红外光谱法鉴定有机化合物结构
- 格式:ppt
- 大小:395.50 KB
- 文档页数:23
红外光谱适用范围红外光谱是一种重要的分析技术,被广泛应用于各个领域,包括化学、生物和环境等。
下面给出红外光谱的适用范围,以及应用案例。
一、化学领域1.有机化学红外光谱可以用于分析和鉴定有机化合物。
例如,可以通过红外光谱确定化合物的功能基团、官能团、键的性质等。
这在有机合成中非常有用,可以帮助研究人员确定化合物的结构和反应机理。
2.材料化学红外光谱可以用于分析不同类型的材料,例如聚合物、橡胶、玻璃等。
通过红外光谱,可以确定材料的组成、性质和结构,可以帮助研究人员制备出具有特定性质和应用的材料。
二、生物领域1.蛋白质分析红外光谱可以用于研究蛋白质的二级结构和构象。
通过分析蛋白质的红外光谱,可以了解到蛋白质的α-螺旋、β-折叠和无序结构等信息。
2.药物研究红外光谱可以用于研究药物的结构和性质。
通过红外光谱,可以确定药物分子的官能团、键的性质等信息。
这对于调整药物的结构和性质以及设计新的药物分子具有重要意义。
三、环境领域1.水质分析红外光谱可以用于水质分析。
通过红外光谱,可以确定水中溶解物的成分和浓度,例如有机物、无机盐和矿物质等。
这对于了解水的污染情况和采取合适的治理措施具有重要意义。
2.大气污染监测红外光谱可以用于监测大气中的污染物,例如二氧化碳、甲烷、氨和二氧化硫等。
通过监测这些污染物,可以了解大气质量状况和污染来源,并制定相应的污染治理措施。
以上是红外光谱的适用范围和应用案例列表。
红外光谱在化学、生物和环境等领域都具有广泛的应用,可以为研究人员提供有价值的信息。
有机化学《红外光谱解析》简述1.中红外:400~4000cm-1特征区:1600~4000 cm-1,指纹区:400~1600 cm-12.基团确定要素:峰位置、峰强度、峰形状红外光谱可区分顺式和反式结构,其它光谱无法区分红外光谱可确定是否长链结构,但无法确定碳链的长度,通常由核磁来定3.烷烃化合物的特征吸收烷烃伸缩振动不大于3000 cm-11)骨架振动:以甲基为整体产生变角和伸缩振动,称为骨架振动2)对于甲氧基和氮甲基,由于孤对电子的影响,甲基伸缩振动出现在低波数(P94)3)甲基和亚甲基的区分:(P94)1460和1370,峰强度4)异丙基和叔丁基区分:(P98)1380裂分峰和骨架振动峰5)乙酰氧基、甲基酮、苯甲酮、淄体化合物或四环三萜类化合物的甲基变角振动(P96)6)环烷的环变形振动(P99)4.烯烃的红外光谱烯烃的伸缩振动大于3000 cm-11)烯烃化合物的特征吸收主要表现在三个区域:A:双键碳原子上的CH伸缩振动:》3000B:C=C键的伸缩振动:1600~1680 cm-1C:双键碳原子上的CH的面外变角振动此外,对于乙烯端基=CH2还存在1400 cm-1处的剪式振动和1800 cm-1处的泛音吸收2) 端位烯基=CH2的变角振动呈剪式振动,具有一定的参考价值,其波数较为固定,在1420 cm-1附近(P103)3)环烯(P103)环比较大没有环张力时,可按顺式烯烃处理。
4)连烯的特征吸收:C=C=C在1950~1940 cm-1处存在特征吸收5)炔类化合物的特征吸收A:——C≡C-H中C-H伸缩振动2262~2100 cm-1B:≡C-H的伸缩振动位于3300 cm-1处该处只有N-H 和O-H存在氢键型的干扰吸收,但后者的峰形较宽,且随浓度变化而移动,二者之间还是易于区别的。
C:除上述二个特征吸收外,≡C-H的面外振动在700~610 cm-1处呈一宽峰,其倍频位于1370~1225 cm-1,宽而弱6) 化合物的不饱和度计算:F=1+n4+1/2(n3-n1)n1: H原子n3:N原子n4:C原子O原子通常不计入例如:分子式为C13H24的化合物,其不饱和度F=1+13+1/2(-24)=2环单键为1,苯环通常》45.芳烃化合物红外光谱可以检定苯环的存在与否,亦可分析取代基的情况苯环的存在与否首先通过3100~3000 cm-1及1650~1450 cm-1(苯环骨架振动)两个区域的吸收形态的检查而确定。
有机化学红外光谱官能团对照表有机化学中的红外光谱(IR)是一种常用的分析方法,用于确定有机化合物中的特定官能团。
