当前位置:文档之家› 烷烃

烷烃

烷烃
烷烃

烷烃编辑

烷烃(wán tīng),即饱和烃(saturated group),是碳氢化合物下的一种饱和烃,其整体构造大多仅由碳、氢、碳碳单键与碳氢单键所构成,同时也是最简单的一种有机化合物,而其下又可细分出链烷烃与环烷烃。链烷烃是指碳原子之间以单键结合成链状(直链或含支链)的烷烃。环烷烃是指含有脂环结构的烷烃。

中文名称

烷烃

英文名称

alkane

应用学科

化学;有机化学

定义

碳碳间、碳氢间均以单键相连的烃

目录

1物理性质

?性质变化规律

?物理常数

2化学性质

?自由基反应

?卤化反应

?热裂反应

?氧化反应

?燃烧

?硝化反应

?磺化及氯磺化

?开环反应

3分类

4命名规则

?普通命名法

?系统命名法

5制备

1物理性质编辑

性质变化规律

在室温下,含有1~4个碳原子的烷烃为气体;常温下,含有5~8个碳原子的烷烃为液体;含有8~16个碳原子的烷烃可以为固体,也可以为液体;含有17个碳原子以上的正烷烃为固体,但直至含有60个碳原子的正烷烃(熔点99℃),其熔点(melting point)都不超过100℃。低沸点(boiling point)的烷烃为无色液体,有特殊气味;高沸点烷烃为黏稠油状液体,无味。烷烃为非极性分子(non-polar molecule),偶极矩(dipole moment)为零,但分子中电荷的分配不是很均匀的,在运动中可以产生瞬时偶极矩,瞬时偶极矩间有相互作用力(色散力)。此外分子间还有Vander Waals引力,这些分子间的作用力比化学键的小一二个数量级,克服这些作用力所需能量也较低,因此一般有机化合物的熔点、沸点很少超过300℃。

正烷烃的沸点随相对分子质量的增加而升高,这是因为分子运动所需的能量增大,分子间的接触面(即相互作用力)也增大。低级烷烃每增加一个CH2,相对分子质量变化较大,沸点也相差较大,高级烷烃相差较小,故低级烷烃比较容易分离,髙级烷烃分离困难得多。

在同分异构体中,分子结构不同,分子接触面积不同,相互作用力也不同,正戊烷沸点36.1℃,2-甲基丁烷沸点25℃,2,2-二甲基丙烷沸点只有9℃。叉链分子由于叉链的位阻作用,其分子不能像正烷烃那样接近,分子间作用力小,沸点较低。

固体分子的熔点也随相对分子质量增加而增高,这与质量大小及分子间作用力有关外,还与分子在晶格中的排列有关,分子对称性高,排列比较整齐,分子间吸引力大,熔点就高。在正烷烃中,含单数碳原子的烷烃其熔点升高较含双数碳原子的少。

通过X射线衍射方法分析,固体正烷烃晶体为锯齿形,在单数碳原子齿状链中两端甲基同处在一边,如正戊烷,双数碳链中两端甲基不在同一边,如正己烷,双数碳链彼此更为靠近,相互作用力大,故熔点升高值较单数碳链升髙值较大一些。

烷烃的密度(density)随相对分子质量增大而增大,这也是分子间相互作用力的结果,密度增加到一定数值后,相对分子质量增加而密度变化很小。

与碳原子数相等的链烷烃相比,环烷烃的沸点、熔点和密度均要髙一些。这是因为链形化合物可以比较自由地摇动,分子间“拉”得不紧,容易挥发,所以沸点低一些。由于这种摇动,比较难以在晶格内做有次序的排列,所以熔点也低一些。由于没有环的牵制,链形化合物的排列也较环形化合物松散些,所以密度也低一些。同分异构体和顺反异构体也具有不同的物理性质。下表是若干烷烃和环烷烃的物理常数。

所有烷烃,由于σ键极性很小,以及分子偶极矩为零,是非极性分子。根据相似相溶原则,烷烃可溶于非极性溶剂如四氯化碳、烃类化合物中,不溶于极性溶剂,如水中。[1]

2化学性质编辑

自由基反应

1.碳自由基的定义和结构

某一键均裂时会产生带有孤电子的原子或基团,称之为自由基。孤电子在氢原子上的自由基称为氢自由基。孤电子在碳原子上的自由基称为碳自由基。烷烃中的碳氢键均裂时会产生一个氢自由基和一个烷基自由基即碳自由基。自由基碳sp2杂化,三个sp2杂化轨道具有平面三角形的结构,每个sp2杂化轨道与其它原子的轨道通过轴向重叠形成σ键,成键轨道上有一对自旋相反的电子。一个p轨道垂直于此平面,p轨道被一个孤电子占据。

2.键解离能和碳自由基的稳定性

(1)键解离能

分子中的原子总是围绕着它们的平衡位置做微小的振动,分子振动类似于弹簧连接的小球的运动,室温时,分子处于基态,这时振幅很小,分子吸收能量,振幅增大。如果吸收了足够的能量,振幅增大到一定程度,键就断了,这时吸收的热量,是键解离反应的焓(ΔH),是这个键的键能,或称键解离能(bond-dissociation energy),用Ed表示。

(2)碳自由基的稳定性

自由基的稳定性,是指与它的母体化合物的稳定性相比较,比母体化合物能量高得多的较不稳定,高得少的较稳定。从上面C一H键的解离能数据可以看出:CH4中C—H键解离,其解离能最大,在同列系中第一个化合物往往是比较特殊的;CH3CH3与CH3CH2CH3中断裂一级碳上的氢,解离能较CH4稍低,形成的均为一级自由基;CH3CH2CH3中断裂二级碳原子上的氢,其解离能又低一些,形成二级自由基;(CH3)3CH中三级碳原子上的氢断裂,其解离能最低,形成三级自由基。这些键解离反应中,产物之一是,均是相同的,因此键解离能的不同,是反映了碳自由基的稳定性不同。解离能越低的碳自由基越稳定。因此碳自由基的稳定性顺序为

3°C·>2°C·>1°C·>H3C·

在烷烃分子中,C—C键也可解离。

3.自由基反应的共性

化学键均裂产生自由基。由自由基引发的反应称为自由基反应,或称自由基型的链反应(chain reaction)。自由基反应一般都经过链引发(initiation )、链转移(propagation,或称链生成)、链终止(termirrntimi)三个阶段。链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。

有些化合物十分活泼,极易产生活性质点自由基,这些化合物称之为引发剂(initiator)。有时也可以通过单电子转移的氧化还原反应来产生自由基。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段。自由基两两结合成键。所有的自由基都消失了,自由基反应也就终止了。

自由基反应的特点是没有明显的溶剂效应,酸、碱等催化剂对反应也没有明显影响,当反应体系中有氧气(或有一些能捕捉自由基的杂质存在)时,反应往往有一个诱导期(induction period) 。[1]

卤化反应

烷烃中的氢原子被卤原子取代的反应称为卤化反应(halogenation)。卤化反应包括氟化(fluorinate),氯化(chlorizate),溴化(brominate)和碘化(iodizate)。但有实用意义的卤化反应是氯化和溴化。

1.甲烷的氯化

甲烷在紫外光或热(250~400℃)作用下,与氯反应得各种氯代烷。

如果控制氯的用量,用大量甲烷,主要得到氯甲烷;如用大量氯气,主要得到四氯化碳。工业上通过精馏,使混合物一一分开。以上几个氯化产物,均是重要的溶剂与试剂。

甲烷氯化反应的事实是:

①在室温暗处不发生反应;

②髙于250℃发生反应;

③在室温有光作用下能发生反应;

④用光引发反应,吸收一个光子就能产生几千个氯甲烷分子;

⑤如有氧或有一些能捕捉自由基的杂质存在,反应有一个诱导期,诱导期时间长短与存在这些杂质多少有关。根据上述事实的特点可以判断,甲烷的氯化是一个自由基型的取代反应。

2.甲烷的卤化

在同类型反应中,可以通过比较决定反应速率一步的活化能大小,了解反应进行的难易。氟与甲烷反应是大量放热的,但仍需+4.2KJ/mol活化能,一旦发生反应,大量的热难以移走,破坏生成的氟甲烷,而得到碳与氟化氢,因此直接氟化的反应难以实现。碘与甲烷反应,需要大于141KJ/mol的活化能,反应难以进行。氯化只需活化能+16.7KJ/mol,溴化只需活化能+75.3KJ/mol,故卤化反应主要是氯化、溴化。氯化反应比溴化易于进行。

