f (2)=0可得f (x +4)=f (x ),所以函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )的图象的一条对称轴,②正确;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两极为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.三、解答题10.(2012·扬州模拟)已知函数f (x )对任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.(1)求证:f (x )是奇函数;(2)求f (x )在[-3,3]上的最大值和最小值.[解析] (1)证明:令x =y =0,知f (0)=0;再令y =-x ,则f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)解:对任意x 1、x 2∈[-3,3],设x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1)<0,∴f (x )为减函数.而f (3)=f (2+1)=f (2)+f (1)=3f (1)=-6,f (-3)=-f (3)=6.∴f (x )max =f (-3)=6,f (x )min =f (3)=-6.能力拓展提升一、选择题11.(2012·山西四校联考)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2,满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .(-∞,138]C .(-∞,2]D .[138,2)[答案] B[解析] 函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B.12.(文)已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若g (1)=2,则f (2014)的值为( )A .2B .0C .-2D .±2[答案] C[解析] 由已知:g (-x )=f (-x -1), 又g (x )、f (x )分别为R 上的奇、偶函数,∴-g (x )=f (x +1),∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4),即f (x )的周期T =4,∴f (2014)=f (2)=g (-1)=-g (1)=-2,故选C.(理)已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2015)等于( )A .2B .-3C .-12 D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x )(x ∈N *).∴f (x )的周期为4, 故f (2015)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=1-f (x +2)=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),13.(文)(2012·江西盟校二联)函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)[答案] C[解析] f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0,得,x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得,x 无解; 当x ∈(1,3)时,由xf (x )>0得,x ∈(1,3). ∴x ∈(-1,0)∪(1,3),故选C.(理)(2013·芜湖一模)函数y =f (x )的定义域为[-2,0)∪(0,2],其图象上任一点P (x ,y )满足x 24+y2=1,若函数y =f (x )的值域是(-1,1),则f (x )一定是( )A .奇函数B .偶函数C .单调函数D .幂函数[答案] A[解析] 设P (x ,y )在函数图象上,则由条件知P ′(-x ,-y )也在函数图象上,所以f (-x )=-f (x ),函数一定是奇函数,但不能确定函数是不是单调函数,是不是幂函数,故选A.二、填空题14.(2012·福州质检)已知集合M 是满足下列条件的函数f (x )的全体:(1)f (x )既不是奇函数也不是偶函数;(2)函数f (x )有零点.那么在函数①f (x )=|x |-1,②f (x )=2x -1,③f (x )=⎩⎪⎨⎪⎧x -2,x >0,0,x =0,x +2,x <0,④f (x )=x 2-x -1+ln x 中,属于M 的有________.