以下是部分常见的官能团及其对应的红外光谱波数(cm-1):1.烷烃(Alkanes):C-H 伸缩振动:3000-2800 cm-12.烯烃(Alkenes):C=C 伸缩振动:1650-1590 cm-1C-H 弯曲振动:1450-1100 cm-13.芳香烃(Aromatics):C=C 伸缩振动:1600-1500 cm-1C-H 面外弯曲振动:900-700 cm-14.醇(Alcohols):O-H 伸缩振动:3600-3200 cm-1C-O 伸缩振动:1300-1050 cm-15.酚(Phenols):O-H 伸缩振动:3650-3350 cm-1C-O 伸缩振动:1350-1250 cm-16.醚(Ethers):C-O 伸缩振动:1250-1050 cm-17.醛(Aldehydes):C=O 伸缩振动:1720-1680 cm-1C-H 弯曲振动:900-830 cm-18.酮(Ketones):C=O 伸缩振动:1720-1680 cm-1C=C 伸缩振动:1650-1600 cm-19.羧酸(Carboxylic Acids):O=C=O 伸缩振动:1725-1705 cm-1C-O 伸缩振动:1350-1250 cm-1请注意,这只是部分官能团的红外光谱波数,并不是全部。
每个官能团的红外光谱波数可能会因分子的具体结构而有所差异。
因此,在实际应用中,需要综合考虑红外光谱的峰位、峰形以及峰强等信息来确定具体的官能团。
YYSWDB0087 蛋白质多肽二级结构的测定傅立叶变换红外光谱法 YY-SW-DB-0087蛋白质/多肽傅立叶变换红外光谱法 1. 范围 本方法采用傅立叶变换红外光谱法测定蛋白质和多肽的二级结构为半定量方法具有样品用量小和不需要高纯晶体等特点蛋白质等的结构除能获得有关组分的信息外如水溶液酸碱性等这是用其它仪器难以得到的成果主要是对其红外光谱中酰胺I谱带(氘代后,称酰胺I酰胺I谱带为无规卷曲和转角等不同结构振动峰的加合带在1620cm1700cm目前常应用去卷积使加合带中处于不同波数的无规卷曲等各个吸收峰得以分辨,最后经谱带拟合 3.试剂 3.1 D20 光谱纯真空干燥箱中105然后保存在干燥器中备用 HgCdTe或DTGS检测器 5.试样制备 5.1 液体样品w/v装入密封式液体池或可拆卸式液体池液层厚度为25 5.3 固体样品以样品l200mg的比例在玛瑙研钵中研细混匀在油压机上以12000 lb5min 5.4 薄膜法一种是将样品加热熔融另一种方法是将样品制成溶液熔融法制膜时必须注意升华和其它化学变化因为溶剂的去除比较麻烦往往需要在真空干燥箱中烘数小时之久常常选用对样品溶解度好易挥发的溶剂主要记录蛋白的酰胺I 6.2 图谱分析11 范围为一宽峰1700cm-1范围为酰胺I经去卷积处理后谱带可分离出7个未确定峰位的吸收峰进一步确定7个吸收峰的波数位置对峰位半峰宽谱带拟合的准确性用残余均方根因子表示 一般认为无规卷曲常出现在1643 cm-1折叠结构分别在1623cm-1而1665cm-1和1680cm-1附近的两个吸收峰常被指定为转角结构的吸收,中国分析网1612 cm-1附近的吸收峰解释为蛋白质和多肽的侧链吸收选择吸收峰半高宽为16cm分辨率增强因子k=2.3拟合过程中依次优化峰高,半高宽,最后调整峰位8.参考文献 1 张丰德南开大学出版社, 1996. 185-194 2 聂松青. 生物物理学报,1989,5(2):208-212 3 宋占军. 生物化学杂志高等教育出版社。
红外光谱与分子结构 It was last revised on January 2, 2021红外光谱与分子结构一、红外光谱的特征性通过对大量标准样品的红外光谱的研究,处于不同有机物分子的同一种官能团的振动频率变化不大,即具有明显的特征性。
这是因为连接原子的主要为价键力,处于不同分子中的价键力受外界因素的影响有限!即各基团有其自已特征的吸收谱带。
例:2800~3000cm-1:-CH3特征峰;1600~1850cm-1:-C=O 特征峰;基团所处化学环境不同,特征峰出现位置变化:—CH2—CO—CH2— 1715cm-1酮—CH2—CO—O— 1735cm-1酯—CH2—CO—NH— 1680cm-1 酰胺二、红外光谱的分区习惯上把化合物的4000~400cm-1范围的中红外区的红外光谱划分为四个区域。
1、X–H 伸缩振动区:4000~2500cm-1,X=O、N、C、S,…;2、叁键及累积双键伸缩振动区:2500~1900cm-1;3、双键伸缩振动区:1900~1200cm-1;4、X–Y伸缩振动,X–H 变形振动区:<1650cm-1;指纹区:1330~650cm-1,X–C(X≠H)键的伸缩振动及各类变形振动。
特征区:某些官能团的伸缩振动。
特点:吸收峰比较少,同一官能团存在于不同的化合物中,吸收峰位置变动不大,特征性较强,可以用来鉴定官能团。
指纹区:某些分子的骨架振动。