碘不能与甲烷发生取代反应生成碘甲烷,但其逆反应很容易进行。

由基链反应中加入碘,它可以使反应中止。

3.高级烷烃的卤化

在紫外光或热(250~400℃)作用下,氯、溴能与烷烃发生反应,氟可在惰性气体稀释下进行烷烃的氟化,而碘不能。[1]

热裂反应

无氧存在时,烷烃在髙温(800℃左右)发生碳碳键断裂,大分子化合物变为小分子化合物,这个反应称为热裂(pymlysis)。石油加工后除得汽油外,还有煤油、柴油等相对分子质量较大的烷烃;通过热裂反应,可以变成汽油、甲烷、乙烷、乙烯及丙烯等小分子的化合物,其过程很复杂,产物也复杂;碳碳键、碳氢键均可断裂,断裂可以在分子中间,也可以在分子一侧发生;分子愈大,愈易断裂,热裂后的分子还可以再进行热裂。热裂反应的反应机制是热作用下的自由基反应,所用的原料是混合物。

热裂后产生的自由基可以互相结合。热裂产生的自由基也可以通过碳氢键断裂,产生烯烃。总的结果是大分子烷烃热裂成分子更小的烷烃、烯烃。这个反应在实验室内较难进行,在工业上却非常重要。工业上热裂时用烷烃混以水蒸气在管中通过800℃左右的加热装置,然后冷却到300~400°C,这些都是在不到一秒钟时间内完成的,然后将热裂产物用冷冻法加以一一分离。塑料、橡胶、纤维等的原料均可通过此反应得到。

乙烯的世界规模年产数千万吨,而且还在不断增长。各国所用烷烃原料不同,产物也有差别,如用石脑油为原料热裂后可得甲烷15%、乙烯31.3%、乙烷3.4%、丙烯13.1 %、丁二烯4.2%、丁烯和丁烷2.8%、汽油22%、燃料油6%,尚有一些少量其它产品。

一般在碳链中间较易断裂,然后再产生一系列的β-断裂。

石脑油中还有支链烷烃、环烷烃、芳香烃,如环烷烃热裂可得乙烯与丁二烯。

芳香烃仅在侧链上发生反应,因芳环稳定,保持不变。因此,如生产乙烯最好是含直链烷烃

最多的石油馏分。

如用催化剂进行热裂反应可降低温度,但反应机理就不是自由基反应而是离子型反应。[1] 氧化反应

在生活中经常碰到这样的现象,人老了皮肤有皱纹,橡胶制品用久了变硬变黏,塑料制品用久了变硬易裂,食用油放久了变质,这些现象称为老化。老化过程很慢,老化的原因首先是空气中的氧进入具有活泼氢的各种分子而发生自动氧化反应(autoxidaticm),继而再发生其它反应。[1]

燃烧

所有的烷烃都能燃烧,完全燃烧时,反应物全被破坏,生成二氧化碳和水,同时放出大量热。燃烧时火焰为淡蓝色,不明亮。[1]

硝化反应

烷烃与硝酸或四氧化二氮进行气相(400~450℃)反应,生成硝基化合物(RNO2)。这种直接生成硝基化合物的反应叫做硝化(nitration),它在工业上是一个很重要的反应。它之所以重要是由于硝基烷烃可以转变成多种其它类型的化合物,如胺、羟胺、腈、醇、醛、酮及羧酸等。此外,硝基烷烃可以发生多种反应,故在近代文献中有关硝基烷烃的应用的报道日益增多。在实验室中采用气相硝化法有很大的局限性,所以实验室内主要通过间接方法制备硝基烷烃。气相硝化法制备硝基烷烃,常得到多种硝基化合物的混合物。[1]

磺化及氯磺化

烷烃在高温下与硫酸反应,和与硝酸反应相似,生成烷基磺酸,这种反应叫做磺化(sulfcmation)。

长链烷基磺酸的钠盐是一种洗涤剂,称为合成洗涤剂,例如十二烷基磺酸钠即其中的一种。高级烷烃与硫酰氯(或二氧化硫和氯气的混合物)在光的照射下,生成烷基磺酰氯的反应称为氯磺化。磺酰氯这个名称是由硫酸推衍出来的。硫酸去掉一个羟基后剩下的基闭称为磺(酸)基,磺(酸)基和烷基或其它烃基相连而成的化合物统称为磺酸。磺酸中的羟基去掉后,就得磺酰基,它与氯结合,就得磺酰氯。

磺酰氯经水解,形成烷基磺酸,其钠盐或钾盐即上述的洗涤剂。其反应机理与烷烃的氯化很相似。[1]

开环反应

五元或五元以上的环烷烃和链烷烃的化学性质很相像,对一般试剂表现得不活泼,也不易发生开环(opening of ring)反应。但能发生自由基取代反应,三元、四元的小环烷烃分子不稳定,比较容易发生开环反应。

1.与氢反应

环丙烷与氢气在Pt/C,50℃或Ni,80℃时反应,生成丙烷。

乙基环丙烷与氢气在Pt/C,50℃或Ni,80℃时反应,生成2-甲基丁烷。

环丁烷与氢气在Pt/C,125℃或Ni,200℃时反应,生成丁烷。

五元、六元、七元环在上述条件下很难发生反应。

2.与卤素反应

环丙烷与溴在室温下反应,生成1,3-二溴丙烷。

环丙烷在三氯化铁存在下与氯气反应,生成1,3-二氯丙烷。

四元环和更大的环很难与卤素发生开环反应。

3.与氢碘酸反应

环丙烷、甲基环丙烷、环丁烷可与氢碘酸反应,其它环烷烃不发生这类反应。

从上述例子可以看到,开环的反应活性为:三元环>四元环>五、六、七元环。此外,小环化合物在合适的条件下也能发生自由基取代反应。[1]

3分类编辑

分子中没有环的烷烃称为链烷烃(acyclic alkane),其通式为CnH2n+2(n>=1),n为碳原子数。分子中含有环状结构的烷烃叫环烷烃(cycloalkane),又称为脂环化合物(alicyclic compound)。只含有一个环的环烷烃称为单环烷烃,单环烷烃的通式为CnH2n,与单烯烃互为同分异构体。环烷烃按环的大小,分为①小环:三、四元环,②普通环:五、六、七元环,③中环:八至十一元环,④大环:十二元环以上。分子中只有一个环的称为单环;两个环的称为双环;有三个或以上环的称为多环。环系各以环上一个碳原子用单键直接相连而成的多环烧烃称为集合环烷烃(cycloalkane ring assembly)。两个环共用两个或多个碳原子的多环烷烃称为桥环烷烃(bridged cycloalkane)。单环之间共用一个碳原子的多环烷烃称为螺环烷烃(spirocyclicalkane)。

4命名规则编辑

烷烃的命名法常用的有3种,现分述如下(仅限于我国):

普通命名法

普通命名法亦称习惯命名法,适用于比较简单的烷烃。碳原子数在10以下的烷烃,分别用甲、乙、丙、丁、戊、己、庚、辛、壬、癸等天干名称表示碳原子数目,例如:CH4称为甲烷,C2H6称为乙烷,C3H8称为丙烷,余此类推;碳原子数在10以上时用汉文数字表示,例如C11H24称为十一烷,C18H38称为十八烷。

为了区别异构体,可用“正”、“异”、“新”等作前缀来表示。“正”表示直链烷烃;“异”表示碳链一端具有(CH3)2CH—结构,此外再无其他侧链者;“新”表示碳链一端有(CH3)C—结构此外再无其他侧链的含5、6个碳原子的烷烃,例如:

CH3—CH2—CH2—CH2—CH2—CH3 正己烷

CH3—CH—CH2—CH2—CH3

CH3

异己烷

CH3

|

CH3—CH—CH2—CH3

|

CH3

新己烷

CH3

CH3—CH—CH---CH2

CH3

22.二甲基丁烷

衍生物命名法[2]

衍生物命名法是以甲烷为母体,把其他烷烃看作是甲烷的烷基衍生物来命名。在命名时选择连有烷基最多的碳原子,烷基按大小顺序排列,较小的排在前面。例如:

CH3—CH—CH2—CH3

CH3

二甲基乙基甲烷

二甲基乙基异丙基甲烷

这种命名法虽然能反映出烷烃的分子构造,但仍不适用于构造更为复杂的烷烃。

系统命名法

这是采用国际上通用的IUPAC命名原则,并结合我国的文字特点而制定的系统命名法。直链烷烃的命名与普通命名法基本一致,只是把“正”字省略;而把带有支链的烷烃看作是直链烷烃的烷基衍生物,并按下列规定命名:

