2015-2016学年度广西贵港市东津一中九年级数学上册第21章一元二次方程检测题及答案
- 格式:doc
- 大小:193.50 KB
- 文档页数:4
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+=B 解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.4.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050D 解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D 解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x ==A 解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1,故选:A.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.8.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=x2=,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8 B.3,4 C.4,3 D.4,8D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.10.已知方程2202030x x+-=的根分别为a和b,则代数式2a a2020ab++的值为()A.0 B.2020 C.1 D.-2020A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)249【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或 解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.14.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.16.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0 解析:6【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值.【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6,即m 2﹣5m ﹣6=0.∴(m ﹣6)(m +1)=0,解得m 1=6,m 2=﹣1.∵m =x 2+y 2≥0,∴x 2+y 2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.17.三角形两边长分别为3和5,第三边满足方程x2-6x+8=0,则这个三角形的形状是__________.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x1=4,x2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.18.若a是方程210++=的根,则代数式2x x2020a a--的值是________.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.解析:(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.解析:(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.25.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.解析:(1)54m ≤;(2)0m = 【分析】 (1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.解析:(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.解析:(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△,方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
人教版九年级数学第21章一元二次方程同步检测试题(全卷总分100分)姓名得分一、选择题(每小题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.1x2+1x=2C.x2+2x=y2-1 D.3(x+1)2=2(x+1)2.一元二次方程(x-5)2=x-5的解是()A.x=5 B.x=6C.x=0 D.x1=5,x2=63.(锦州中考)一元二次方程x2-2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c 的值分别为()A.b=-1,c=2 B.b=1,c=-2C.b=1,c=2 D.b=-1,c=-25.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1C.(x+10)2=91 D.(x+10)2=1096.如图,老师出示了小黑板上的题目后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为()已知方程x2-3x+k+1=0,试添加一个条件,使它的两根之积为-4.A.只有小敏回答正确B.只有小聪回答正确C.小敏、小聪回答都正确D.小敏、小聪回答都不正确7.输入一组数据,按下列程序进行计算,输出结果如表:分析表格中的数据,估计方程(x+8)2-826=0的一个正数解x的大致范围为()A.20.5<x<20.6 B.20.6<x<20.7C.20.7<x<20.8 D.20.8<x<20.98.将一块正方形铁皮的四角各剪去一个边长为3 cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm3,则原铁皮的边长为()A.10 cm B.13 cm C.14 cm D.16 cm9.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>43且k≠2 B.k≥43且k≠2C.k>34且k≠2 D.k≥34且k≠210.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是()A.3或-1 B.3 C.1 D.-3或1二、填空题(每小题4分,共24分)11.把方程3x(x-1)=(x+2)(x-2)+9化成ax2+bx+c=0的形式为.12.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程:.13.已知实数a,b是方程x2-x-1=0的两根,则ba+ab的值为.14.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有名同学.15.在一幅长8分米,宽6分米的矩形风景画(如图1)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图2),使整个挂图的面积是80平方分米,设金色纸边宽为x分米,可列方程为.16.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是.三、解答题(共46分)17.(8分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1) x2-3x+1=0;(2) (x-1)2=3;(3) x2-3x=0;(4) x2-2x=4.18.(6分)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2-bx+a=0的根的情况.19.(8分)关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.20.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率. 21.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)22.(8分)某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米.(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?人教版九年级数学第21章一元二次方程同步检测试题参考答案一、选择题(每小题3分,共30分)1.下列方程是关于x的一元二次方程的是(D)A.ax2+bx+c=0 B.1x2+1x=2C.x2+2x=y2-1 D.3(x+1)2=2(x+1)2.一元二次方程(x-5)2=x-5的解是(D)A.x=5 B.x=6C.x=0 D.x1=5,x2=63.(锦州中考)一元二次方程x2-2x+1=0的根的情况为(A)A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c 的值分别为(D)A.b=-1,c=2 B.b=1,c=-2C.b=1,c=2 D.b=-1,c=-25.用配方法解方程x2+10x+9=0,配方后可得(A)A.(x+5)2=16 B.(x+5)2=1C.(x+10)2=91 D.(x+10)2=1096.如图,老师出示了小黑板上的题目后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为(C)已知方程x2-3x+k+1=0,试添加一个条件,使它的两根之积为-4.A.只有小敏回答正确B.只有小聪回答正确C.小敏、小聪回答都正确D.小敏、小聪回答都不正确7.输入一组数据,按下列程序进行计算,输出结果如表:分析表格中的数据,估计方程(x+8)2-826=0的一个正数解x的大致范围为(C)A.20.5<x<20.6 B.20.6<x<20.7C.20.7<x<20.8 D.20.8<x<20.98.将一块正方形铁皮的四角各剪去一个边长为3 cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm3,则原铁皮的边长为(D)A.10 cm B.13 cm C.14 cm D.16 cm9.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是(C)A.k>43且k≠2 B.k≥43且k≠2C.k>34且k≠2 D.k≥34且k≠210.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是(B)A.3或-1 B.3 C.1 D.-3或1二、填空题(每小题4分,共24分)11.把方程3x(x-1)=(x+2)(x-2)+9化成ax2+bx+c=0的形式为2x2-3x-5 =0.12.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程:x+3=0(或x-1=0).13.