(写出所有符合条件的函数序号)[答案] ②④[解析] 对于①,∵f (-x )=|-x |-1=|x |-1,∴f (x )=|x |-1是偶函数,∴①不符合条件;易知f (x )=2x -1既不是奇函数也不是偶函数,且有一个零点x =0,∴②符合条件;对于③,令x >0,则-x <0,∴f (x )=x -2,f (-x )=-x +2=-(x -2),即f (x )=-f (-x ),又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x -2,x >0,0,x =0,x +2,x <0,是奇函数,∴③不符合条件;对于④,函数f (x )=x 2-x -1+ln x 的定义域为(0,+∞),故它既不是奇函数也不是偶函数,∵f ′(x )=2x -1+1x =2x 2-x +1x=2(x -14)2+78x>0,∴函数f (x )在(0,+∞)上单调递增,又f (1)=1-1-1+0=-1<0,f (e)=e 2-e -1+1=e(e -1)>0,∴函数f (x )在(1,e)上存在零点,∴④符合条件.故应填②④.15.(2013·吉林质检)已知函数f (x )满足下面关系: (1)f (x +π2)=f (x -π2);(2)当x ∈(0,π]时,f (x )=-cos x . 给出下列命题: ①函数f (x )是周期函数; ②函数f (x )是奇函数;③函数f (x )的图象关于y 轴对称; ④方程f (x )=lg|x |解的个数是8.其中正确命题的序号是________(把正确命题的序号都填上). [答案] ①④[解析] 由f (x +π2)=f (x -π2),可得f (x +π)=f (x ),即可得函数f (x )是以π为周期的周期函数,即命题①正确;又由f (0)=f (π)=-cosπ=1≠0可知,函数f (x )不是奇函数,即命题②不正确;由f (-π3)=f (2π3)=-cos 2π3=12≠f (π3)=-12,可得函数f (x )不是偶函数,其函数图象不关于y 轴对称,即命题③不正确;函数f (x )与函数y =lg|x |在同一坐标系下的图象如图所示,由图示可得,方程f (x )=lg|x |有8个解,即命题④正确.综上可得正确的命题的序号是①④.三、解答题16.(文)已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立.(1)函数f (x )=x 是否属于集合M ?说明理由;(2)设f (x )∈M ,且T =2,已知当1<x <2时,f (x )=x +ln x ,当-3<x <-2时,求f (x )的解析式. [解析] (1)假设函数f (x )=x 属于集合M ,则存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立,即x +T =Tx 成立.令x =0,得T =0,与题目矛盾.故f (x )∉M .(2)f (x )∈M ,且T =2,则对任意x ∈R ,有f (x +2)=2f (x ). 设-3<x <-2,则1<x +4<2. 又f (x )=12f (x +2)=14f (x +4),且当1<x <2时,f (x )=x +ln x ,故当-3<x <-2时,f (x )=14[x +4+ln(x +4)].(理)已知函数f (x )=log a 1-mxx -1(a >0且a ≠1)是奇函数.(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性并加以证明;(3)当a >1,x ∈(1,3)时,f (x )的值域是(1,+∞),求a 的值.[解析] (1)∵f (x )是奇函数,x =1不在f (x )的定义域内,∴x =-1也不在函数定义域内, 令1-m ·(-1)=0得m =-1. (也可以由f (-x )=-f (x )恒成立求m ) (2)由(1)得f (x )=log a x +1x -1(a >0且a ≠1),任取x 1、x 2∈(1,+∞),且x 1<x 2,令t (x )=x +1x -1,则t (x 1)=x 1+1x 1-1,t (x 2)=x 2+1x 2-1,∴t (x 1)-t (x 2)=x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1), ∵x 1>1,x 2>1,x 1<x 2, ∴x 1-1>0,x 2-1>0,x 2-x 1>0. ∴t (x 1)>t (x 2),即x 1+1x 1-1>x 2+1x 2-1,∴当a >1时,log a x 1+1x 1-1>log a x 2+1x 2-1,即f (x 1)>f (x 2);当0<a <1时,log a x 1+1x 1-1<log a x 2+1x 2-1,即f (x 1)<f (x 2),∴当a >1时,f (x )在(1,+∞)上是减函数,当0<a <1时,f (x )在(1,+∞)上是增函数. (3)∵a >1,∴f (x )在(1,3)上是减函数, ∴当x ∈(1,3)时,f (x )>f (3)=log a (2+3), 由条件知,log a (2+3)=1,∴a =2+ 3.考纲要求结合具体函数,了解函数奇偶性及周期性的含义. 补充说明1.牢记:奇(偶)函数的定义域关于原点对称;奇函数若在x =0处有定义,则f (0)=0;奇偶函数单调性,图象对称性.2.把握四个考向:奇偶性判断;由奇偶性求参数值;求周期;函数性质的综合应用. 3.突破三个难点综合利用奇偶性、周期性求函数值;抽象函数性质讨论;函数不等式求解. 备选习题1.