(1)选择分子中最长的碳链为主链,把支链烷基看做主链上的取代基,根据主链所含的碳原子数称为某烷。

(2)由距离支链最近的一端开始,将主链的碳原子用阿拉伯数字编号,支链所在的位置以它所连接的碳原子的号数表示。

(3)把取代基的名称写在烷烃名称的前面,如果主链上含有几个不同的取代基时,按照由小到大的顺序排列;如果含有几个相同的取代基,可以在取代基名称前面用二、三、四……来表示。

如果从碳链的任一端开始,第一个取代基的位置都相同时,则要求表示所有取代基位置的数字之和是最小的数。[2]

5制备编辑

碳氢化合物的主要来源是天然气(natural gas)和石油(petroleum)。尽管各地的天然气组分不同,但几乎都含有75%的甲烷、15%的乙烷及5%的丙烷,其余的为较高级的烷烃。而含烷烃种类最多的是石油,石油中含有1至50个碳原子的链形烷烃及一些环状烷烃,而以环戊烷、环己烷及其衍生物为主,个别产地的石油中还含有芳香烃。我国各地产的石油,成分也不相同,但可根据需要,把它们分馏成不同的馏分加以应用。烷烃不仅是燃料的重要来源,而且也是现代化学工业的原料。另外,烷烃还可以作为某些细菌的食物,细菌食用烷烃后,分泌出许多很有用的化合物,也就是说烷烃经过细菌的“加工”后,可成为更有用的化合物。

上述情况表明,石油工业的发展对于国民经济以及有机化学的发展都非常重要。

石油虽含有丰富的各种烷烃,但这是个复杂混合物,除了C1~C6烷烃外,由于其中各组分的相对分子质量差别小,沸点相近,要完全分离成极纯的烷烃,较为困难。采用气相色谱法,虽可有效地予以分离,但这只适用于研究,而不能用于大量生产。因此在使用上,只把石油分离成几种馏分来应用,石油分析中有时需要纯的烷烃作基准物,可以通过合成的方

汽油(petrol)在内燃机中燃烧而发生爆燃或爆震,这会降低发动机的功率并会损伤发动机。燃料引起爆震的倾向,用辛烷值(octane value)表示,在汽油燃烧范围内,将2,2,4-三甲基戊烷的辛烷值定为100。辛烷值越高,防止发生爆震的能力越强。六个碳以上的直链烷烃辛烷值很低,带支链的、不饱和的脂环、特别是芳环最为理想,有的超过100。大部分现代化的设

备要求辛烷值在90~100之间。可将石脑油、常压渣油,有时也用瓦斯油经过加工,将辛烷值提髙到95左右,再掺入汽油中使用。加工方法之一是催化重整(catalytic reforming),主要将石脑油中C6以上成分芳构化(aromatization),即成芳香烃。此法除使石脑油提高辛烷值外,在化工中主要用来生产芳香烃加工方法之二为催化裂化,此法除能提高辛烷值外,在化工中主要用于生产丙烯、丁烯。[1]

参考资料

必修2烷烃知识点总结

第一节 最简单的有机化合物——甲烷 第1课时 甲烷的性质 知识概括: 一、甲烷的存在与结构 1.甲烷的存在 甲烷是天然气、沼气、油田气和煤矿坑道气的主要成分。天然气中甲烷所占的体积分数一般为80%~97%。 思考题1 一般引起煤矿中瓦斯爆炸的气体的主要成分是什么 答案 甲烷。 2.甲烷的组成与结构 甲烷的分子式为CH 4。甲烷分子是一种对称的正四面体结构,其中,碳原子位于四面体的中心,四个氢原子分别位于四面体的顶点。碳原子与四个氢原子形成四个完全相同的共价键(键的长度和强度相同,夹角相等)。 思考题2 甲烷分子中所含的共价键有几种是极性键还是非极性键 答案 一种(C —H 键);极性键。 二、甲烷的性质 1.物理性质 甲烷是一种没有颜色、没有气味的气体,极难溶于水,密度比空气小。 2.化学性质 (1)稳定性:在通常情况下,甲烷比较稳定,与KMnO 4等强氧化剂不反应,与强酸、强碱也不反应。 (2)可燃性:甲烷是一种优良的气体燃料,通常状况下,1 mol 甲烷在空气中完全燃烧, 生成CO 2和液态水,放出890 kJ 热量。甲烷完全燃烧的化学方程式为CH 4+2O 2――→点燃 CO 2+2H 2O 。 (3)取代反应 甲烷与Cl 2等物质可以发生取代反应。取代反应是指有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。在室温下,甲烷和氯气的混合物无光照时,不发生反应;但光照时,混合物的颜色逐渐变浅,瓶壁出现油状液滴,瓶中有少量白雾。反应的化学方程式为CH 4+Cl 2――→光照 CH 3Cl +HCl 、CH 3Cl +Cl 2――→光照 CH 2Cl 2+HCl 、CH 2Cl 2+Cl 2――→光照CHCl 3+HCl 、CHCl 3+Cl 2――→光照 CCl 4+HCl 。 甲烷与氯气取代反应的四种有机产物都不溶于水。在常温下,一氯甲烷是气体,其他三种都是油状液体。 思考题3 下列关于甲烷与氯气发生取代反应所得生成物的说法中正确的是( ) A .都是有机物 B .都不溶于水 C .有一种是气态物质,其余都是液体 D .有一种是无机物,其余都是有机物 解惑 一、甲烷的分子组成和结构 1.甲烷分子式的推导 若已知甲烷的密度在标准状况下是 g·L -1 ,含碳75%,含氢25%,请确定它的分子式。

高二化学-烷烃和烯烃知识点总结复习及习题操练

学员编号:年级:高二课时数: 2 学员姓名:辅导科目:化学学科教师:授课类型T C烷烃和烯烃T 分析推理能力授课日期及时段 教学内容 引导回顾 知识点解题方法 1.烷烃和烯烃 1. 熟悉并掌握简单脂肪烃 2.烯烃的顺反异构 2. 简单同分异构体 同步讲解 1.了解烷烃和烯烃同系物熔、沸点的变化规律。 2.掌握烷烃取代、烯烃加成及加聚等重要的有机反应类型,并能灵活地加以运用。 3.进一步理解同分异构现象、同分异构体等概念,并能书写简单烯烃的顺、反异构体,了解烯烃的顺、反异构体在物理性质上的差异性。 1.根据教材中列举的部分烷烃与烯烃的沸点和相对密度的数据,以分子中碳原子数为横坐标,以沸点或相对密度为纵坐标,制作分子中碳原子数与沸点或相对密度变化的曲线图。通过所绘制的曲线图你能得到什么信息? 提示:如图1和图2所示。

通过曲线图可知,随着烷烃分子中碳原子数的增加,烷烃的沸点依次升高,相对密度依次增大,烯烃的曲线图同烷烃的类似。 2.由于烷烃和烯烃的结构不同,使其化学性质也存在着较大的差异,请完成下表的空白,并加以对比总结。提示:如下表所示。 烃的类别分子结构特点代表物质主要化学性质 烷烃 ①都是单键 ②链状结构 ③锯齿状排列 丙烷 ①性质较稳定 ②氧化反应 ③取代反应 ④分解反应 烯烃 ①含C=C键 ②其余键为单键 乙烯 ①氧化反应 ②加成反应 ③加聚反应 1.物理性质 烷烃和烯烃的物理性质随着分子中碳原子数的递增,呈现出规律性的变化:熔沸点逐渐增大,相对密

度逐渐增大,但不超过水的密度。 注意:烷烃、烯烃、炔烃的同系物中,随着碳原子数的增多,物理性质呈现规律性的变化。 ①状态:常温下,碳原子数小于5个的烃呈气态,含5~16个碳原子的烃呈液态,16个碳原子以上的烃呈固态。 ②熔沸点:随着碳原子数的增多,烃的熔沸点逐渐升高,相同碳原子数的同类烃的熔沸点随着支链的增多而降低。 ③密度:随着碳原子数的增多,烃的密度逐渐增大,但是常温常压下的密度均比水的密度小。 ④溶解性:烃都难溶于水,易溶于有机溶剂。 2.有机化学反应类型 (1)取代反应。 ①定义:有机化合物分子中的某些原子或原子团被其他原子或原子团所代替的反应。 ②特点:“有上有下,取而代之”。 ③常见的取代反应。 a .烷烃、芳香烃中的氢原子可以 被—X 、—NO 2、—SO 3H 取代。 CH 4+Cl 2――→光照 CH 3Cl +HCl(卤 代)