特点:振动频率对整个分子结构环境的变化十分敏感,分子结构的细微变化,引起该区域的变化十分地灵敏,可用于鉴别不同化合物。
1、X–H 伸缩振动区(4000~2500cm-1)X代表O、N、C、S时,对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃及饱和烃类的 O–H、N–H、C–H伸缩振动。
(1)O–H醇与酚:游离态(浓度小),3640~3610cm-1,峰形尖锐;缔合(浓度大),3300cm-1附近,峰形宽而钝。
羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽。
红外光谱法应用
红外光谱法应用主要集中在化学分析、动力学观测、检测控制技术和环境监测等领域。
(1)化学分析领域中,红外分析用于定性、定量分析化学分子中的基本结构元素,如碳、氢、氧、氮等,可以大致测定有机化合物的结构特性。
(2)在动力学观测方面,红外光谱法可以测定吸收光谱中的活性物质、温度、压力等状态变量,从而可以进行动力学观测。
(3)在检测控制技术方面,红外光谱法可以直接测量集成电路电芯上的薄膜物质物性,可以检测过热、过电压等问题,可以实现智能检测控制。
(4)在环境监测领域,红外技术可以进行空气污染物检测、水质检测、土壤污染检测等环境大气监测,为环境保护作出贡献。
有机物检测方法引言:有机物是指由碳元素构成的化合物,广泛存在于环境中,包括空气、水、土壤以及生物体内。
有机物的检测对于环境保护、食品安全以及医学诊断具有重要意义。
本文将介绍几种常见的有机物检测方法。
一、气相色谱-质谱联用技术(GC-MS)气相色谱-质谱联用技术是一种常用的有机物检测方法。
该方法首先通过气相色谱将混合物中的有机化合物分离,然后将分离后的化合物通过质谱进行定性和定量分析。
GC-MS具有高灵敏度、高分辨率和广泛的应用范围,可以对复杂的样品进行准确的分析。
二、液相色谱-质谱联用技术(LC-MS)液相色谱-质谱联用技术是一种适用于水溶性有机化合物的检测方法。
该方法通过液相色谱将样品中的有机物分离,然后通过质谱进行定性和定量分析。
LC-MS具有高分辨率、高选择性和宽线性范围的优点,可以用于各种复杂样品的分析。
三、红外光谱法(IR)红外光谱法是一种常用的有机物检测方法。
该方法通过测量有机化合物在红外光波段的吸收特性来确定其结构和成分。
红外光谱法具有非破坏性、快速、简便的特点,可以用于固体、液体和气体样品的分析。
四、核磁共振波谱法(NMR)核磁共振波谱法是一种常用的有机物检测方法。
该方法通过测量有机化合物在外加磁场下的核磁共振信号来确定其结构和成分。
核磁共振波谱法具有高分辨率、非破坏性和无辐射的优点,可以用于固体、液体和气体样品的分析。
五、质谱成像技术(MSI)质谱成像技术是一种用于有机物分布分析的方法。
该方法通过将样品表面上的有机化合物进行离子化,并通过质谱进行定性和定量分析,可以获得有机物在样品表面上的空间分布信息。
质谱成像技术具有高空间分辨率、高灵敏度和高通量的优点,可以用于生物组织、植物和环境样品的分析。
六、电化学检测法(EC)电化学检测法是一种常用的有机物检测方法。
该方法通过测量样品中有机化合物的电化学信号来进行分析。
电化学检测法具有灵敏度高、选择性好和操作简便的特点,可以用于水质、食品和生物样品的分析。
第三章红外光谱法3.1 引言红外光谱属于分子光谱,分子光谱是四大谱学之一。
红外光谱和核磁共振光谱,质谱,紫外光谱一样,是鉴别化合物和确定物质分子结构的常用手段之一。
红外光谱分析技术的优点之一是应用范围非常广泛,可以说,对于任何样品,只要样品的量足够多,都可以得到一张红外光谱。
对固体,液体或气体样品,对单一组分的纯净物和多组分的混合物都可以用红外光谱法测定。
对于不同的样品要采用不同的红外制样技术。
对于同一样品,也可以采用不同的制样技术。
采用不同的制样技术测试同一样品时,可能会得到不同的光谱。
因此,要根据测试目的和测试要求采用合适的制样方法,这样才能得到准确可靠的测试数据。
对单一组分或混合物中各组分也可以进行定量分析,尤其是对于一些较难分离并在紫外,可见光区找不到明显特征峰的样品也可以方便,迅速地完成定量分析。
3.2 方法原理红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。
3.2.1 双原子分子的红外吸收频率分子振动可以看作是分子中的原子以平衡点为中心,以很小的振幅做周期性的振动。