(2013·济南模拟)设偶函数f (x )对任意x ∈R ,都有f (x +3)=-1f (x ),且当x ∈[-3,-2]时,f (x )=4x ,则f (107.5)=( )A .10 B.110 C .-10 D .-110[答案] B[解析] 由f (x +6)=f (x )知该函数为周期函数, 所以f (107.5)=(6×18-12)=f (-12)=-1f (52)=-1f (-52)=-1-10=110.2.(2013·东北三省四市联考)已知函数f (x )对任意x ∈R 都有f (x +6)+f (x )=2f (3),y =f (x -1)的图象关于点(1,0)对称,且f (4)=4,则f (2012)=( )A .0B .-4C .-8D .-16[答案] B[解析] 由y =f (x -1)的图象关于点(1,0)对称可知,y =f (x )的图象关于点(0,0)对称,即为奇函数.令x =-3可知,f (3)+f (-3)=2f (3),进而f (-3)=f (3),又f (-3)=-f (3),可知f (3)=0,所以f (6+x )+f (x )=0,可知f (x )是一个周期为12的周期函数,所以f (2012)=f (168×12-4)=f (-4)=-f (4)=-4,故选B.3.(2013·福州质检)已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的实数x 1,x 2,不等式(x 1-x 2)[f (x 1)-f (x 2)]<0恒成立,则不等式f (1-x )<0的解集为( )A .(1,+∞)B .(0,+∞)C .(-∞,0)D .(-∞,1)[答案] C[解析] ∵函数f (x +1)是定义在R 上的奇函数,∴f (-x +1)=-f (x +1),即得函数f (x )的对称中心为(1,0),又由对于任意给定的不等实数x 1,x 2,不等式(x 1-x 2)[f (x 1)-f (x 2)]<0恒成立,可得函数为R 上的减函数,由此可得不等式f (x )<0的解为x >1,则由f (1-x )<0可得1-x >1,解得x <0,即不等式f (1-x )<0的解集为(-∞,0),故应选C.4.(2012·河南商丘模拟)已知f (x )是定义在R 上的奇函数,它的最小正周期为T ,则f (-T2)的值为( )A .-T 2B .0 C.T 2 D .T[答案] B[解析] ∵f (-T 2)=-f (T 2),且f (-T 2)=f (-T 2+T )=f (T 2),∴f (T 2)=0,∴f (-T2)=0.5.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c [答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 12 3|=log 23>log 27,0<0.20.6<0.20=1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.。
第三节 函数的奇偶性与周期性错误!知识梳理一、函数的奇偶性1.函数奇偶性的定义及简单性质.2.若f (x )为偶函数,则f (-x )=f (x )=f (|x |),反之,也成立.3.若奇函数f (x )的定义域包含0,则f (0)=0.4.判断函数的奇偶性有时可以用定义的等价形式.在定义域关于原点对称的情况下, (1)若f (x )-f (-x )=0或f x f -x=1[f (-x )≠0],则f (x )为偶函数; (2)若f (x )+f (-x )=0或f x f -x=-1[f (-x )≠0],则f (x )为奇函数. 5.设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上: 奇+奇=奇,偶+偶=偶,偶×偶=偶,奇×奇=偶,奇×偶=奇.二、函数的周期性1.周期函数定义:若T 为非零常数,对于定义域内的任一x ,使得f (x +T )=f (x )恒成立,则f (x )叫做________,T 叫做这个函数的________.2.周期函数的性质:1. 结合具体函数,了解函数奇偶性的含义2. 了解函数的周期性3. 会运用函数图象理解和研究函数的奇偶性(1)若T 是函数f (x )的一个周期,则kT (k ∈Z ,k ≠0)也是它的一个周期;(2)f (x +T )= f (x )常写作f ⎝ ⎛⎭⎪⎫x +T 2=f ⎝ ⎛⎭⎪⎫x -T 2; (3)若f (x )的周期中,存在一个最小正数t 满足f (x +t )=f (x ),则称t 为f (x )的最小正周期;(4)若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)也是周期函数,且周期为T|ω|.基础自测1.(2013·北京西城区期末)下列函数中,既是偶函数又在 (0,+∞)上单调递增的函数是( )A .y =-1xB .y =e |x |C .y =-x 2+3D .y =cos x解析:y =-1x是奇函数,A 错误;y =e |x |是偶函数且在(0,+∞)上单调递增,B 正确;y =-x 2+3是偶函数且在(0,+∞)上单调递减,C 错误;y =cos x 是偶函数且在(0,+∞)上有时递增,有时递减,D 错误.故选B.答案:B2.