烷烃烯烃炔烃知识点汇总

烷烃烯烃炔烃知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

第一节 脂肪烃 什么样的烃是烷烃呢?请大家回忆一下。 一、烷烃 1、结构特点和通式:仅含C —C 键和C —H 键的饱和链烃,又叫烷烃。(若C —C 连成环状,称为环烷烃。) 烷烃的通式:C n H 2n+2 (n ≥1) 接下来大家通过下表中给出的数据,仔细观察、思考、总结,看自己能得到什么信息? 表2—1 部分烷烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 甲烷 CH 4 -164 0.466 乙烷 CH 3CH 3 -88.6 0.572 丁烷 CH 3(CH 2) 2CH 3 -0.5 0.578 (根据上表总结出烷烃的物理性质的递变规律) 2、物理性质 烷烃的物理性质随着分子中碳原子数的递增,呈规律性变化,沸点逐渐升高,相对密度逐渐增大;常温下的存在状态,也由气态(n ≤4)逐渐过渡到液态、固态。还有,烷烃的密度比水小,不溶于水,易溶于有 我们知道同系物的结构相似,相似的结构决定了其他烷烃具有与甲烷相似的化学性质。 3、化学性质(与甲烷相似) (1)取代反应 如:CH 3CH 3 + Cl 2 → CH 3CH 2Cl + HCl (2)氧化反应 C n H 2n+2 + — O 2 → nCO 2 +(n+1)H 2O 烷烃不能使酸性高锰酸钾溶液褪色 接下来大家回忆一下乙烯的结构和性质,便于进一步学习烯烃。 二、烯烃 1、概念:分子里含有碳碳双键的不饱和链烃叫做烯烃。 通式:C n H 2n (n ≥2) 例: 乙烯 丙烯 1-丁烯 2-丁烯 师:请大家根据下表总结出烯烃的物理性质的递变规律。 表2—1 部分烯烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 乙烯 CH 2=CH 2 -103.7 0.566 丙烯 CH 2=CHCH 3 -47.4 0.519 (根据上表总结出烯烃的物理性质的递变规律) 2、物理性质(变化规律与烷烃相似) 烯烃结构上的相似性决定了它们具有与乙烯相似的化学性质。 3、化学性质(与乙烯相似) (1)烯烃的加成反应:(要求学生练习) ;1,2 一二溴丙烷 ;丙烷 2——卤丙烷 (简单介绍不对称加称规则) (2) (3)加聚反应: 光照 3n 点燃

最新高一化学必修二烷烃烯烃练习题

高一化学必修二烷烃烯烃练习题 班级姓名学号编辑高一、一科 1.若1mol某气态烃C X H Y完全燃烧,需用3mol氧气,则() A、X=2,Y=2 B、X=2,Y=4 C、X=3,Y=6 D、X=3,Y=8 2.等质量的下列烃完全燃烧时,消耗氧气最多的是() A、CH4 B、C2H6 C、C3H6 D、C6H6 3.乙烷中混有少量乙烯气体, 欲除去乙烯可选用的试剂是 ( ) A.氢氧化钠溶液 B.酸性高锰酸钾溶液 C.溴水 D.碳酸钠溶液 4.能够证明甲烷构型是四面体的事实是() A.甲烷的四个键键能相同 B.甲烷的四个键键长相等 C.甲烷的所有C-H键键角相等 D.二氯甲烷没有同分异构体 5.下列有关说法不正确的是() A.由乙烯分子组成和结构推测含一个碳碳双键的单烯烃通式为C n H2n B.乙烯的电子式为: C.从乙烯与溴发生加成反应生成1,2—二溴乙烷可知乙烯分子的碳碳双键中有一个键不稳定,易发生断裂 D.乙烯空气中燃烧的现象与甲烷不同的原因是乙烯中含碳量高 6.下列化学性质中,烷烃不具备的是() A.一定条件下发生分解反应 B.可以在空气中燃烧 C.与氯气发生取代反应 D.能使高锰酸钾溶液褪色 7.乙烯发生的下列反应中,不属于加成反应的是() A.与氢气反应生成乙烷B.与水反应生成乙醇 C.与溴水反应使之褪色D.与氧气反应生成二氧化碳和水 8.甲烷和乙烯的混合气体100 mL ,能催化加成氢气30 mL ,则混合气体中含有甲烷()

A .50 mL B .70 mL C .30 mL D .15 mL 9.下列一定属于不饱和烃的是 ( ) A .C 2H 4 B . C 4H 8 C .C 3H 8 D .C 5H 12 10.下列叙述错误的是( ) A.通常情况下,甲烷跟强酸、强碱、酸性4KMnO 溶液都不起反应 B.甲烷化学性质比较稳定,不能被任何氧化剂氧化 C.甲烷跟氯气反应无论生成3CH Cl 、22CH Cl 、3CHCl ,还是4CCl ,都属于取代反应 D.甲烷的四种有机取代物都难溶于水 11.如下图所示,集气瓶内充满某混合气体,置于光亮处,将滴管内的 水挤入集气瓶后,烧杯中的水会进入集气瓶,集气瓶内气体可能是 ( ) ①CO 、2O ②2Cl 、4CH ③2NO 、2O ④2N 、2H A.①② B.②④ C.③④ D.②③ 12.下列物质属于烷烃的是( ) A.816C H B.322CH CH CH OH 13.根据下表中烃的分子式排列规律,判断空格中烃的同分异构体数目是( )

烃和烷烃燃烧规律

专题:烃和烷烃 一、烃和烷烃燃烧的相关计算 CxHy+ O2 → CO2+ H2O C n H2n+2+ O2 → CO2+ H2O ★C、H元素守恒: 【例1】(1)混合气体通入浓硫酸或无水氯化钙:0.1mol的烃完全燃烧,放出的CO2在标准状况下为2.24L,把混合气体通入浓硫酸或无水氯化钙中,浓硫酸或无水氯化钙增重3.6g,该烃的分子式为。 (2)混合气体通入碱石灰:0.5mol的烃完全燃烧,若将混合气体通入碱石灰中,碱石灰增重12g,若通入浓硫酸中,浓硫酸增重48g,该烃的分子式为。 (3)混合气体通入过氧化钠: Na2O2+ CO2= △m= 结论: Na2O2 + H2O= △m= 结论: 0.5mol的某烃完全燃烧通入足量澄清石灰水中产生白色沉淀200g,若将混合气体通入装有足量过氧化钠的干燥管中,固体增重59g,该烃的分子式为,该烃 (填“是”或者“不是”)烷烃,理由是 ★等物质的量烃完全燃烧耗氧量的计算:CxHy~ O2 C n H2n+2~ O2 【例2】下列等物质的量的烃,耗氧量由多到少排列为 ○1C2H6 ○2C3H4 ○3C2H2 ○4C6H6○5C5H12 ○6C2H4 ★等质量的烃完全燃烧耗氧量的计算: C ~ O2 ~ CO2 4H ~ O2 ~ 2H2O 12g 1mol 4g 1mol 结论:y/x 越大,耗氧量越大 【例3】(1)下列等质量的烃,耗氧量由多到少排列为 ○1C2H6 ○2C3H4 ○3C2H2 ○4C6H6 ○5C5H12 ○6C2H4 (2)等质量的烷烃,耗氧量最多的烷烃是 ★最简式相同的有机物,不论以何种比例混合,只要混合物总质量一定,完全燃烧后生成的CO2和H2O及耗氧量就一定。 【例4】由A、B两种烃组成的混合物,当混合物总质量一定时,无论A、B以何种比例混合,完全燃烧消耗氧气的质量为一恒量。对A、B两种烃有下面几种说法:①互为同分异构体; ②互为同系物;③具有相同的最简式;④两种烃中碳的质量分数相同。正确的结论是( ) A.①②③④ B.①③④ C.②③④ D.③④ ★烃完全燃烧前后气体体积变化规律: (利用差量法确定分子中的含H数) CxHy+( x+y/4)O2 →xCO2+ y/2H2O △V 1 x+y/4 x y/2(气) 1-y/4 1 x+y/4 x (液) 减少1+y/4 ●H2O为气态(100℃以上):体积不变 y = 4(CH4 C2H4 C3H4) 体积减小 y < 4(C2H2) 体积增大 y > 4(C2H6 C3H8) 【例5】两种气态烃以任意比例混合,在105℃时1 L该混合烃与9 L氧气混合,充分燃烧