已知实数a,b是方程x2-x-1=0的两根,则ba+ab的值为-3.14.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有18名同学.15.在一幅长8分米,宽6分米的矩形风景画(如图1)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图2),使整个挂图的面积是80平方分米,设金色纸边宽为x分米,可列方程为(2x+6)(2x+8)=80.16.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是6或10或12.三、解答题(共46分)17.(8分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1) x2-3x+1=0;(2) (x-1)2=3;(3) x2-3x=0;(4) x2-2x=4.解:方程(1)用公式法解:∵a=1,b=-3,c=1,∴b2-4ac=(-3)2-4×1×1=5>0.∴方程(1)的根为x1=3+52,x2=3-52.方程(2)用直接开平方法解:x -1=±3,∴方程(2)的根为x 1=-3+1,x 2=3+1. 方程(3)用因式分解法解:x(x -3)=0,∴方程(3)的根为x 1=0,x 2=3. 方程(4)用配方法解:x 2-2x +1=4+1,(x -1)2=5,x -1=±5, ∴方程(4)的根为x 1=-5+1,x 2=5+1.18.(6分)定义新运算:对于任意实数m 、n 都有m ☆n =m 2n +n ,等式右边是常用的加法、减法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:2x 2-bx +a =0的根的情况. 解:∵2☆a 的值小于0, ∴22a +a =5a <0,解得a <0. 在方程2x 2-bx +a =0中, Δ=(-b)2-8a ≥-8a >0,∴方程2x 2-bx +a =0有两个不相等的实数根.19.(8分)关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根. 解:(1) ∵方程有两个不相等的实数根,∴Δ=(-3)2-4(-k)>0,即4k>-9.解得k>-94.(2)若k 是负整数,k 只能为-1或-2.①当k =-1时,原方程为x 2-3x +1=0.解得x 1=3+52,x 2=3-52;②当k =-2时,原方程为x 2-3x +2=0.解得x 3=2,x 4=1.20.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x 的代数式表示第3年的可变成本为 2.6(1+x)2 万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率. 解:设可变成本平均每年增长的百分率为x ,由题意得4+2.6(1+x)2=7.146,解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.21.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为 26.8 万元;(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)解:设需要售出x 部汽车,由题意可知,每部汽车的销售利润为28-[27-0.1(x -1)]=(0.1x +0.9)(万元), 当0≤x ≤10,根据题意,得x·(0.1x +0.9)+0.5x =12, 整理,得x 2+14x -120=0,解得x 1=-20(不合题意,舍去),x 2=6. 当x >10时,根据题意,得x·(0.1x +0.9)+x =12, 整理,得x 2+19x -120=0,解得x 3=-24(不合题意,舍去),x 4=5. 因为5<10,所以x 4=5舍去. 答:需要售出6部汽车.22.(8分)某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米.(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?解:(1)设垂直于墙的一面长为x 米,平行于墙的一面长为(26+2-2x)米,由题意,得x(26+2-2x)=80,整理,得x 2-14x +40=0,解得x 1=4,x 2=10.当x 1=4时,26+2-2x =28-8=20>12,不合题意,舍去; 当x 2=10时,26+2-2x =28-20=8<12,符合题意. 答:垂直于墙的一面长为10米,平行于墙的一面长为8米. (2)设小路的宽度为a 米,由题意,得 (10-a)(8-2a)=54.整理,得a 2-14a +13=0,解得a 1=13,a 2=1. 经检验:a 2=1符合题意. 答:小路的宽度为1米.。
第二十一章一元二次方程检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015·贵州安顺中考)已知三角形两边的长是3和4,第三边的长是方程-12x+35=0的根,则该三角形的周长是()A.14B.12C.12或14D.以上都不对2. 方程(x-2)(x+3)=0的解是()A.x=2B.x=-3C.x1=-2,x2=3D.x1=2,x2=-33.要使方程+是关于的一元二次方程,则()A.B.C.且D.且4.(2014 •江苏苏州中考)下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=05.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b,则的值是()A.7B.-7C.11D.-116.从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是()A.100 m2B.64 m2C.121 m2D.144 m27.(2015·兰州中考·4分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.=B.=C.1+2x=D.1+2x=8. 目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438=389B.389=4389.关于的一元二次方程()220x mx m -+-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定 10.已知分别是三角形的三边长,则方程的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根二、填空题(每小题3分,共24分)11.若是关于的一元二次方程,则不等式的解集是________.12.(2015·兰州中考)若一元二次方程a-bx -2 015=0有一根为x =-1,则a +b= . 13.若|b -1|+=0,且一元二次方程k+ax +b =0(k ≠0)有实数根,则k 的取值范围是 . 14.若(是关于的一元二次方程,则的值是________.15.若且,则一元二次方程必有一个定根,它是_______.16.若矩形的长是,宽是,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.17.(2015·浙江丽水中考·4分)解一元二次方程0322=-+x x 时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程_________.18.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个符合题意的一元二次方程 .三、解答题(共46分)19.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.20.(6分)(2015·福州中考)已知关于x 的方程+(2m 1)x +4=0有两个相等的实数根,求m 的值. 21.(6分)在长为,宽为的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长. 22.(6分)若方程的两根是和,方第21题图程的正根是,试判断以为边长的三角形是否存在.若存在,求出它的面积;若不存在,说明理由. 23.(6分)已知关于的方程(的两根之和为,两根之差为1,•其中是△的三边长.(1)求方程的根; (2)试判断△的形状. 24.(8分)(2014•南京中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x .(1)用含x 的代数式表示第3年的可变成本为__________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分 率x .25.(8分)李先生乘出租车去某公司办事,下车时,打出的电子收费单为“里程•千米,应收元”.该城市的出租车收费标准按下表计算,请求出起步价是多少元.第二十一章 一元二次方程检测题参考答案1. B 解析:解方程-12x +35=0得x =5或x =7.因为3+4=7,所以长度为3,4,7的线段不能组成三角形,故x =7不合题意,所以三角形的周长=3+4+5=12.2. D 解析:由(x -2)(x +3)=0,得x -2=0或x +3=0,解得=2,=-3. 3. B 解析:由,得.4. C 解析: 把A ,B 选项中a ,b ,c 的对应值分别代入24b ac -中,A ,B 选项中240b ac <-,故A ,B 选项中的方程都没有实数根;而D 选项中,由2(1)x 1=0-+得2(1)x =--1,因为2(1)0x -≥,所以2(1)x -+1=0没有实数根;只有C 选项中的方程有实数根.5. A 解析:本题考查一元二次方程根与系数的关系. 可以把a 和b 看作是方程-6x +4=0的两个实数根,∴a+b=6,ab=4,∴7.点拨:一元二次方程根与系数的关系常见的应用有:验根、确定根的符号;求与根相关的代数式的值;由根求出新方程等.6.B解析:设原来正方形木板的边长为x m.由题意,可知x(x-2)=48,即x2-2x-48=0,解得x1=8,x2=-6(不合题意,舍去).所以原来这块正方形木板的面积是8×8=64(m2).点拨:本题考查了一元二次方程的应用,理解从一块正方形木板上锯掉2 m宽的长方形木条,剩下的仍然是一个长方形,是解本题的关键.7. B 解析:设此股票原价为a元,跌停后的价格为0.9a元.(1+)x,如果每天的平均增长率为x,经过两天涨价后的价格为0.9a2(1+)x=a,即x满足的方程是=.于是可得方程0.9a28. B 解析:由每半年发放的资助金额的平均增长率为x,得去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(元),根据关键语句“今年上半年发放了438元”,可得方程389=438.点拨:关于增长率问题一般列方程a(1+x)n=b,其中a为基础数据,b为增长后的数据,n 为增长次数,x为增长率.9. A 解析:因为+ 4>0,所以方程有两个不相等的实数根.10.A 解析:因为又因为分别是三角形的三边长,所以所以所以方程没有实数根.11.