函数f (x )=1x+x 的图象关于( ) A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称解析:可判断f (x )=1x+x 为奇函数,所以图象关于原点对称.故选C. 答案:C3.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)=( )A .1B .-1C .-114 D.114答案:B4.若偶函数f (x )是以4为周期的函数,f (x )在区间[-6,-4]上是减函数,则f (x )在[0,2]上的单调性是________.解析:∵T =4,且在[-6,-4]上单调递减,∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称, 由对称性知f (x )在[0,2]上单调递增.答案:单调递增1.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C . |f (x )|+g (x )是偶函数D .|f (x )|- g (x )是奇函数解析:因为 g (x )是R 上的奇函数,所以|g (x )|是R 上的偶函数,从而f (x )+|g (x )|是偶函数.故选A.答案:A2.(2013·山东卷)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( )A .-2B .0C .1D .2解析:因为f (x )为奇函数,所以f (-1)=-f (1)=-(1+1)=-2.故选A.答案:A3.(2013·江苏卷)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析:因为f (x )是定义在R 上的奇函数,所以易知x ≤0时,f (x )=-x 2-4x 解不等式得到f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).答案: (-5,0)∪(5,+∞)1.(2013·南京模拟)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f (log 124)=-3,则a 的值为( )A. 3 B .3 C .9 D.32解析:∵f (log 124)=f (log 214)=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.答案:A2.(2013·温州高三第一次质检)已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=e x +a ,若f (x )在R 上是单调函数,则实数a 的最小值是________.解析:依题意得f (0)=0.当x >0时,f (x )>e 0+a =a +1.若函数f (x ) 在R 上是单调函数,则有a +1≥0,a ≥-1,因此实数a 的最小值是-1.答案:-1。
第三节 函数的奇偶性与周期性
1.(2013·广东卷)定义域为R 的四个函数y =x 3
,y =2x ,y =x 2
+1,y =2 sin x 中,奇函数的个数是( )
A .4
B .3
C .2
D . 1
解析:四个函数中,y =x 3
和y =2sin x 是奇函数.故选C. 答案:C
2.下列函数中既不是奇函数,又不是偶函数的是( )
A .y =2|x |
B .y =lg(x +x 2
+1)
C .y =2x +2-x
D .y =ln 1
x -1
解析:因为y =ln 1x -1的定义域为{x |x >1},不关于原点对称,所以y =ln 1
x -1
是非奇
非偶函数.故选D.
答案:D
3.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象可能是( )
解析:由f (-x )=f (x )得y =f (x )是偶函数,所以函数y =f (x )的图象关于y 轴对称,可知B ,D 符合;由f (x +2)=f (x )得y =f (x )是周期为2的周期函数,选项D 的图象的最小正周期是4,不符合,选项B 的图象的最小正周期是2.故选B.
答案:B
4.(2013·辽宁辽源模拟)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x
+2(a >0,且a ≠1),若g (2)=a ,则f (2)等于( )
A .2 B.174 C.154
D .a
2
解析:将f (x )+g (x )=a x -a -x +2中的x 用-x 代替得f (-x )+g (-x )=a -x -a x
+2,
由函数的奇偶性可得-f (x )+g (x )=a -x -a x
+2,将两式相加和相减可得g (x )=2,f (x )=
a x -a -x ,因为g (2)=a ,所以a =2,则有f (2)=22-2-2=15
4
.
答案:C 5.若函数f (x )=
x x +
x -a
为奇函数,则a =( )
A.12
B.23
C.3
4 D .1
解析: (法一)由已知得f (x )的定义域关于原点对称,由于该函数定义域为⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪
x ≠-12且x ≠a ,∴a =12.故选A.