烷烃知识点总结

烷烃知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一节 烷烃 甲烷 一、甲烷的存在和能源 (1)甲烷是由C 、H 元素组成的最简单的烃,是含氢量最高的有机物。是天然气、 沼气、油田气、煤矿坑道气的主要成分。俗名又叫沼气、坑气,由腐烂物质发酵而 成。天然气是一种高效、低耗、污染小的清洁能源. (2)世界上20%的能源需求是由天然气供给的,我国的天然气主要分布在东西部 (西气东输) 二、物理性质: 甲烷是一种没有颜色,没有气味的气体(天然气为臭味是因为掺杂了H 2S 等气 体),标准状况下密度是L (可求出甲烷的摩尔质量为16g/moL ),极难溶于水(两 个相似相溶原理都可解释)。 三、甲烷分子的组成及结构: 1、组成:如何确定甲烷属于烃,即如何确定有机物有哪些元素组成通常采用燃烧法。 CH 4+ 2O 2 ??→?点燃CO 2 + 2H 2O 那么可以肯定甲烷中一定有C 、H 两元素,而不能确定是否有O 元素,于是需要实验 数据:如甲烷气体点燃后产物使浓硫酸增重,使碱石灰增重。 计算:甲烷中C 元素为,,H 元素为 mol , g ,;两者加起来刚好等于甲烷的质量, 故甲烷中只含C 、H 两元素。且两者比例为1:4,但1:4的物质有很多如CH 4、 C 2H 8、C 3H 12等,如何确定究竟为哪个,则设甲烷化学式为C x H 4x (CH 4为最简式), 要求出x 值还需知道其相对分子质量。由标准状况下密度是L ,可求出甲烷的摩尔质 量为16g/moL ,故得到x=1。于是甲烷的化学式为CH 4。 2、结构 知道了甲烷的组成,究竟甲烷的空间构型如何到底是平面正四边形还是立体正四面体,科学家为了弄清楚这个问题,分析了甲烷的二氯代物CH 2Cl 2的种类。如果甲烷是正四边形,那么CH 2Cl 2应该有两种产物(邻位和对位)必有熔沸点等物理性质不同,但如果是立体正四面体,其二氯代物就只有一种。事实上科学家发现CH 2Cl 2确实只有一种,所以确定甲烷的空间构型为正四面体,在甲烷分子中一碳原子为中心,四个氢原子为顶点形成的正分子式 电子式 结构式 结构简式 空间结构 CH 4 CH 4 结构简式(在结构式的基础上省略C —H 单键):CH 4 最简式(各元素原子个数的最简单的比值):CH 4 [展示] 甲烷的球棍模型、比例模型。 四、甲烷的实验室制法:(本部份内容教材已经删去,仅作介绍) (1)原料:无水醋酸钠、碱石灰(NaOH 、CaO 的混合物) (2)反应原理: Na 2CO 3 + CH 4↑ CH 3COONa + NaOH CaO H C H H H

烷烃烯烃炔烃的化学性质练习题(附答案)

2020年03月12日烷烃烯烃炔烃的化学性质练习题 学校: __________ 姓名: _________ 班级: _________ 考号: 注意事项: 注意事项: 1、答题前填写好自己的姓名、班级、考号等信息 正确填写在答题卡上 第1卷 1. 下列五种烃 : ①2-甲基丁烷; ②2,2 -二甲基丙烷 ; ③正戊烷; ④丙烷; ⑤丁烷 ,按沸点由高到低的顺 序排列的是 ( ) A. ①>②>③>④>⑤ B. ②>③>⑤>④>① C. ③>①>②>⑤>④ D. ④>⑤>②>①>③ 2. 下列说法正确的是 ( ) A. 通式相同的不同物质一定属于同系物 B. 完全燃烧某有机物 ,生成 CO 2和 H 2O 的物质的量之比为 1:1, 该有机物只可能是烯烃或环烷烃 C. 分子式相同而结构不同的化合物一定互为同分异构体 D. 符合通式 C n H 2n -2 的有机物一定是炔烃 3. 两分子乙炔反应得到乙烯基乙炔 (CH 2=CH-C ≡CH),该物质是合成橡胶的重要原料 , 下列关于该物质 的判断错误的是 ( ) A. 该物质既是 CH 2=CH 2 的同系物 , 又是 HC ≡CH 的同系物 B. 该物质既能使酸性 KMnO 4溶液褪色 , 又能使溴水褪色 C. 该物质与足量的 H 2加成后 ,只能生成一种物质 D. 该物质经加成、加聚反应后的产物是氯丁橡胶 ( ) 的主要成分 4. 以乙炔为原料制取 CHClBr —CH 2Br, 下列方法中 ,最可行的是 ( ) A. 先与 HBr 加成后 ,再与 HCl 加成 B. 先 H 2与完全加成后 ,再与 Cl 2、Br 2取代 C. 先与 HCl 加成后 , 再与 Br 2加成 2、请将答案

烷烃知识点总结

第一节烷烃甲烷 一、甲烷的存在和能源 (1)甲烷是由C、H元素组成的最简单的烃,是含氢量最高的有机物。是天然气、沼气、油田气、煤矿坑道气的主要成分。俗名又叫沼气、坑气,由腐烂物质发酵而成。天然气是一种高效、低耗、污染小的清洁能源. (2)世界上20%的能源需求是由天然气供给的,我国的天然气主要分布在东西部(西气东输) 二、物理性质: 甲烷是一种没有颜色,没有气味的气体(天然气为臭味是因为掺杂了H 2 S 等气体),标准状况下密度是L(可求出甲烷的摩尔质量为16g/moL),极难溶于水(两个相似相溶原理都可解释)。 三、甲烷分子的组成及结构: 1、组成:如何确定甲烷属于烃,即如何确定有机物有哪些元素组成?通常采用燃 烧法。 CH 4+ 2O 2? ?→ ?点燃CO2 + 2H2O 那么可以肯定甲烷中一定有C、H两元素,而不能确定是否有O元素,于是需要实验数据:如甲烷气体点燃后产物使浓硫酸增重,使碱石灰增重。 计算:甲烷中C元素为,,H元素为 mol, g,;两者加起来刚好等于甲烷的质量,故甲烷中只含C、H两元素。且两者比例为1:4,但1:4的物质有很 多如CH 4、C 2 H 8 、C 3 H 12 等,如何确定究竟为哪个,则设甲烷化学式为C x H 4x (CH 4 为最简式),要求出x值还需知道其相对分子质量。由标准状况下密度是L,可 求出甲烷的摩尔质量为16g/moL,故得到x=1。于是甲烷的化学式为CH 4 。 2、结构 知道了甲烷的组成,究竟甲烷的空间构型如何?到底是平面正四边形还是立体正

四面体,科学家为了弄清楚这个问题,分析了甲烷的二氯代物CH 2Cl 2的种类。如果甲烷是正四边形,那么CH 2Cl 2应该有两种产物(邻位和对位)必有熔沸点等物理性质不同,但如果是立体正四面体,其二氯代物就只有一种。事实上科学家发现CH 2Cl 2确实只有一种,所以确定甲烷的空间构型为正四面体,在甲烷分子中一碳原子为中心,四个氢原子为顶点形成的正四面体,键角为109°28’。 结构简式(在结构式的基础上省略C —H 单键):CH 4 最简式(各元素原子个数的最简单的比值):CH 4 [展示] 甲烷的球棍模型、比例模型。 四、甲烷的实验室制法:(本部份内容教材已经删去,仅作介绍) (1)原料:无水醋酸钠、碱石灰(NaOH 、CaO 的混合物) (2)反应原理: (3(4+ + OH —上述反应不能发 生。 ②碱石灰中CaO 的作用: 吸水剂——保持原料干燥、无水 稀释剂——稀释NaOH ,减少NaOH 与试管接触而使试管受热腐蚀

烷烃、烯烃和炔烃的物理性质和化学性质

烷烃烯烃(重点)炔烃 通式C n H 2n+2 全部单键C n H 2n 只有一个双键C n H 2n-2 只有一个三键 代表物CH 4CH 2 =CH 2 CH≡CH 电子式 熔沸点变化规律与烯炔烃类似。 常温下C1~C4为气态, C5~C16为液态。C17以上 为固态。碳原子数越多,熔沸点越 高;相同碳原子数,支链越 多,熔沸点越低。 碳原子数越多,熔沸点越 高;相同碳原子数,支链 越多,熔沸点越低。 溶解性不溶于水,易溶于有机溶 剂不溶于水,易溶于有机溶剂不溶于水,易溶于有机溶 剂 密度碳原子数越多,密度越大, 但始终小于水的密度。碳原子数越多,密度越大, 但始终小于水的密度。 碳原子数越多,密度越大, 但始终小于水的密度。 化学性质概述较稳定,不与高锰酸钾或 者溴水发生反应,也不和 酸碱发生反应。 较活泼,易被酸性高锰酸钾 氧化并使其褪色;也可以和 溴水发生加成反应使其褪 色。 较活泼,易被酸性高锰酸 钾氧化并使其褪色;也可 以和溴水发生加成反应使 其褪色。 氧化反应C n H 2n+2 +(3n+1/2)O 2 →nCO 2 + (n+1)H 2 O C n H 2n +(3n/2)O 2 →nCO 2 +nH 2 O C n H 2n-2 +(3n-1/2)O 2 →nCO 2 +( n-1)H 2 O 燃烧现 象 火焰呈淡蓝色,安静燃烧。有黑烟产生,火焰明亮。有浓烟产生,火焰明亮。 取代反应或加成反 常温下与溴水或者溴的 CCl 4 溶液 常温下与溴水或者溴的 CCl 4 溶液 反应条件是光照,且要求CH≡CH+H 2 O