这种分子振动的模型可以用经典的方法来模拟,化学键的振动类似于连接两个小球的弹簧,m1和m2分别代表两个小球的质量,即两个原子的质量,弹簧的长度就是分子化学键的长度。
上式中,ν是频率,Hz;к是化学键的力常数,g/s2; μ是原子的折合质量。
发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。
表某些键的伸缩力常数(毫达因/埃)键类型—C≡C —> —C =C —> —C — C —力常数15 ~ 17 9.5 ~ 9.9 4.5 ~ 5.6峰位 4.5μm 6.0 μm 7.0 μm化学键键强越强(即键的力常数K越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。
一般说来,单键的к=4×105~6×105 g/s2; 双键的к=8×105~12×105 g/s2;三键的к=12×105~20×105 g/s2。
有机化学_官能团_推断方法有机化学是研究有机化合物的结构、性质和反应的学科。
在有机化学中,官能团的推断方法是确定和确认有机分子中官能团类型的关键步骤。
本文将介绍几种常用的官能团推断方法。
一、红外光谱法(IR)红外光谱法是一种常用的官能团推断方法,通过观察有机分子在红外光谱上的吸收峰来确定官能团类型。
每种官能团都有特定的红外吸收峰位置和形状,从而可以通过对比实验样品与已知标准的红外光谱图谱来推断官能团的存在。
例如,对于羰基官能团,红外光谱上的C=O伸缩振动在1700-1750 cm^-1的位置出现明显吸收峰。
而羟基官能团的C-O伸缩振动位于3200-3600 cm^-1之间,可以通过红外光谱中的吸收峰来判断分子中是否含有羟基。
二、核磁共振法(NMR)核磁共振法是通过观察有机分子的核磁共振信号来确定官能团类型。
不同官能团对应于不同的化学位移和积分面积,通过对比实验样品的核磁共振谱与已知标准的谱图进行分析,可以确定分子中的官能团种类。
例如,甲基官能团和亚甲基官能团在^1H NMR谱图中的化学位移通常在0.5-2.5 ppm之间,而芳香核上的氢通常在6-8 ppm之间。
根据核磁共振谱中的峰位可以推断出分子中官能团的存在。
三、质谱法(MS)质谱法是一种通过分析有机分子质谱图来确定官能团的方法。
不同官能团的分子离子峰位置和相对丰度不同,可以通过与已知官能团的质谱图进行对比,确定分子中的官能团类型。
例如,甲基官能团在质谱图中通常表现为基峰(M+),亚甲基官能团通常表现为碎片峰(M+-1)等。
通过质谱图谱的分析,可以准确推断出分子中是否存在特定的官能团。
四、化学试剂的反应化学试剂的反应也是一种常用的官能团推断方法。
不同官能团对某些特定试剂具有特异性的反应,通过观察反应产物的形成可以确定分子中的官能团类型。
例如,酮官能团可以通过与2,4-二硝基苯肼(Brady's reagent)发生反应生成红色沉淀物来确定。
红外光谱分析一.基本原理红外吸收光谱(Infrared Absorption Spectrum,IR)是利用物质的分子吸收了红外辐射后,并由其振动或转动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,得到分子振动能级和转动能级变化产生的振动-转动光谱,因为出现在红外区,所以称之为红外光谱。
利用红外光谱进行定性、定量分析及测定分子结构的方法称为红外吸收光谱法。
当分子受到红外光的辐射,产生振动能级的跃迁,在振动时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。
若用单色的可见光照射(今采用激光,能量介于紫外光和红外光之间),入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。
通常将红外光谱区按波长分为3个区域,即近红外区、中红外区、远红外区,如下表所示:1. 分子振动类型有机分子中诸原子通过各类化学键联结为一个整体,当它受到光的辐射时,发生转动和振动能级的跃迁。
简单的双原子化合物如A-B 的振动方式是A 和B 两个原子沿着键的方向作节奏性伸和缩的运动,可以形象地比作连着A、B 两个球的弹簧的谐振运动。
为此A-B 键伸缩振动的基频可用胡克定律推导的公式计算其近似值式中,f 是键的振动基频,单位为cm-1;c 是光速;k 是化学键力常数,相当于胡克弹簧常数,是各种化学键的属性,代表键伸缩和张合的难易程度,与原子质量无关;m 是原子的折合质量,即m=m1·m2/(m1+m2)。
上式表明键的振动基频与力常数成正比,力常数越大,振动的频率越高。