(法二)∵f (x )是奇函数,∴f (-x )=-f (x ).
又f (x )=x
2x 2+(1-2a )x -a ,则
-x 2x 2
-(1-2a )x -a =-x
2x 2+(1-2a )x -a
在函数的定义域内恒成立,可得a =1
2
.故选A.
答案:A
6.(2013·晋中模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )
A .(-1,0)
B .(-∞,0)∪(1,2)
C .(1,2)
D .(0,2)
解析:由x ∈[0,+∞)时,f (x )=x -1可知,函数在[0,+∞)上为增函数,f (x -1)<0可化为f (|x -1|)<f (1),从而得|x -1|<1,解得0<x <2.
答案:D
7. 函数f (x )=|x 3+1|+|x 3
-1|,则下列坐标表示的点一定在函数f (x )图象上的是( )
A .(-a ,-f (a ))
B .(a ,f (-a ))
C .(a ,-f (a ))
D .(-a ,-f (-a ))
解析:函数的定义域为R ,且满足f (x )=f (-x ),∴f (x )为偶函数.∴f (a )=f (-a ).而点(a ,f (a ))在函数图象上,
∴(a ,f (-a ))也在函数图象上.故选B. 答案:B
8.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=1+2x
,则f (-log 23)的值等于( )
A .-4
B .2
C .3
D .4
解析:当x <0时,-x >0,f (x )=-f (-x )=-(1+2-x
),∴f (-log 23)=-(1+2log 23)=-(1+3)=-4.故选A.
答案:A
9.(2013·海淀区期末综合练习)已知函数f (x )=x |x |-2x ,则下列结论正确的是( )
A .f (x )是偶函数,递增区间是(0,+∞)
B .f (x )是偶函数,递减区间是(-∞,1)
C .f (x )是奇函数,递减区间是(-1,1)
D .f (x )是奇函数,递增区间是(-∞,0)
解析:将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩
⎪⎨⎪⎧
x 2
-2x ,x ≥0,
-x 2
-2x ,x <0.画出函数f (x )
的图象,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-
1,1)上单调递减,故选C.
答案:C
10.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为________.
解析:由已知等式得f (x +4)=-f (x +2)=f (x ),所以f (x )是以4为周期的函数,所以f (6)=f (2),由f (x +2)=-f (x )得f (2)=-f (0),因为f (x )是R 上的奇函数,所以f (0)=0,所以f (6)=0.
答案:0 11.已知函数f (x )是R 上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 013)+f (2 014)的值为____________.
.解析:函数的周期为2,∴f (-2 013)+f (2 014)=f (2 013)+f (2 014)=f (1)+f (0)=log 2(1+1)+log 2(0+1)=1.
答案:1
12.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2 015)=2a -3
a +1
,则实
数a 的取值范围是________.
解析:∵f (2 015)=f (2)=f (-1)=-f (1)<-1, ∴2a -3a +1<-1,解得-1<a <23
. 答案:⎝
⎛⎭⎪⎫-1,23
13.已知函数f (x )=⎩⎪⎨⎪
⎧
-x 2
+2x ,x >0,0,x =0,
x 2+mx ,x <0
是奇函数.
(1)求实数m 的值;
(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数 a 的取值范围.
解析:(1)易知f (1)=1,f (-1)=1-m ,又∵f (x )是奇函数,∴f (-1)=-f (1).∴1-m =-1.∴m =2.
(2)要使f (x )在[-1,a -2]上单调递增,
结合f (x )的图象知⎩
⎪⎨⎪⎧
a -2>-1,
a -2≤1.
∴1<a ≤3.故实数a 的取值范围是(1,3].
14.(2013·四川泸州模拟)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .
(1)求f (π)的值;
(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围图形的面积.
解析:(1)由f (x +2)=-f (x ),得
f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的函数,从而得
f (π)=f [-1×4+π]=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).
故知函数y =f (x )的图象关于直线x =1对称. 又0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.
当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,
则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.。