应卤族元素都必须是气态纯净物。这与烯烃炔烃的加 成反应条件不同。CH 2 =CH 2 OH(不稳定)→ CH 3 CHO (最后生成乙醛) 加聚反 应 无 实验室制法CaC 2 +2H 2 O→C 2 H 2 ↑+ Ca(OH) 2 特殊性质 或 用途CH 4? ?→ ? 高温C+2H2 C 16 H 34? ?→ ? 高温C8H18+ C8H16 一个大烷烃分子裂解成一 个小烷烃分子和一个烯烃 分子。 顺反异构,同侧为顺,异侧 为反。 乙炔俗名电石气,用于焊 接金属;乙烯用作催熟剂 和有机化工基本原料,甲 烷俗名天然气,用于燃料。 相同的物质发生有机反应,反应条件不同,生成的产物也不相同。以为例,铁的催化下,与液溴发生反应,生成、或;在光照条件下,与溴蒸气发生反应,生成;在有Ni做催化剂加热的条件下,与溴蒸气反应生成。

最新烷烃类知识点总结

烷烃知识点总结 【知识体系】 1.烃的分类、通式和主要化学性质 氧化:燃烧 饱和烃:烷烃C n H2n+2(n≥1) 甲烷取代结构:链状、碳碳单键裂解 链烃氧化:燃烧、使KMnO4(H+)褪色 (脂肪烃) 烯烃C n H2n(n≥2) 乙烯加成:H2、X2、HX 、H2O等 结构:链状、碳碳双键加聚 氧化:燃烧、使KMnO4(H+)褪色 炔烃C n H2n-2(n≥2) 乙炔加成 不饱和烃结构:链状、碳碳叁键加聚 氧化:燃烧、使KMnO4(H+)褪色 烃二烯烃C n H2n-2 (n≥3) 1,3—丁二烯加成:1,2加成、1,4加成 结构:链状、两个碳碳双键加聚 饱和环烃:环烷烃C n H2n (n≥3) 结构:环状、碳碳单键氧化:燃烧、不能使KMnO4(H+)褪色,不能因反应使反应使溴水褪色 苯加成 环烃取代:卤代、硝化、磺化 苯及其同系物C n H2n-6 (n≥6) 结构:环状、大π键 不饱和环烃:芳香烃氧化:燃烧、使KMnO4(H+)褪色 稠环芳烃:萘、蒽甲苯取代 加成 2.烃的转化关系 烷烃(CH3CH3) CH3CH2Cl 石油 烯烃(CH2 = CH2) CH≡CH CH2 = CH [ CH2 -CH ] n Cl Cl C2H5OH CH2BrCH2Br [ CH2-CH2]n 焦炭CaC2 煤 C6H5NO2 C6H12C6H5Br C6H5SO3H

3.重要的实验 名称药品反应原理发生装 置 几点说明 甲烷无水醋 酸钠、碱 石灰 CH3COONa+NaOH CaO ? ???→CH4↑+ Na2CO3 固—固 加热 1.药品不可含水,不能用醋酸钠晶体 (CH3COONa 3H2O) 。原因:若有水, 存在CH3COONa和NaOH因电离,使 分子间反应不能发生。所以,不能制得 甲烷。 2.CaO作用:吸水;使固体疏松以利 于甲烷放出;减弱NaOH高温下对玻璃 的腐蚀。 乙烯乙醇、浓 硫酸(体 积比1: 3) CH3CH2OH 240H SO 170C ???→ 浓 CH2=CH2↑ + H2O 液—液 加热 (使用温 度计) 1.浓硫酸起催化剂和脱水剂。沸石(或 碎瓷片)是缓和液体沸腾防止受热暴 沸。 2.温度计应插入反应液中。 3.加热时使液体温度迅速升到并控制 在170℃,以减少副反应,温度低于 170℃主要生成乙醚。 4.制乙烯反应溶液变黑的原因是乙醇 和浓硫酸发生氧化还原反应: C2H5OH+2H2SO4(浓)? ??→2C+2SO2↑ +5H2O C+2H2SO4(浓) ? ??→CO2↑ +2SO2↑ +2H2O 所以,乙烯中可能混有CO2、SO2等杂质 气体。 乙炔电石(主 要成分: 碳化 钙)、水 CaC2+2H2O??→ CH≡CH↑+ Ca(OH)2 固-液 无须加 热 (不能 使用启 普发生 器) 1.制乙炔不能用启普发生器原因:a. 生成的Ca(OH)2溶解度比较小,易沉积 在容器底部而堵塞球形漏斗下端管口; b.反应放热; c.电石遇水后不能继续保 持块状。 2.用简易装置时,常用一团棉花塞在 试管口附近,以防产生的泡沫喷出进入 导气管。 3.该反应剧烈,可通过控制加水速度 或改用饱和食盐水的办法来得到平稳 气流。 4.所得气体中常含PH3、H2S等杂质, 是电石中含CaS、Ca3P2等杂质之故。 1.反应使用液态溴而非溴水。 2.苯和液溴混合并不反应,加入铁屑

一轮复习---烷烃

烷 烃 一、甲烷(CH 4) 烃:只含有碳氢的有机物 1.组成最简单的烃为甲烷,其结构如下表 2.物理性质 无色、 、极难溶于水、密度比空气 。 3化学性质 4.甲烷的四种氯代物都不溶于水,常温下 是气体,其他三种是液体。 三氯甲烷又称: 密度 水 分子 空间四面体 四氯甲烷又称: 密度 水 非 极 性分子 空间正四面体 5.烷烃的命名 5.1系统命名法 (1)首先选择主链:选择分子中最长碳链称作某烷(由主链C 原子数决定烷的名称);若有两条碳链等长,则以含取代基(或支链)多者为主链。 (2)对主链碳原子编号:从离取代基最近的一端编起(以阿拉伯数字);在离两端等距离的位置同时出现取代基时,则从哪端编号能使取代基位置之和最小,就从哪一端编起。 (3)写出烷烃的系统名称. 原则:先简后繁,相同合并,位号指明。阿拉伯数字之间用“,”相隔,汉字与阿拉伯数字之间用“-”连接。 甲烷

例如: 命名:2,4,6-三甲基-3-乙基庚烷。 例1. 主链碳原子数目: 。 原则:最长原则。 例2. 你能找出最长碳链有三条吗?哪条是主链呢? 原则:最多原则。 例3. 将此有机物主链碳编号,有几种编法? 原则:近-----离支链较近一端编号。 例4. 此有机物主链碳原子编号有几种? 原则:同近考虑简。 例5. 此有机物主链碳原子编号有几种? 原则:同近同简考虑小。 5.2烷烃的性质 1、烷烃定义及通性:烃的分子里都以单键形式达到“饱和”的链烃叫做饱和链烃,也叫烷烃。通式:C n H 2n+2(n≥1),如乙烷、丙烷、丁烷等。 2.通性: n≤4气体,溶沸点、密度随碳原子数增大而升高,碳原子数相同时,支链越 多沸点越低。n>4时,均为为液体和固体。新戊烷为气体。 稳定性 2 CH 3CH 2Cl + HCl KMnO 4 等强氧化剂反应 3CH 3+7O 2 4CO 2+6H 2O C 4H 10 CH 4+C 3H 6 烷烃