解析:不可忘记.12.2 015 解析:把x= -1代入方程中得到a+b-2 015=0,即a+b=2 015.13.k≤4且k≠0 解析:因为|b-1|≥0,≥0,又因为|b-1|+=0,所以|b-1|=0,=0,即b-1=0,a-4=0,所以b=1,a=4.所以一元二次方程k+ax+b=0变为k+4x+1=0.因为一元二次方程k +4x +1=0有实数根,所以Δ=16-4k ≥0,解得k ≤4. 又因为k ≠0,所以k ≤4且k ≠0. 14.解析:由题意得解得或.15.1 解析:由,得,原方程可化为,解得 .16. 解析:设正方形的边长为,则,解得, 由于边长不能为负,故舍去, 故正方形的边长为.17. 03=+x 或01=-x 解析:将223x x +-分解因式,得()()22331x x x x +-=+-.0322=-+x x ,∴()()310x x +-=,则有03=+x 或01=-x .18. x 2-5x +6=0(答案不唯一) 解析:设Rt △ABC 的两条直角边的长分别为a ,b .因为 S △ABC =3,所以ab =6.又因为一元二次方程的两根为a ,b (a >0,b >0),所以符合条件的一元二次方程为(x -2)(x -3)=0或(x -1)(x -6)=0等,即x 2-5x +6=0或x 2-7x +6=0等. 19.解:∵22a b a b ⊕=-,∴2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ∴22724x -=,∴225x =,∴5x =±. 20. 解:∵ 关于x 的方程+(2m 1)x +4=0有两个相等的实数根,∴ Δ=4×1×4=0,∴ 2m 1=±4,∴ m =或m =.点拨:判断一元二次方程根的情况时要分4ac (即Δ)的值大于零、等于零、小于零三种情况来判断.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.特别地,当Δ≥0时,方程有两个实数根.反之亦成立.21.解:设小正方形的边长为.由题意,得解得所以截去的小正方形的边长为.22.解:解方程,得.方程的两根是. 所以的值分别是.因为, 所以以为边长的三角形不存在.点拨:先解这两个方程,求出方程的根,再用三角形的三边关系来判断. 23.解:(1)设方程的两根为,则解得(2)当时,,所以. 当时,所以.所以.所以△为等边三角形.24.解:(1)22.6(1)x +.(2)根据题意,得24 2.6(1)7.146x ++=. 解得x 1=0.1,x 2=-2.1(不合题意,舍去). 故可变成本平均每年增长的百分率是10%.25.解:依题意,得22N25N,整理,得,解得.由于,所以舍去,所以.答:起步价是10元.。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
一元二次方程解法配套练习题一、基础训练1、一元二次方程22(32)(1)0x x x --++=化为一般形式为 。
2、解方程(1)24)23(2=+x (2)01072=+-x x(3))12(3)12(2+=+x x (4)03722=+-x x3、如果2x 2+1与4x 2-4x-5互为相反数,则x 的值为________.二、综合提高4、已知0122=++a a 求3422-+a a 的值5、解方程()()22225134-=+x x6一矩形的长比宽多4㎝,矩形的面积是962cm ,求这个矩形的长和宽。
7、如果4=x 是一元二次方程223a x x =-的一个根,则常数a = 。
8、三角形的每条边长都是方程0862=+-x x 的根,则三角形的周长是 。
9、我们已经学习了一元二次方程的四种解法:开平方法、配方法、公式法、因式分解法。
请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程。
① 0132=+-x x ② ()312=-x ③ 032=-x x ④ 422=-x x根与系数的关系 练习基础训练1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、若方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m= 。
4、已知方程5x 2+mx -10=0的一根是-5,求方程的另一根及m 的值。
5、已知2+3是x 2-4x+k=0的一根,求另一根和k 的值。
6、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
7、关于x 的方程2x 2-3x+m=0,当 时,方程有两个正数根;当m 时,方程有一个正根,一个负根;当m 时,方程有一个根为0。
人教版九年级数学上册第21章一元二次方程单元检测题(有答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元二次方程是()A.2x2﹣y﹣1=0 B.x2=1C.x2﹣x(x+7)=0 D.2.关于x的一元二次方程x2﹣2x+a2﹣1=0有一根为1,则a的值是()A.2 B.C.±D.±13.下列实数中,是方程x2﹣4=0的根的是()A.1 B.2 C.3 D.44.用配方法解一元二次方程x2﹣4x﹣3=0,下列变形正确的是()A.(x﹣4)2=﹣3+16 B.(x﹣4)2=3+16C.(x﹣2)2=3+4 D.(x﹣2)2=﹣3+45.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.6.方程(2x﹣3)(x+2)=0的解是()A.x=﹣B.x=2C.x1=﹣2,x2=D.x1=2,x2=﹣7.若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是()A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0 8.已知方程x2﹣4x+k=0有一个根是﹣1,则该方程的另一根是()A.1 B.0 C.﹣5 D.59.某农机厂四月份生产零件40万个,第二季度共生产零件162万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.40(1+x)2=162B.40+40(1+x)+40(1+x)2=162C.40(1+2x)=162D.40+40(1+x)+40(1+2x)=16210.与去年同期相比我国石油进口量增长了a%,而单价增长了%,总费用增长了15.5%,则a=()A.5 B.10 C.15 D.20二.填空题(共8小题,满分24分,每小题3分)11.将一元二次方程3(x+2)2=(x+1)(x﹣1)化为ax2+bx+c=0(a≠0)的形式为.12.a是方程x2﹣x=1的一个根,则2a2﹣2a+6的值是.13.用配方法解方程x2+x﹣=0时,可配方为,其中k=.14.观察算式×,则它的计算结果为.15.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=.16.如果关于x的方程x2+kx+k2﹣3k+=0的两个实数根分别为x1,x2,那么的值为.17.2017年全国的快递业务量为401亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,若2019年的快递业务量达到620亿件,设2018年与2019年这两年的平均增长率为x,则可列方程为.18.现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m2,那么小道的宽度应是m.三.解答题(共8小题,满分66分)19.(8分)用适当的方法解方程:(1)x2+4x+3=0(2)7(x﹣5)=(x﹣5)220.(8分)已知a是方程x2﹣2x﹣4=0的根,求代数式a(a+1)2﹣a(a2+a)﹣3a ﹣2的值.21.(8分)若方程x2+(m2﹣1)x+m=0的两个实数根互为相反数,求m的值.22.(8分)已知x1,x2是方程2x2﹣5x+1=0的两个实数根,求下列各式的值:(1)x1x22+x12x2(2)(x1﹣x2)223.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0(1)求证:无论k为何值,方程有两个不相等的实数根;(2)若方程的两根之和x1+x2=7,求方程的两根x1,x2.24.(8分)关于x的一元二次方程2x2﹣mx+n=0.(1)当m﹣n=4时,请判断方程根的情况;(2)若方程有两个相等的实数根,当n=2时,求此时方程的根.25.(8分)家乐商场销售某种衬衣,每件进价100元,售价160元,平均每天能售出30件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1元,其销量就增加3件.商场想要使这种衬衣的销售利润平均每天达到3600元,每件衬衣应降价多少元?26.(10分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.(1)求该种商品次降价的百分率;(2)若该种品进价为300元/件,两次降价后共售出此种品100件,为使两次降价销售的总利润不少于3500元,第一次降价后至少要售出该种商品多少件?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.2.解:∵将x=1代入x2﹣2x+a2﹣1=0,∴1﹣2+a2﹣1=0,∴a=±,∵△=4﹣4(a2﹣1)=8﹣4a2,∴当a=±时,△=0,满足题意,故选:C.3.解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.4.解:∵x2﹣4x﹣3=0,∴x2﹣4x=3,∴x2﹣4x+4=4+3,∴(x﹣2)2=7,故选:C.5.解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.6.解:(2x﹣3)(x+2)=0,x+2=0,2x﹣3=0,x=﹣2,x2=,1故选:C.7.解:当k=0时,方程变形为﹣4x﹣2=0,解得x=﹣;当k≠0时,△=(﹣4)2﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0,综上所述,k的范围为k≥﹣2.故选:B.8.解:设该方程的另一根为m,依题意,得:m﹣1=4,解得:m=5.故选:D.9.解:依题意得五、六月份的产量为40(1+x)、40(1+x)2,∴40+40(1+x)+40(1+x)2=162.故选:B.10.解:设去年的石油进口量是“x”、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+%)y,由题意,知(1+a%)x•(1+%)y=xy(1+15.5%)解得a=10(舍去负值)故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:3(x+2)2=(x+1)(x﹣1)3x2+12x+12=x2﹣12x2+12x+13=0.故答案是:2x2+12x+13=0.12.解:由题意可知:a2﹣a=1,∴原式=2(a2﹣a)+6=2×1+6=8,故答案为:813.