振动的基频与原子质量成反比,原子质量越轻,连接的键振动频率越高。
上述是双原子化合物。
多原子组成的非线型分子的振动方式就更多。
含有n 个原子就得用3n 个坐标描述分子的自由度,其中3 个为转动、3 个为平动、剩下3n-6 个为振动自由度。
每一种振动按理在红外光谱中都应该有其吸收峰,但是事实上只有在分子振动时有偶极矩的改变才会产生明显的吸收峰。
正丁醇和邻苯二甲酸氢钾红外吸收光谱一、实验目的1.1. 掌握红外光谱测定的样品制备方法;1.2. 掌握利用红外光谱确定有机化合物结构的方法;1.3. 了解WQF-510型傅立叶变换红外光谱仪的结构及主要功能;1.4. 掌握WQF-510型傅立叶变换红外光谱仪的使用。
二、原理2.1 红外光谱的产生:化合物分子吸收特定波长的红外光产生分子振动能级的跃迁,从而产生红外吸收光谱。
不同种类的有机化合物,因为具有不同的官能团,因此能够吸收不同波长的红外光,在红外光谱图中呈现不同的特征吸收峰。
根据红外光谱图中特征吸收峰的出现与否,既可判断有机化合物的结构特征。
2.2 红外光谱定性分析:一般采用三种方法:用已知标准物对照、标准谱图查对法和直接谱图解析法。
2.2.1. 已知物对照应由标准品和被检物在完全相同的条件下,分别绘制红外光谱图进行对照,谱图相同则肯定为同一化合物。
2.2.2. 标准谱图查对法是一种最直接、可靠的方法。
在用未知物谱图查对标准谱图时,必须注意:测定所用仪器与绘制标准谱图的在分辨率和精度上的差别,可能导致某些峰细微结构的差别;未知物与标准谱图的测定条件必须一致,否则谱图会出现很大差别;必须注意引入杂质吸收带的影响。
如KBr压片可能吸水而引入水吸收带等。
2.2.3. 对于未知化合物,可按照如下步骤解析谱图:先从特征频率区入手,找出化合物含有的主要官能团;指纹区分析,进一步找出官能团存在的依据;仔细分析指纹区谱带位置、强度和形状,确定化合物的可能结构;对照标准谱图,配合其他鉴定手段,进一步验证。
2.3 红外光谱定量分析:选取合适的定量吸收峰,测定吸收峰的吸光度,依据朗佰-比尔定律,计算待测组分含量。
2.4 测定化合物红外光谱的仪器:红外光谱仪。
目前,最常用的是傅里叶变换红外光谱仪,其主要组成部件包括:光源、干涉仪、样品架和检测器。
2.5 红外光谱的测定过程:首先根据样品性质,确定样品的制备方法。
对于固体样品,多采用KBr压片法;对于液体样品,多采用液膜法或液体池法;对于具有粘弹性的高聚物,可采用固体薄膜法。
各类化合物的红外光谱特征有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。
根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。
一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。
所以,有必要对各类有机化合物的光谱特征加以总结。
一、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。
二、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。
2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 一元取代炔烃RC≡CH|| 2260-2190 二元取代炔烃四、芳香烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. 面外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强而宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳香醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.乙烯醚:1225-12005、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在气相或极稀的非极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强而宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发生,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现一个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)八、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现一个强的宽带或一组较尖的谱带。