烷烃与卤素的反应

卤素中唯有氟能与烷烃自动发生反应,甚至在——80℃时也能进行反应。氟与烷烃的反应非常剧烈,而且是一个难以控制的破坏性反应,生成碳和氟化氢: C n H2n+2(n+1)F2→nC+(2n+2)HF 炭黑 烷烃在日光照射下也与氯发生爆炸性反应: 下面主要讨论氯、溴的取代反应,所谓取代反应,是指烷烃中的氢原子被其它原子或基团所取代。这里讨论烷烃中的氢原子被卤原子取代,因此也称卤化反应。烷烃卤化后的产物卤代烷烃,可以认为是母体烷烃衍生出来的,因此是烷烃的衍生物。卤化反应主要是氯化与溴化,比较有实用意义的是氯化,碘不易发生碘化反应。 1.甲烷的氯化 甲烷在紫外光或热(250~400℃)作用下,与氯反应得各种氯代烷: 如果控制氯的用量,用大量甲烷,主要得到氯甲烷;如用大量氯气,主要得到四氯化碳。工业上通过精馏,使混合物一一分开。以上几个氯化产物,均是重要的溶剂与试剂。 甲烷氯化反应的事实是:①在室温暗处不发生反应,②高于250℃发生反应,③在室温有光作用下能发生反应,④用光引发反应,吸收一个光子就能产生几千个氯甲烷分子,⑤如有氧或有一些能捕捉自由基的杂质存在,反应有一个诱导期,诱导期时间长短与存在这些杂质多少有关。根据以上事实,提出这个反应的反应机制是: 这种反应称自由基型的链反应。所谓链反应(chain reaction)是在反应过程中形成活性中间体[此反应中为自由基,如步(2)、(3)中的CH3·],这种活性中间体如接力赛一样,不断地传递下去,像一环接一环的链[步(2)、(3)像一个环,步(3)中产生Cl·,又在步(2)中反应,很多环连接成链],活性中间体消失了,反应也就停止[如步(4)、(5)、(6)],这就是链反应。由于活性中间体是自由基,如O2+CH3·→CH3OO·。CH3OO·活泼性远不如CH3·,几乎使反应停止,待氧消耗完后,自由基链反应立即开始,这就是自由基反应现一个诱导期的原因。一种物质,即使有少量存在,就能使反应减慢停止,这种物质称为阻抑剂。上述氧与杂质就起这种阻抑的作用,这是自由基反应的特征。 习题2-15写出环己烷在光作用下溴化产生溴代环己烷的反应机制。

烷烃知识点总结及习题

烃 甲烷、烷烃 一、甲烷 (一)物理性质 甲烷是一种没有颜色,没有气味的气体,密度小于空气,极难溶于水。 (二)甲烷的结构 1.分子式:CH 4 2.结构简式:CH 4 3.空间构型:正四面体型 碳原子位于 ,4个氢原子位于 。 思考:如何证明甲烷是立体结构,而不是平面结构? (三)化学性质 在通常情况下,甲烷比较稳定。不与高锰酸钾反应,不与强酸、强碱、强氧化剂反应。 在特定条件下,甲烷能与某些物质发生反应。 (1)氧化反应 与氧气 不能被高锰酸钾氧化 4222CH 2O CO 2H O +???→+点燃 淡蓝色火焰,放出大量的热 (2)取代反应 实验现象: 1、试管内气体黄绿色逐渐消失 2、试管内液面上升 3、试管壁有油状物生成 一氯甲烷:CH 4+Cl 2 CH 3Cl+HCl 二氯甲烷:CH 3Cl+Cl 2 CH 2Cl 2+HCl 三氯甲烷:CH 2Cl 2+Cl 2 CHCl 3+HCl (CHCl 3又叫氯仿) 四氯化碳:CHCl 3+Cl 2 CCl 4+HCl 注意: ①甲烷分子中的四个氢原子可逐一被取代,共得到5种产物,其中一氯甲烷和氯化氢是气态,二氯甲

烷、三氯甲烷、和四氯甲烷均为油状液态。产物除氯化氢外,均难溶于水。三氯甲烷和四氯甲烷是工业上重要的溶剂。三氯甲烷又叫氯仿,可做麻醉剂。四氯甲烷又叫四氯化碳,可做萃取剂。 ②反应条件:光照(在暗处不发生反应) ③反应物质:纯卤素单质;与氯水、溴水不反应。 取代反应:有机分子里的某些原子或原子团被其他原子或原子团所代替的反应 (3)受热分解 在隔绝空气并加热至1000℃的条件下,甲烷分解生成炭黑和氢气: 42CH C 2H ???→+高温 氢气是合成氨及合成汽油等工业的原料;炭黑是橡胶工业的原料。 练习: 1、若1molCH 4与一定量的Cl 2充分反应后,得到有机产物的物质的量相等,则计算消耗的氯气的物质的量。 2、在光照条件下,将等物质的量的甲烷和氯气混合充分反应后,得到产物的物质的量最多的是( ) A .CH 3Cl B .CHCl 3 C .CCl 4 D .HCl 3、下列物质中:①氯水;②浓硫酸;③溴蒸气;④烧碱;⑤氧气;⑥酸性KMnO 4溶液,其中在一定条件 下可以与甲烷发生化学反应的是( ) A .①②③⑤ B .④⑤⑥ C .③⑤ D .②③④⑥ 4、有机物分子里的某些原子(或原子团)被其他的原子(或原子团)代替的反应叫做取代反应。下列化学反应中不. 属于取代反应的是( ) A .CH 2Cl 2+Br 2 CHBrCl 2+HBr B .CH 3OH +HCl ―→CH 3Cl +H 2O C .(NH 4)2SO 4+BaCl 2===BaSO 4↓+2NH 4Cl D .CH 3Cl +H 2O CH 3OH +HCl 5、为验证甲烷分子中含碳、氢两种元素,可将其燃烧产物通过①浓H 2SO 4 ②澄清石灰水 ③无水硫酸铜。正确的顺序是 ( ) A .①②③ B .②③ C .②③① D .③② 6、氯仿(CHCl 3)可做麻醉剂,但常因保存不妥而被氧气氧化,产生剧毒物质光气(COCl 2),2CHCl 3+O 2――→ 2HCl +2COCl 2,为了防止事故发生,在使用前需检验氯仿是否变质,应选用的试剂是( ) A .氢氧化钠溶液 B .AgNO 3溶液 C .盐酸 D .水 7、完全燃烧一定量的甲烷,燃烧产物先通过浓硫酸,再通过碱石灰,装有碱石灰的玻璃管增重8.8 g 。则原来的甲烷在标准状况下的体积为 ( ) A .0.56 L B .1.12 L C .2.24 L D .4.48 L 8、燃烧法是测定有机化合物分子式的一种重要方法。下列是通过燃烧法推断物质组成的过程,请回答下 列问题: (1)某有机物在氧气中完全燃烧,生成CO 2与H 2O 的质量比为22∶9,由此可得出的正确结论是( ) A .该有机物中碳、氢、氧的原子个数比为1∶2∶3

烷烃知识点总结

第一节 烷烃 甲烷 一、甲烷的存在和能源 (1)甲烷是由C 、H 元素组成的最简单的烃,是含氢量最高的有机物。是天然气、沼气、油田气、煤矿坑道气的主要成分。俗名又叫沼气、坑气,由腐烂物质发酵而成。天然气是一种高效、低耗、污染小的清洁能源. (2)世界上20%的能源需求是由天然气供给的,我国的天然气主要分布在东西部(西气东输) 二、物理性质: 甲烷是一种没有颜色,没有气味的气体(天然气为臭味是因为掺杂了H 2S 等气体),标准状况下密度是0.717g/L (可求出甲烷的摩尔质量为16g/moL ),极难溶于水(两个相似相溶原理都可解释)。 三、甲烷分子的组成及结构: 1、组成:如何确定甲烷属于烃,即如何确定有机物有哪些元素组成?通常采用燃烧法。 点燃 1.6g 等,如何2 (邻 [(1)原料:无水醋酸钠、碱石灰(NaOH 、CaO 的混合物) (2(3(4 稀释剂——稀释NaOH ,减少NaOH 与试管接触而使试管受热腐蚀 疏松剂——防止NaOH 结块,有利于气体逸出 五、化学性质: [实验] CH 4 酸性高锰酸钾(不褪色) 溴水(不褪色) 点燃 1、通常状况下,甲烷很稳定,不能被酸性高锰酸钾、溴水、浓硫酸等强氧化剂氧化,也不能与酸、

碱反应。所以甲烷可用浓硫酸干燥。 2、氧化反应——可燃性: 在空气中或氧气中点燃甲烷,完全燃烧生成CO 2 和H 2O ,同时放出大量的热,还伴有淡蓝色火焰 CH 4 + 2O 2?? →?点燃 CO 2 + 2H 2O 光照的条件下甲烷与空气或氧气不反应 甲烷燃烧注意事项: (1) 甲烷具有可燃性,甲烷在空气中或氧气中达到一定值时,与火花就发生爆炸,故点燃前一定要检验 其纯度,其他可燃性气体点燃前也应该检验其纯度。 (2) 验纯的方法:用排水法收集一小试管甲烷气体,用拇指堵住,移近火焰,移开拇指点火,听到尖叫 爆鸣声,证明气体不纯,如听到“噗”的声响,证明气体纯净。 (3)燃烧时火焰呈淡蓝色的物质有CH 4、H 2、H 2S 等气体,还有固态硫、液态酒精等。CO 在空气中燃烧火焰呈蓝色。 ②取代反应条件:纯净的卤素单质且光照,在室温暗处不反应,但也不能用强光直接照射否则会爆炸。氯水、溴水不能反应但液氯、液溴可以反应。 ③此反应一旦进行,将连续发生下去,共生成五种取代产物;其中HCl 、CH 3Cl 为气体, CH 2Cl 2、CHCl 3、CCl 4为液体。CHCl 3、CCl 4是重要的有机溶剂。其中最多的为HCl 。 ④实验现象:黄绿色气体颜色变浅、倒置的量筒内液面上升、量筒内壁出现油状液滴、量筒内有白雾、水槽