解:∵x2+x﹣=0∴(x2+2x﹣5)=0,∴[(x+1)2﹣6]=0,∵可配方为,∴k=﹣6故答案为:﹣6.14.解:两数分别为:,,由两数的形式可知该两个数是方程20x2+19x+4=0的两根,∴两根之积为:=,∴原式=,故答案为:15.解:设x2+3x=y,方程变形得:y2+2y﹣3=0,即(y﹣1)(y+3)=0,解得:y=1或y=﹣3,即x2+3x=1或x2+3x=﹣3(无解),故答案为:1.16.解:∵方程x2+kx+k2﹣3k+=0的两个实数根,∴b2﹣4ac=k2﹣4(k2﹣3k+)=﹣2k2+12k﹣18=﹣2(k﹣3)2≥0,∴k=3,代入方程得:x2+3x+=(x+)2=0,解得:x1=x2=﹣,则=﹣.故答案为:﹣.17.解:设2018年与2019年这两年的平均增长率为x,由题意得:401(1+x)2=620,故答案是:401(1+x)2=620.18.解:设小道进出口的宽度为x米,依题意得(40﹣2x)(26﹣x)=864,整理,得x2﹣46x+88=0.解得,x1=2,x2=44.∵44>40(不合题意,舍去),∴x=2.答:小道进出口的宽度应为2米.故答案为:2.三.解答题(共8小题,满分66分)19.解:(1)∵x2+4x+3=0,∴(x+1)(x+3)=0,∴x=﹣1或x=﹣3;(2)∵7(x﹣5)=(x﹣5)2∴(x﹣5)2﹣7(x﹣5)=0,∴(x﹣5)(x﹣5﹣7)=0,∴x=5或x=12;20.解:a(a+1)2﹣a(a2+a)﹣3a﹣2=a3+2a2+a﹣a3﹣a2﹣3a﹣2=a2﹣2a﹣2∵a是方程x2﹣2x﹣4=0的根,∴a 2﹣2a ﹣4=0,∴a 2﹣2a =4,∴原式=4﹣2=2.21.解:∵x 2+(m 2﹣1)x +m =0的两个实数根互为相反数,∴m 2﹣1=0,∴m =1或﹣1,当m =1时,方程为x 2+1=0,方程无解,故所求.故m 的值为﹣1.22.解:x 1+x 2=,x 1x 2=,(1)原式=x 1x 2(x 1+x 2)=×=;(2)原式=(x 1+x 2)2﹣4x 1x 2=()2﹣4×=.23.(1)证明:△=[﹣(2k +1)]2﹣4(k 2+k )=1>0,所以无论k 为何值,方程总有两个不相等的实数根;(2)解:∵关于x 的一元二次方程x 2﹣(2k +1)x +k 2+k =0的两根之和x 1+x 2=7, ∴2k +1=7,解得k =3,则原方程即为x 2﹣7x +12=0,解得x 1=3,x 2=4.24.解:(1)△=(﹣m )2﹣4×2×n ,∵m ﹣n =4,∴n =m ﹣4,∴△=m 2﹣8(m ﹣4)=m 2﹣8m +32=(m﹣4)2+16,∵(m﹣4)2≥0,∴△>0,∴方程有两个不相等的实数根;(2)根据题意得△=(﹣m)2﹣4×2×n=0,当n=2时,m2﹣16=0,解得m=4或m=﹣4,当m=4时,方程变形为2x2﹣4x+2=0,解得x1=x2=1;当m=﹣4时,方程变形为2x2+4x+2=0,解得x1=x2=﹣1.25.解:设每件衬衣降价x元,则平均每天能售出(30+3x)件,依题意,得:(160﹣100﹣x)(30+3x)=3600,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30,∵为了尽快减少库存,∴x=30.答:每件衬衣应降价30元.26.解:(1)设该种商品每次降价的百分率为x,根据题意得:500(1﹣x)2=320,解得:x1=0.2=20%,x2=1.8(舍去).答:该种商品每次降价的百分率为20%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据题意得:[500×(1﹣20%)﹣300]m+(320﹣300)(100﹣m)≥3500,解得:m≥18.因为m是整数,所以m最小值是19.答:第一次降价后至少要售出该种商品19件.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(9)一、选择题1.一元二次方程x2+2x+1=0的解是 ()A.x1=1,x2=-1B. x1=x2=1C.x1=x2=-1D. x1=-1,x2=22.一元二次方程2x2+3x-5=0的根的情况为 ()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是 ()A.m≥1B.m≤1C.m>1D.m<14.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得 ()A.9(1-2x)=1B.9(1-x)2=1C.9(1+2x)=1D.9(1+x)2=15.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是 ()A. B.2 C. D.46.若x1,x2是一元二次方程x2-4x-5=0的两根,则x1·x2的值为 ()A.-5B.5C.-4D.47.关于x的一元二次方程x2-2 x+m=0有两个不相等的实数根,则实数m的取值范围是 ()A.m<3B.m>3C.m≤3D.m≥38.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2,则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1D.有两个相等的实数根9.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是 ()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和-1都是关于x的方程x2+bx+a=0的根D.1和-1不都是关于x的方程x2+bx+a=0的根10.下列一元二次方程中,没有实数根的是()A.x2-x+2=0B.x2-3x+1=0C.2x2-x-1=0D.4x2-4x+1=011.若方程x2-ax+4=0有两个相等的实数根,则a的值为 ()A.2B.±2C.±4D.412.一元二次方程x(x-2)=0根的情况是 ()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根13.已知x1、x2是关于x的方程x2-ax-2=0的两根,下列结论一定正确的是 ()A.x1≠x2B.x1+x2>0C.x1·x2>0D.x1<0,x2<014.三角形两边长分别为4和6,第三边的长是方程x2-13x+36=0的根,则三角形的周长为 ()A.14B.18C.19D.14或19二、填空题1. 已知关于x的方程x2-3x+a=0有一个根为1,则方程的另一个根为 .2.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何.”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多步.3.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意,可列方程为 .4.设x1,x2是一元二次方程x2-x-1=0的两根,则x1+x2+x1x2= .5.当x=时,代数式x2+2x与-6x-1的值互为相反数.6.菱形的两条对角线的长是方程x2-7x+1=0的两根,则菱形的面积是 .三、解答题1. 解方程(1) x2-3x-2=0.(2) (x-1)2=4.(3) (x+1)2=3(x+1).2.关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.3.近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导.某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导.据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次.4.一所学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8 800元,请问该校共购买了多少棵树苗?5.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2018年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2018年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2018年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.参考答案一、选择题1、C2、B3、D4、B5、B6、A7、A8、A9、B 10、A11、C 12、A 13. A 14.D二、填空题1. 22. 123. (12-x)(8-x)=77(或x2-20x+19=0)4. 05. 26.三、解答题1. (1)∵a=1,b=-3,c=-2,∴b2-4ac=(-3)2-4×1×(-2)=9+8=17,∴x==,∴x1=,x2=.(2) (x-1)2=4,所以x-1=2或x-1=-2,即x=3或x=-1. 所以原方程的解为x1=3,x2=-1.(3) (x+1)2=3(x+1),(x+1)2-3(x+1)=0,(x+1)(x-2)=0,∴x+1=0或x-2=0,解得x1=-1,x2=2.2.解析(1)由关于x的一元二次方程x2-3x+k=0有实数根,得Δ=9-4k≥0,解得k≤.(2)由(1)得k的最大整数值为2,所以方程x2-3x+k=0,即为x2-3x+2=0,此方程的根为x1=1,x2=2.由方程x2-3x+k=0与一元二次方程(m-1)x2+x+m-3=0有一个相同的根, 得(m-1)×12+1+m-3=0或(m-1)×22+2+m-3=0,即m=或m=1.当m=1时,m-1=0,不合题意,故m=.3.解析(1)设第二批,第三批公益课受益学生人次的增长率均为x,根据题意得2(1+x)2=2.42,解此方程得x1=0.1,x2=-2.1(不合题意,舍去).答:第二批,第三批公益课受益学生人次的增长率均为10%.(2)2.42×(1+10%)=2.662.答:第四批公益课受益学生将达到2.662万人次.4.解析∵60棵树苗的售价为120×60=7 200元<8 800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8 800,解得x1=220,x2=80.当x=220时,120-0.5×(220-60)=40<100,∴x=220不合题意,舍去.当x=80时,120-0.5×(80-60)=110>100,∴x=80.答:该校共购买了80棵树苗.5.(1)设今年1至5月道路硬化的里程数为x千米,根据题意,得x≥4(50-x),解得x≥40.答:今年1至5月道路硬化的里程数至少为40千米.(2)因为2017年道路硬化与道路拓宽的里程数共45千米,它们的里程数之比为2∶1,所以,道路硬化的里程数为30千米,道路拓宽的里程数为15千米.设2018年道路硬化每千米的经费为y万元,则道路拓宽每千米的经费为2y万元.由题意,得30y+15×2y=780,解得y=13.所以,2018年每千米道路硬化的经费为13万元,每千米道路拓宽的经费为26万元.