实验四苯甲酸等有机物的红外光谱测定一、实验目的1.学习傅立叶变换红外光谱基本原理和仪器构造;2.掌握该仪器的操作使用方法和光谱分析方法;3.通过实验初步掌握各种物态的样品制备方法。
二、实验原理红外光谱反映分子的振动情况。
当用一定频率的红外光照射某样品时,若该物质的分子中某基团的振动频率与之相同,则该物质就能吸收这种频率的红外光,使分子又振动基态跃迁到激发态。
若用不同频率的红外光通过待测物质时就会出现不同强弱的吸收现象。
由于不同化合物具有其不同特征的红外光谱,许多化合物都有其特征的红外光谱,根据红外光谱图上的吸收峰数目、吸收频率和吸收强度,将被测定化合物的光谱与已知结构化合物的光谱加以比较,就可以对被测定化合物进行初步的定性分析。
根据比尔定律,测量化合物红外谱图中的某一特征谱带的吸光度,即可进行定量分析。
苯甲酸可以采用KBr晶体压片法制样进行定性。
苯甲酸具有芳烃和羧酸的红外光谱特征。
苯环有ν =CH3080cm-1和1600,1580,1500,及1450 cm-1等特征吸收峰;此外还应存在1000 cm-1以下的两个吸收带(γ =CH)。
高级脂肪醇随碳原子数的增加状态由液体逐渐变为固体。
十二醇分子式:CH3(CH2)10CH2OH 性质:又称月桂醇,十二醇,正十二(烷)醇。
存在于白柠檬油、松针油、大吊克吕花油等精油中。
无色液体(室温),或低于20℃呈固体,具有弱而持久的油脂气息。
凝固点26℃,沸点255~259℃。
十二醇在常温下可以按照液体样品制备方法测定红外光谱。
出现OH峰3500、1050 cm-1和与CH吸收特征3000-2700 cm-1之间的双峰,1470、1380 cm-1及720 cm-1等。
三、仪器与试剂1.仪器红外光谱仪。
油压式压片机,玛瑙研钵,盐片,红外干燥灯。
2. 试剂KBr(AR),无水乙醇(AR),十二碳醇,苯甲酸。
四、实验步骤1.固体样品苯甲酸的红外光谱测定取约1mg苯甲酸样品于干净的玛瑙研钵中,加约100mg的KBr粉末在红外灯下研磨成粒度约2μm左右细粉后,移入压片模中,将模子放在油压式压片机上,加压力,在20-25MPa压力下维持5min。
第6章红外吸收光谱法6.1 内容提要6。
1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。
红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法.振动跃迁-—分子中原子的位置发生相对运动的现象叫做分子振动。
不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。
分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。
转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级.分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁.伸缩振动—-原子沿化学键的轴线方向的伸展和收缩的振动。
弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。
红外活性振动—-凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。
诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。
共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。
氢键效应—-氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。
溶剂效应—-由于溶剂(极性)影响,使得吸收频率产生位移现象.基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。
振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。
基团频率区—-红外吸收光谱中能反映和表征官能团(基团)存在的区域.指纹区——红外吸收光谱中能反映和表征化合物精细结构的区域。