正构烷烃

正构烷烃 正构烷烃(液体石蜡)是以没有或者柴油馏分为原料,受国际油价及国内成品油价格影响很大。市场上报价的多是重质液蜡,轻质液蜡多自用。主要用来生产直链烷基苯和氯化石蜡、二元酸。主要下游氯化石蜡也是影响正构烷烃价格的主要因素。目前来看,我国进口正构烷烃数量逐年增加,进口价格也在逐年递增,出口数量比较平稳,维稳在1万吨以内。重质液蜡国内市场比较成熟,但轻质液蜡下游市场有待继续开发,近几年国家对环保事业着重关注,化工企业产能扩建有限。 1.1 正构烷烃的基本概念 中文名:正构烷烃、直链烷烃; 俗名或商品名:液体石蜡、液蜡、轻蜡、重蜡等; 英文名:Normal alkane、Normal paraffins; 化学分子式:CH3-(CH2)n-CH3, (n: 10-15); CAS No. 90622-47-2 正构烷烃就是指没有碳支链的饱和烃。正构烷烃主要来源于生物体的脂肪酸、蜡质及烃类物质;碳数小于C20的短链正构烷烃大都来源于水生藻类和微生物,而C22~C32范围的高碳数正构烷烃源于陆源高等植物。 高碳数(C21~C33)奇碳优势正构烷烃常出现于富含陆源高等植物有机质的生油岩中,在C21~C33范围具有明显的奇偶优势。一般认为它们来源于高等植物中的蜡质。 具有偶碳优势的正构烷烃常出现于咸水湖相生油岩和原油中,其偶碳优势成因,一般认为是由偶碳数正构脂肪酸和醇类的还原作用或经碳酸盐矿物催化发生β断裂而来,此外可能还有其它成因。 1.2 正构烷烃的分类及应用 分类 正构烷烃也称液体石蜡(简称液蜡)是指以煤油或柴油馏分为原料,经分子

筛吸附分离或异丙醇-尿素脱蜡,得到的含正构烷烃的石蜡,因常温下呈透明无色或浅黄色液体,故称液体石蜡。根据馏分,可以分为轻质液体石蜡(简称轻蜡)和重质液体石蜡(简称重蜡),烷烃中碳原子数C9~C13者为轻蜡,C14~C16者为重蜡。 应用 主要作为制造直链烷基苯(LAB)的中间体单烯烃。分子筛吸附分离脱蜡的轻蜡产品,正构烷烃含量96%以上。异丙醇-尿素脱蜡的轻蜡产品,正构烷烃含量90%以上。两者的芳烃含量均在1%以下。轻蜡主要作为制造直链烷基苯(LAB)的中间体单烯烃,也可用于增塑剂、氯化石蜡、石油蛋白的生产原料。 目前,我国市场上正构烷烃主要有轻蜡、重蜡等。 正构烷烃适用于生产直链烷基苯、氯化石蜡、月桂二酸、巴西二酸、长链二元酸或高级香料、尼龙塑料等等。 正构十碳烷烃(其它名称:正癸烷、十碳烷、C10、俗称:200#),外观与性状:无色透明液体,有微量气味。不溶于水,可混溶于乙醇、乙醚。主要用作催化剂、溶剂、高档洗涤剂、无毒绿色环保油漆、皮革、橡胶及十碳二元酸用于有机合成,也用于燃料研究,是目前高档绿色电子干洗剂的首选产品。 正构十一碳烷烃(C11)无色液体,不溶于水,可混溶于乙醇、乙醚。是生产十一碳二元酸的主要原料,可作为高档电子行业中清洗剂,主要用于聚酰胺高档工程塑料,是尼龙1011、尼龙1010的主要原料,还可作为高档热熔胶、高档润滑剂和合成橡胶的重要原料,也可应用于设备除锈剂、乳胶制品溶胶剂等、氯化石蜡添加剂、有毒产品隔离剂。 正构十二碳烷烃(月桂烷、C12)无色液体,不溶于水,可混溶于乙醇、乙醚。应用于气雾杀虫剂、农药、高档洗涤日化产品的添加主要原料。衍生产品:十二碳二元酸主要用于聚酰胺高档工程塑料,是尼龙1212、尼龙612的主要原料,还可以制备高级中间体、高档润滑油、高档防锈剂、粉末涂料、热熔胶、合成纤维及其它聚合物、高级油墨制剂中最主要的成分、氯化石蜡添加剂、木材防虫剂,防腐剂、有毒产品隔离剂。 正构十三碳烷烃(C13)无色液体,不溶于水,可混溶于乙醇、乙醚。应用于油漆、橡胶、乳胶生产等行业的溶剂类原料油,是润滑油表面活性剂的主要添

烷烃、烯烃、炔烃及苯知识点汇总

甲烷 、烷烃知识点 烃:仅含碳和氢两种元素的有机物称为碳氢化合物,又叫烃,在烃中最简单的是甲烷 一、甲烷的物理性质 无色、无味,难溶于水的,比空气轻的,能燃烧的气体,天然气、坑气、沼气等的主要成分均为甲烷。 收集甲烷时可以用排水法 二、甲烷的分子结构 甲烷的分子式:CH 4 电子式: 结构式: (用短线表示一对共用电子对的图式叫结构式) [模型展示]甲烷分子的球棍模型和比例模型。 得出结论:以碳原子为中心,四个氢原子为顶点的正四面体结构。甲烷是非极性分子,所以甲烷极难溶于水,这体现了相似相溶原理。 CH 4:正四面体 NH 3:三角锥形 三、甲烷的化学性质 1.甲烷的氧化反应 CH 4+2O 2??→?点燃 CO 2+2H 2O a.方程式的中间用的是“ ”(箭头)而不是“====”(等号), 主要是因为有机物参加的反应往往比较复杂,常有副反应发生。 b.火焰呈淡蓝色:CH 4、H 2、CO 、H 2S 在通常条件下,甲烷气体不能被酸性KMnO 4溶液氧化而且与强酸、强碱也不反应,所以可以说甲烷的化学性质是比较稳定的。但稳定是相对的,在一定条件下也可以与一些物质如Cl 2发生某些反应。 2.甲烷的取代反应 现象:①量筒内Cl 2的黄绿色逐渐变浅,最后消失。 ②量筒内壁出现了油状液滴。 ③量筒内水面上升。 ④量筒内产生白雾 [说明]在反应中CH 4分子里的1个H 原子被Cl 2分子里的1个Cl 原子所代替.. ,但是反应并没有停止,生成的一氯甲烷仍继续跟氯气作用,依次生成二氯甲烷、三氯甲烷和四氯

甲烷,反应如下: a.注意CH 4和Cl 2的反应不能用日光或其他强光直射,否则会因为发生如下剧烈的反应:CH 4+2Cl 2??→?强光C+4HCl 而爆炸。 b.在常温下,一氯甲烷为气体,其他三种都是液体,三氯甲烷(氯仿)和四氯甲烷(四氯化碳)是工业重要的溶剂,四氯化碳还是实验室里常用的溶剂、灭火剂,氯仿与四 氯化碳常温常压下的密度均大于1 g·cm -3,即比水重。 c.分析甲烷的四种氯代物的分子极性。但它们均不溶于水。 取代反应 有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应 二、烷烃的结构和性质 1.烷烃的概念 a.分子里碳原子都以单键结合成链状; b.碳原子剩余的价键全部跟氢原子结合. 2. 烷烃的结构式和结构简式 甲烷 乙烷 丙烷 丁烷 结 构 式: 结构简式:CH 4 CH 3CH 3 CH 3CH 2CH 3 CH 3CH 2CH 2CH 3 /CH 3(CH 2)2CH 3 3.烷烃的物理性质 (a )随着分子里含碳原子数的增加,熔点、沸点逐渐升高,相对密度逐渐增大; (b )分子里碳原子数等于或小于4的烷烃。在常温常压下都是气体,其他烷烃在常温常压下都是液体或固体; (c )烷烃的相对密度小于水的密度。 (d )支链越多熔沸点越低。 (2)烷烃分子均为非极性分子,故一般不溶于水,而易溶于有机溶剂,液态烷烃本身就是良好的有机溶剂。

相关主题
文本预览
相关文档 最新文档