根据题意,得13(1+a%)×40(1+5a%)+26(1+5a%)×10(1+8a%)=780(1+10a%).令a%=t,原方程可化为:520(1+t)(1+5t)+260(1+5t)(1+8t)=780(1+10t). 整理得10t2-t=0,解得t1=0,t2=0.1.∴a%=0(舍去)或a%=0.1,∴a=10.答:a的值是10.人教新版九年级数学上第21章一元二次方程单元练习试题(含答案)一.选择题(共14小题)1.下列方程中,是一元二次方程的是()A.x2﹣4=0 B.x=C.x2+3x﹣2y=0 D.x2+2=(x﹣1)(x+2)2.已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=()A.2019 B.4038 C.D.3.若2是关于x的方程x2﹣(m﹣1)x+m+2=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的长,则△ABC的周长为()A.7或10 B.9或12 C.12 D.94.若方程(x﹣4)2=a有实数解,则a的取值范围是()A.a≤0 B.a≥0 C.a>0 D.a<05.用配方法解方程x2﹣4x﹣9=0时,原方程应变形为()A.(x﹣2)2=13 B.(x﹣2)2=11 C.(x﹣4)2=11 D.(x﹣4)2=13 6.已知a,b,c满足4a2+2b﹣4=0,b2﹣4c+1=0,c2﹣12a+17=0,则a2+b2+c2等于()A.B.C.14 D.20167.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,08.点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,则经过点P的正比例函数图象一定过()象限.A.一、三B.二、四C.一D.四9.若x2﹣2px+3q=0的两根分别是﹣3与5,则多项式2x2﹣4px+6q可以分解为()A.(x+3)(x﹣5)B.(x﹣3)(x+5)C.2(x+3)(x﹣5)D.2(x﹣3)(x+5)10.关于x的方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.m>B.m<﹣C.m=D.m<11.已知m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,且满足+1=,则b 的值为()A.3 B.3或﹣1 C.2 D.0或212.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=90013.2018年一季度,华为某地销售公司营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30%B.(1+x)2=1+22%+30%C.1+2x=(1+22%)(1+30%)D.(1+x)2=(1+22%)(1+30%)14.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动.已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有()A.500(1﹣2x)=320 B.500(1﹣x)2=320C.500()2=320 D.500(1﹣)2=320二.填空题(共4小题)15.若关于x的一元二次方程ax2+2ax+c=0有一个根是0,此时方程的另一个根是16.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.17.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.18.对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.三.解答题(共5小题)19.选择合适的方法解一元二次方程(1)x2﹣x=1;(2)(2x﹣1)2=9;(3)3y(y﹣1)=2y﹣2;(4)(x﹣3)2+x2=9;(5)x2﹣6x﹣2=0;(6)x2+2x+10=0.(7)x2+10x+21=0 (8)7x2﹣x﹣5=0 (9)(2x﹣1)2=(3﹣x)2(10)x2+2x=0.20.关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.21.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m 的值.22.如图,将一幅宽20cm,长30cm的图案进行装裱,装裱后的整幅画长与宽的比与原画的长宽比相同,四周装裱的面积是原图案面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?23.如图,要设计一幅宽20cm、长30cm的图案,其中有两横三竖的彩条,横、竖彩条的宽度比为3:2.如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?参考答案一.选择题(共14小题)1.解:A、x2﹣4=0是一元二次方程,符合题意;B、x=不是整式方程,不符合题意;C、x2+3x﹣2y=0是二元二次方程,不符合题意;D、x2+2=(x﹣1)(x+2)整理得:x﹣4=0,是一元一次方程,不符合题意,故选:A.2.解:∵a是方程2x2﹣4x﹣2019=0的一个根,∴2a2﹣4a﹣2019=0,∴a2﹣2a=,故选:C.3.解:将x=2代入方程得:4﹣2(m﹣1)+m+2=0,解得:m=8,则方程为x2﹣7x+10=0,即(x﹣5)(x﹣2)=0,解得:x=5或x=2,当三角形的三边为2、2、5时,2+2<5,不能构成三角形;当三角形的三边为5、5、2时,三角形的周长为5+5+2=12,综上所述,三角形的周长,12.观察选项,选项C符合题意.故选:C.4.解:∵方程(x﹣4)2=a有实数解,∴x﹣4=±,∴a≥0;故选:B.5.解:∵x2﹣4x=9,∴x2﹣4x+4=9+4,即(x﹣2)2=13,故选:A.6.解:由题意,知4a2+2b﹣4+b2﹣4c+1+c2﹣12a+17=0,整理,得(b2+2b+1)+(4a2﹣12a+9)+(c2﹣4c+4)=0,所以(b+1)2+(2a﹣3)2+(c﹣2)2=0,所以b+1=0,2a﹣3=0,c﹣2=0,所以b=﹣1,a=,c=2.故a2+b2+c2=+1+4=.故选:B.7.解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.8.解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0,x+4=0,x1=6.x2=﹣4,∵点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,∴P(6,﹣4)或(﹣4,6),故经过点P的正比例函数图象一定过二、四象限.故选:B.9.解:∵x2﹣2px+3q=0的两根分别是﹣3与5,∴2x2﹣4px+6q=2(x2﹣2px+3p)=2(x+3)(x﹣5),故选:C.10.解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=m,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,解得m<.故选:D.11.解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,∴m+n=﹣(2b+3),mn=b2,∵+1=,∴+=﹣1,∴=﹣1,∴=﹣1,解得:b=3或﹣1,当b=3时,方程为x2+9x+9=0,此方程有解;当b=﹣1时,方程为x2+x+1=0,△=12﹣4×1×1=﹣3<0,此时方程无解,所以b=3,故选:A.12.解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.13.解:设2018年和2019年第一季度营收入的平均增长率为x,根据题意可得:(1+x)2=(1+22%)(1+30%).故选:D.14.解:设该店春装原本打x折,依题意,得:500•()2=320.故选:C.二.填空题(共4小题)15.解:把x=0代入原方程得出c=0,∴方程为ax2+2ax=0,∴ax(x+2)=0,∴该方程的另一个根为﹣2.故答案为:﹣2.16.解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.17.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,x1=3,x2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6,所以这个三角形的周长为3+6+6=15.故答案为:15.18.解:①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x=或x=,故答案为:x=或x=.三.解答题(共5小题)19.解:(1)x2﹣x=1,x2﹣x﹣1=0,a=1,b=﹣,c=﹣1,∴x=,,(2)(2x﹣1)2=9,2x﹣1=±3,2x=1±3,x=,x1=﹣1,x2=2,(3)3y(y﹣1)=2y﹣2,3y(y﹣1)﹣2(y﹣1)=0,(y﹣1)(3y﹣2)=0,,(4)(x﹣3)2+x2=9,x2﹣6x+9+x2﹣9=0,2x2﹣6x=0,x2﹣3x=0,x(x﹣3)=0,x1=3,x2=0,(5)x2﹣6x﹣2=0;x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,,(6)x2+2x+10=0,a=1,b=2,c=10,△=b2﹣4ac=﹣4×1×10=20﹣40<0,∴此方程无实数根,(7)x2+10x+21=0,(x+3)(x+7)=0,x1=﹣3,x2=﹣7,(8)7x2﹣x﹣5=0,a=7,b=﹣,c=﹣5,△=﹣4×7×(﹣5)=6+140=146,x=,,(9)(2x﹣1)2=(3﹣x)2,2x﹣1=±(3﹣x),2x﹣1=3﹣x,2x﹣1=﹣3+x,,(10)x2+2x=0,x(x+2)=0,x1=﹣2,x2=020.解:(1)∵关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△=(2k﹣3)2﹣4k2=﹣12k+9>0,解得:k<.(2)∵关于x的方程x2+(2k+3)x+k2=0有两个实数根α、β,∴α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k﹣3=6,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,则(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.21.解:(1)设方程的另一个根是x1,那么x1+1=﹣2,∴x1=﹣3;(2)∵x1、x2是方程的两个实数根,∴x1+x2=﹣2,x1x2=,又∵x12+x22+2x1x2﹣x12x22=0,∴(x1+x2)2﹣(x1x2)2=0,即4﹣=0,得m=±4,又∵△=42﹣8m>0,得m<2,∴取m=﹣4.22.解:由题意知长:宽=3:2,因装裱后的整幅画长与宽的比与原画的长宽比相同,故上下边衬和左右边衬的比例也为3:2,所以可设上下边衬的宽度为3xcm,左右边衬的宽度为2xcm,则装裱后的面积为:(20+4x)(30+6x),且原面积为:30×20,所以四周装裱的面积为:(20+4x)(30+6x)﹣30×20,根据题意列方程:(20+4x)(30+6x)﹣30×20=×30×20整理得:x2+10x﹣11=0,解得:x1=﹣11(舍去),x2=1,所以上下边衬为3cm,左右边衬为2cm,答:应按上下边衬为3cm,左右边衬为2cm来进行设计.23.解:设竖条的宽度是2xcm,横条的宽度是3xcm,则(20﹣6x)(30﹣6x)=(1﹣)×20×30解得x1=1,x2=(舍去).2×1=2(cm),3×1=3(cm).答:横条宽3cm,竖条宽2cm.。
第21章《一元二次方程》单元测试卷一、单选题(每小题只有一个正确答案)1.下列方程是一元二次方程的是()A.+x2=0B.3x2﹣2xy=0C.x2+x﹣1=0D.ax2﹣bx=02.如果﹣1是方程x2﹣3x+k=0的一个根,则常数k的值为()A.4B.2C.﹣4D.﹣23.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0B.k≠0C.k<1 D.k>14.方程的解是A.x1=2,x2= 3B.x1=2,x2=1C.x=2D.x=35.已知关于x的方程有一个根为,则另一个根为A.5B.C.2D.6.若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断7.已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为A.13B.11或13C.11D.128.用配方法解一元二次方程,方程可变形为()A.B.C.D.9.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是().A.B.-C.-D.10.如图所示,AC是一根垂直于地面的木杆,B是木杆上的一点,且AB=2米,D是地面上一点,AD=3米.在B处有甲、乙两只猴子,D处有一堆食物.甲猴由B往下爬到A处再从地面直奔D处,乙猴则向上爬到木杆顶C处腾空直扑到D处,如果两猴所经过的距离相等,则木杆的长为()A.m B.2m C.3m D.5 m11.某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次.设每月的平均增长率为x,则可列方程为()A.B.C.D.12.若实数范围内定义一种运算“﹡”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为()A.-2B.-2,3C.,D.,二、填空题13.写出一个一元二次方程,使其有一个根为1,并且二次项系数也为1,方程为________.14.已知关于的方程有两个相等的实根,则的值是__________.15.已知是关于方程的一个根,则的值为______.16.关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=_____(一个即可).17.某商品经过连续两次降价,销售单价由原来的125元降到80元,设平均每次降价的百分率为x,则可列方程为________________________________.三、解答题18.关于x的一元二次方程有实数根,求m的取值范围;若方程有一个根为,求m的值和另一根.19.解方程(1)x2﹣2x﹣2=0 (2)(x+1)2=4(x﹣1)2.20.解方程:(1)x2-6x-6=0; (2)2x2-7x+3=0.21.解方程:方程已知x:y::2:3,求的值.22.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具的销售单价为x元(x>40),请将销售利润w表示成销售单价x的函数;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.23.一块矩形场地,场地的长是宽的2倍.计划在矩形场地上修建宽都为2米的两条互相垂直的小路,如图,余下的四块小矩形场地建成草坪.四块小矩形草坪的面积之和为364平方米,求这个矩形场地的长和宽各是多少米?参考答案1.C【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选:C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.3.A分析:由方程有两个不相等的实数根,可知∆>0,且二次项系数不等于0,据此列式求解即可.详解:由题意得,,解之得,k<1且k≠0 .故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4.A【分析】利用因式分解法求解即可.【详解】,移项得:(x-2)²-(x-2)=0,提公因式得:(x-2)(x-2-1)=0,解得:.故选A.【点睛】本题考查了一元二次方程的解法,解题的关键是根据方程的特点选择合适的方法求解即可.根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值.∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得:m=﹣1.故选B.【点睛】本题考查了根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.6.A【分析】计算根的判别式,利用k的取值范围进行判断其符号即可求得答案.【详解】∵x2+4x+k=0,∴△=42-4k=4(4-k),∵k>4,∴4-k<0,∴△<0,∴该方程没有实数根,故选:A.【点睛】考查根的判别式,掌握方程根的情况与根的判别式的关系(①当>0时,方程有两个不相等的实数根;②当=0时,方程有两个相等的实数根;③当<0时,方程没有实数根)是解题的关键.7.B【分析】由一元二次方程的两个解恰好分别是等腰的底边长和腰长,利用因式分解法求解即可求得等腰的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.【详解】,,或,即,,一元二次方程的两个解恰好分别是等腰的底边长和腰长,当底边长和腰长分别为3和5时,,的周长为:;当底边长和腰长分别为5和3时,,的周长为:;的周长为:11或13.故选:B.【点睛】此题考查了因式分解法解一元二次方程、等腰三角形的性质以及三角形三边关系此题难度不大,注意分类讨论思想的应用.先把常数项7移到方程右边,然后把方程两边加上42即可.【详解】方程变形为:x2+8x=-7,方程两边加上42,得x2+8x+42=-7+42,∴(x+4)2=9.故选D.【点睛】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半,这样把方程变形为:(x-)2=.9.C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选:C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.10.B【分析】设BC=x,AC=(2+x),从题意可得到AB+AD=BC+CD可得CD=5-x,AB=2,AD=3,把数据代入DC2=AC2+AD2,可得到一元二次方程.【详解】设BC的长为x米,∵AB+AD=BC+CD,∴CD=5-x,∵AC2+AD2= DC2,∴(2+x)2+32=(5-x) 2,∴x= ,AC=2+ =2m.故选B.【点睛】本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后列方程求解.11.A【分析】设平均每月的增长率为,则由题意可得9月份的游客人数为:,10月份的游客人数为:,这样结合10月份共接收游客64万人即可列出方程了.【详解】设平均每月的增长率为,根据题意可得:.故选A.【点睛】读懂题意,设平均每月的增长率为,由此表达出10月的游客人数为是解答本题的关键.12.D【分析】根据运算“﹡”的规则,可将所求的方程化为:(x+2+1)2-5(x+2)=0,然后解这个一元二次方程即可.【详解】依题意,可将所求方程转化为:(x+3)2-5(x+2)=0,化简得:x2+x-1=0解得x1=,x2=,故选:D【点睛】本题考核知识点:本题是一个阅读型的问题,弄清新运算的规则是解答此类题的关键.13.答案不唯一,如x2=1【分析】本题根据一元二次方程的根的定义,确定一元二次方程.【详解】一元二次方程的一般形式为ax2+bx+c=0(k≠0),一个二次项系数为1,即a=1,并且一个根也为1,可令b=0,c=-1,这样的一元二次方程是x2=1.故答案为:答案不唯一,如x2=1.【点睛】根据一元二次方程的定义,利用待定系数法求出方程的解析式.14.【解析】分析: 根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.详解::∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴==,解得:k=.故答案为:.点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.16分析:先利用一元二次方程解的定义得到2-2=8,然后把变形为2(2-2),再利用整体代入的方法计算.详解:∵是关于方程的一个根,,∴2-2-8=0,∴2-2=8,∴=2(2-2)=2×8=16.故答案为:16.点睛:此题考查了一元二次方程的解,利用方程的解可以求方程中字母系数的值或与一元二次方程根有关的代数式的值,或将根代入方程,得到关于字母的代数式,充分利用含有这个字母的等量关系,将所求代数式变形或化简,求出其嗲数是的值,注意可利用整体代入思想. 16.﹣2【分析】先根据判别式的意义得到=42+8a≥0,解得a≥-2,然后在解集中找出负整数即可.【详解】∵关于x的方程ax2+4x-2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥-2,∴负整数a=-1或-2.故答案为-2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式=b2-4ac.当>0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当<0,方程没有实数根.17.125(1-x)2 =80.【解析】分析:等量关系为:原价×(1-下降率)2=80,把相关数值代入即可.详解:第一次降价后的价格为125×(1-x),第二次降价后的价格为125×(1-x)×(1-x)=55×(1-x)2,∴列的方程为125×(1-x)2=80,故答案为125×(1-x)2=80.点睛:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.;(2)m的值为,方程的另一根为1.【分析】若一元二次方程有实数根,则根的判别式,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0;将代入方程可求得m的值,解方程即可求得方程的另一根,即可解题.【详解】关于x的一元二次方程有实数根,,解之得;是这个方程的一个根,,,方程为:,整理得:,方程的根为1.故m的值为,方程的另一根为1.【点睛】本题考查了一元二次方程的求解,本题中代入求得m的值是解题的关键.19.(1)x1=1+,x2=1﹣;(2)x1=3,x2=.【分析】(1)配方法解;(2)因式分解法解.【详解】(1)x2﹣2x﹣2=0,x2﹣2x+1=2+1,(x﹣1)2=3,x﹣1=,x=1,x1=1,x2=1﹣,(2)(x+1)2=4(x﹣1)2.(x+1)2﹣4(x﹣1)2=0.(x+1)2﹣[2(x﹣1)]2=0.(x+1)2﹣(2x﹣2)2=0.(x+1﹣2x+2)(x+1+2x﹣2)=0.(﹣x+3)(3x﹣1)=0.x1=3,x2=.【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.20.(1)x1=3+,x2=3-(2)x1=,x2=3.【分析】【详解】解:(1)方程可化为x2-6x+9=6+9(x-3)2=15x-3=所以,x1=,x2=.(2)因为,a=2,b=-7,c=3>0所以,方程由两个不相等的实数根.所以, .所以,x1=,x2=3.【点睛】本题考核知识点:解一元二次方程. 解题关键点:熟练掌握一元二次方程的解法. 21.(1),;(2).【分析】(1)直接利用十字相乘法分解因式得出答案;(2)根据题意表示出x,y,z的值,进而代入求出答案.【详解】(1)x2+3x﹣4=0(x+4)(x﹣1)=0,则x1=﹣4,x2=1;(2)∵x:y:z=1:2:3,∴设x=a,则y=2a,z=3a,∴==﹣.【点睛】本题主要考查了比例的性质以及因式分解法解一元二次方程,正确分解因式是解题的关键.22.(1)w=﹣10x2+1300x﹣30000; (2)玩具销售单价为50元或80元时,可获得10000元销售利润,(3)销售价格定为65元时,可获得利润12250元.【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出w与x之间的关系式;(2)列出﹣10x2+1300x﹣30000=10000 的方程,求解即可;(3)把w=﹣10x2+1300x﹣30000化为顶点式,求出最大利润即可.【详解】(1)w=﹣10x2+1300x﹣30000;(2)依题意﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)∵w =﹣10x2+1300x﹣30000=﹣10(x﹣65) 2+12250,∴当x=65,w取得最大值,∴销售价格定为65元时,可获得利润12250元.【点睛】本题考查了二次函数的应用及一元二次方程的实际应用,解题的关键是理解题意正确列出二次函数的解析式.23.这个矩形场地的宽为15米,长为30米.【分析】将两条小路分别平移至矩形场地的边上,则四块小矩形场地的面积和变为一块大矩形的面积,根据矩形的面积公式列方程即可得出答案.【详解】解:设这个矩形场地的宽为x米,长为2x米,根据题意可得:(2x﹣2)(x﹣2)=364,则x2﹣3x﹣180=0,(x﹣15)(x+12)=0,解得:x1=15,x2=﹣12(舍去),2x=30(m),答:这个矩形场地的宽为15米,长为30米.【点睛】本题考查了一元二次方程的应用,将两条小路平移至矩形的边上,使四块小矩形拼成一个大的矩形,然后利用矩形的面积公式列出方程是解决此题的关键.。
初三数学人教版九年级上册 第21章 一元二次方程 全章练习题 1. 关于x 的方程(m -3)x |m |-1+6=14是一元二次方程,则m =( B ) A .3 B .-3 C .±3 D .±12.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-13.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16 4.一元二次方程x 2-x -2=0的解是( D ) A .x 1=1,x 2=2 B .x 1=1,x 2=-2 C .x 1=-1,x 2=-2 D .x 1=-1,x 2=25.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-26.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠17.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D ) A .10 B .48 C .36 D .10或88. 已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( A ) A .1B .-1C .0D .-29. 一元二次方程x 2+22x -6=0的根是( C ) A .x 1=x 2= 2B .x 1=0,x 2=-2 2C .x 1=2,x 2=-3 2D .x 1=-2,x 2=3 210. 一元二次方程(x -3)(x -5)=0的两根分别为( D ) A .x 1=3,x 2=-5 B .x 1=-3,x 2=-5 C .x 1=-3,x 2=5 D .x 1=3,x 2=511.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B ) A .长8 m ,宽2.5 m B .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m 12.已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A )A .-1B .-12 C.12D .113.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定14. 三角形一边长为10,另两边长是方程x (x -6)-8(x -6)=0的两实数根,则这是一个___直角___三角形.15.一元二次方程x 2=16的解是__x =±4__.16.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.17.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__. 18.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.19.一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.20.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.21.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__.22.用适当的方法解下列方程:(1)2x 2+7x -4=0; 解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0. 解:x 1=1,x 2=323.已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-kx +1=0的解,∴k =324.试证明:不论m 为何值,方程x 2+(m -2)x +m2-3=0总有两个不相等的实数根.证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根25.已知关于x 的一元二次方程x 2-22x +m =0有两个不相等的实数根. (1)求实数m 的最大整数值;(2)在(1)的条件下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值. 解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m 的最大整数值为1(2)m =1时,方程为x 2-22x +1=0,∴x 1+x 2=22,x 1x 2=1,∴x 12+x 22-x1x2=(x1+x2)2-3x1x2=8-3=526.电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元27.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场28.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形29.阅读下面的例题:解方程x2-|x|-2=0.解:(1)当x≥0时,原方程化为x2-x-2=0.解得x1=2,x2=-1(不合题意,舍去).(2)当x<0时,原方程化为x2+x-2=0.解得x1=1(不合题意,舍去),x2=-2.∴原方程的根是x1=2,x2=-2.请参照例题解方程x2-|x-1|-1=0.解:当x-1≥0,即x≥1时,原方程化为x2-x=0,解得x1=0(不合题意,舍去),x2=1.当x-1<0,即x<1时,原方程化为x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2.∴原方程的根为x1=1,x2=-2。
人教版初中九年级数学上册第21章:一元二次方程 单元检测 (含答案)一、选择题1.下列方程中,是一元二次方程的是( )A .c bx ax ++2=0B .21212--+x x =1 C .21x x +-=1D .x x +3+1=02.一元二次方程52123x x -=的一次项系数及常数项分别为( )A .5,3B .-5,-3C .5,-3D .3.53.下列二次三项式是完全平方式的是( )A .2x +7x +7B .2n -4n -4C .2x 16121++x D .y y 22-+2 4.把2x -8x -3=0配方,使左边成为完全平方式得( )A .(x -4)2=13B .(x -4)2=19C .(x -4)2=7D .(x -8)2=75.如果(x -1)(2+x )=0,那么以下结论正确的是( )A .x =1或x =-2B .x =1C .x =2或x =-1D .x =-26.方程(x +1)2=x +1的正确解法是( )A .化为x +1=1B .化为(x +1)(x +1-1)=0C .化为2x +3x +2=0D .化为x +1=07.关于x 的方程2x =2x -3的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根8.一元二次方程a 2x +b x +c =0中至少有一个根是零的条件是( )A .c =0且b ≠0B .b =0C .c =0且b =0D .c =09.如果a 是一元二次方程2x -3x +m =0的一个根,-a 是一元二次方程2x +3x -m =0的一个根,则a 的值是( )A .1或2B .-3或0C .-1或-2D .0或310.已知方程2x -2x k -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k ≥0D .k >0二、选择题11.方程(2x -1)(x +2)=0的解为_________12.最简二次根式42+a 与322+a 是同类一次根式,则a =_________. 13.若(x +1)(x -1)=2,则x 的值为_________14.已知方程2x -m x +3=0的两个实根相等,那么m =_________ 15.若2x -2x +a =(x -1)2,则a =_________16.当m =_________时,一元二次方程2x -4x +m=0有两个相等的实数根.17.某车间1月份生产a 个零件,以后每个月都比上个月增长的百分率为x ,则2月份生产_________个零件;3月份生产_________个零件.18.已知相邻两个整数的积为72,则这两个数是_________19.关于x 的方程m 2x -2x +3=0有实数根,则m 的取值范围是_________20.如图,小明家有一块长150 cm ,宽100 cm 的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍.若设花色地毯的宽为x cm ,则可列方程为_________三、解答题 21.解方程.(1)9-2x =0(2)(x -2)2=(2x +5)222.用配方法解方程.(1)y y 62--7=0(2)42x -8x +1=023.用公式法解方程.(1)y y -22-1=0(2)32x +5(2x +1)=024.用因式分解法解方程.(1)(3x -1)(x -1)=(4x +1)(x -1) (2)7x (5x +2)=6(5x +2)25.已知方程2x +p x +q =0的一个根与方程2x +q x +p =0的一个根相等,并且p ≠q ,你能根据方程根的有关知识求出p+q 的值吗?26.一根长64 cm 的铁丝被剪成两段,每段均折成正方形,若两个正方形的面积和等于160 cm 2,求这两个正方形的边长.27.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现如果每件衬衫降价1元,商场每天可多售出2件.(1)若商场每天要盈利1 200元,每件衬衫应降价多少元?(2)若要使商场平均每天盈利最多,请你帮商场设计合理的降价方案.28.在等腰△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,已知a =3,b 和c 是关于x 的方程m mx x 2122-++=0的两个实数根,求△ABC 的周长.参考答案一、1~5 B C C B A 6.10 B D D D C 二、11.2,2121-==x x 12.±1 13.±3 14.±23 15.1 16.417.a (x +1) a (x +1)2 18.8,9或-8,-9 19.m ≤31 20.(150+2x )(100+2x )=2×150×100 三、21.(1)x =±3(2)x 1=-1,x 2=-7 22.(1)y 1=-1,y 2=7 (2)231,23121-=+=x x 23.(1)1x =1,2x =21-(2)3105,310521--=+-=x x 24.(1)1x =1,2x =-2 (2)76,5221=-=x x 25.-126.12 c m 和4 c m 27.(1)降价20元(2)设每件衬衫降价x 元,每天盈利y 元,y =(40-x )(20+2x )=-2(x -15)2+1250,所以降价15元时盈利最大 28.7或537。
1
第21章检测题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.若一元二次方程ax2+bx+c=0有一根为0,则下列结论正确的是( C )
A.a=0 B.b=0 C.c=0 D.c≠0
2.把方程x(x+2)=5(x-2)化成一般式,则a,b,c的值分别是( A )
A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,2
3.一元二次方程x2-8x-1=0配方后为( A )
A.(x-4)2=17 B.(x+4)2=15
C.(x+4)2=17 D.(x-4)2=17或(x+4)2=17
4.方程x2-22x+2=0的根的情况为( D )
A.有一个实数根 B.有两个不相等的实数根
C.没有实数根 D.有两个相等的实数根
5.某城市2012年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到
2014年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是
( B )
A.300(1+x)=363 B.300(1+x)2=363
C.300(1+2x)=363 D.363(1-x)2=300
6.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( A )
A.1 B.-3或1 C.3 D.-1或3
7.若关于x的方程2x2-ax+2b=0的两根和为4,积为-3,则a,b分别为( D )
A.a=-8,b=-6 B.a=4,b=-3
C.a=3,b=8 D.a=8,b=-3
8.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x
-3=0的根,则▱ABCD的周长为( A )
A.4+22 B.12+62
C.2+22 D.2+2或12+62
9.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方
程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,
则下列结论正确的是( A )
A.a=c B.a=b C.b=c D.a=b=c
10.方程(k-1)x2-1-kx+14=0有两个实数根,则k的取值范围是( D )
A.k≥1 B.k≤1 C.k>1 D.k<1
二、填空题(每小题3分,共24分)
11.把方程3x(x-1)=(x+2)(x-2)+9化成ax2+bx+c=0的形式为___2x2-3x-5=
0___.
12.已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a=__-2或1___.
13.若关于x的一元二次方程x2+2x-k=0没有实数根,则k的取值范围是__k<-1___.
14.下面是某同学在一次测试中解答的填空题:①若x2=a
2
,则x=a;②方程2x(x-2)
=x-2的解为x=0;③已知x1,x2是方程2x2+3x-4=0的两根,则x1+x2=32,x1x2=-2.其
中错误的答案序号是__①②③___.
2
15.已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是__-65___.
16.如图,一个长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5 cm,
容积是500 cm3的无盖长方体容器,那么这块铁皮的长为__30_cm___,宽为__15_cm___.
17.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是__6或10或
12___.
18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实
数根,则△ABC是 __直角___三角形.
三、解答题(共66分)
19.(8分)用适当的方法解下列方程:
(1)(x+1)(x-2)=x+1; (2)2x2-4x=42.
解:x1=-1,x2=3 解:x1=2+6,x2=2-6
20.(6分)已知关于x的一元二次方程x2-(k+1)x-6=0的一个根为2,求k的值及另
一个根.
解:k=-2,另一个根为-3
21.(8分)已知关于x的一元二次方程x2-(2m-1)x+3=0.
(1)当m=2时,判断方程根的情况;
(2)当m=-2时,求出方程的根.
解:(1)当m=2时,方程为x2-3x+3=0,Δ=(-3)2-4×1×3=-3<0,∴此方程没
有实数根 (2)当m=-2时,方程为x2+5x+3=0,Δ=25-12=13,∴x=
-5±13
2
,故
方程的根为x1=-5+132,x2=-5-132
3
22.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
解:(1)由题意得Δ=9-4(m-1)≥0,∴m≤134
(2)∵x1+x2=-3,x1x2=m-1,∴-6+(m-1)+10=0,∴m=-3,∵m≤
13
4
,∴m的
值为-3
23.(8分)一辆汽车,新车购买价为20万元,第一年使用后折旧20%,以后该车的年折
旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值
11.56万元,求这辆车第二、三年的年折旧率.
解:设这辆车第二、三年的年折旧率为x,由题意得20(1-20%)(1-x)2=11.56,整理
得(1-x)2=0.7225,解得x1=0.15,x2=1.85(不合题意,舍去),∴x=0.15,即x=15%,则
这辆车第二、三年的年折旧率为15%
24.(8分)已知一个两位数,个位上的数字比十位上的数字少4,这个两位数十位和个
位交换位置后,新两位数与原两位数的积为1612,求这个两位数.
解:设原数十位数字为x,个位数字为(x-4),则原数为10x+(x-4);交换位置后新数
为10(x-4)+x.由题意得[10x+(x-4)]×[10(x-4)+x]=1612,整理得x2-4x-12=0,解得
x1=6,x2=-2.数字-2不合题意,应舍去,∴x=6,x-4=2,∴原来这个两位数是62
4
25.(10分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1 (1)零售单价下降m元后,该店平均每天可卖出__(300+100×m0.1)___只粽子,利润为__(1 -m)(300+100×m0.1)___元; 解:由题意得(1-m)(300+100×m0.1)=420,整理得100m2-70m+12=0,解得m1=0.4, 26.(10分)要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬 解:(1)根据小亮的设计方案列方程得(52-x)(48-x)=2300,解得x1=2,x2=98(舍去),
元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润
更多,该店决定把零售单价下降m(0
(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420
元,并且卖出的粽子更多?
m2=0.3,∴当m=0.4时,利润是420元且卖出更多
路,下面分别是小亮和小颖的设计方案.
(1)求小亮设计方案中甬路的宽度x;
(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计
方案中的x取值相同)
∴小亮设计方案中甬道的宽度为2 m
(2)作AI⊥CD,HJ⊥EF,垂足分别为I,J,∵BC∥AD,AB∥CD,∴四边形ADCB为
平行四边形,∴BC=AD.由(1)得x=2,∴BC=HE=2=AD,在Rt△ADI中,可求AI=3,
∴小颖设计方案中四块绿地的总面积为52×48-52×2-48×2+(3)2=2299(m2)