各类有机化合物的红外光谱
- 格式:ppt
- 大小:335.50 KB
- 文档页数:19
各类化合物的红外光谱特征讲解红外光谱是一种广泛应用于化学、生物、材料科学等领域的分析技术,通过检测样品吸收或散射的红外辐射来获取样品的结构信息。
不同类型的化合物在红外光谱中表现出不同的特征,下面将分别讲解有机化合物、无机化合物和生物大分子的红外光谱特征。
1.有机化合物有机化合物在红外光谱中显示出多个特征峰,主要包括C-H伸缩振动和C=O伸缩振动。
C-H伸缩振动出现在2800-3000 cm-1的范围内,不同类型的C-H键有不同的峰位,例如烷基的C-H伸缩振动通常在2850-3000 cm-1之间,而芳香族的C-H伸缩振动在3000-3100 cm-1之间。
C=O伸缩振动出现在1650-1800 cm-1的范围内,不同类型的C=O键有不同的峰位,酮和醛的C=O伸缩振动通常在1700-1750 cm-1之间,羧酸的C=O伸缩振动在1700-1725 cm-1之间。
除了C-H伸缩和C=O伸缩振动,有机化合物还表现出其他特征峰。
N-H伸缩振动通常出现在3100-3500 cm-1之间,-O-H伸缩振动通常出现在3200-3600 cm-1之间。
C-C键伸缩振动和C-C键弯曲振动出现在1200-1700 cm-1之间,其峰位和强度可以提供有关分子结构和取代基的信息。
2.无机化合物无机化合物的红外光谱特征主要来自于它们的晶格振动。
晶体振动通常发生在低频区域,比如300-400 cm-1之间的范围。
晶体振动提供了关于化学键的存在和类型的信息,比如金属-氧化物和金属-氮化物的化学键常常表现出特征峰。
此外,一些无机离子的拉曼活动频率也可以通过红外光谱观察到。
3.生物大分子生物大分子包括蛋白质、核酸和糖类等,它们在红外光谱中显示出独特的特征。
蛋白质和核酸的红外光谱特征主要来自于其各种化学键的振动。
蛋白质中的肽键C=O伸缩振动通常在1650-1675 cm-1之间,背景中峰位较强。
糖类的伸缩振动一般在1000-1200 cm-1之间,不同类型的糖类有不同的峰位和强度。
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱与烷烃IR光谱主要由C-H键得骨架振动所引起,而其中以C—H键得伸缩振动最为有用、在确定分子结构时,也常借助于C-H键得变形振动与C -C键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H在2975—2845cm-1范围,包括甲基、亚甲基与次甲基得对称与不对称伸缩振动2、δC—H在1460 cm—1与1380cm-1处有特征吸收,前者归因于甲基及亚甲基C—H得σas,后者归因于甲基C—H得σs。
1380 cm—1峰对结构敏感,对于识别甲基很有用。
共存基团得电负性对1380cm-1峰位置有影响,相邻F中此峰移至1475cm-1。
基团电负性愈强,愈移向高波数区,例如,在CH3异丙基1380 cm—1裂分为两个强度几乎相等得两个峰1385cm-1、1375 cm—1叔丁基1380 cm—1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多就是前者得两倍,在1250 cm-1、1200 cm—1附近出现两个中等强度得骨架振动。
-1范围内,因特征性不强,用处不大。
3、σC-C在1250—800cm4、γC—H分子中具有—(CH2)n—链节,n大于或等于4时,在722cm-1有一个弱吸收峰,随着CH2个数得减少,吸收峰向高波数方向位移,由此可推断分子链得长短。
二、烯烃烯烃中得特征峰由C=C-H键得伸缩振动以及C=C-H键得变形振动所引起。
烯烃分子主要有三种特征吸收。
1、σC=C-H烯烃双键上得C-H键伸缩振动波数在3000cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。
2、σC=C 吸收峰得位置在1670—1620cm-1。
随着取代基得不同,σC=C吸收峰得位置有所不同,强度也发生变化。
3、δC烯烃双键上得C-H键面内弯曲振动在1500-1000cm—1,对结=C—H构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700cm—1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况与构型。
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。
在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。
1380 cm-1峰对结构敏感,对于识别甲基很有用。
共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。
异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。
3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。
4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。
二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。
烯烃分子主要有三种特征吸收。
1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。
2、σC=C 吸收峰的位置在1670—1620 cm-1。
随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。
3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。
有机化学红外光谱官能团对照表有机化学中的红外光谱(IR)是一种常用的分析方法,用于确定有机化合物中的特定官能团。
以下是部分常见的官能团及其对应的红外光谱波数(cm-1):1.烷烃(Alkanes):C-H 伸缩振动:3000-2800 cm-12.烯烃(Alkenes):C=C 伸缩振动:1650-1590 cm-1C-H 弯曲振动:1450-1100 cm-13.芳香烃(Aromatics):C=C 伸缩振动:1600-1500 cm-1C-H 面外弯曲振动:900-700 cm-14.醇(Alcohols):O-H 伸缩振动:3600-3200 cm-1C-O 伸缩振动:1300-1050 cm-15.酚(Phenols):O-H 伸缩振动:3650-3350 cm-1C-O 伸缩振动:1350-1250 cm-16.醚(Ethers):C-O 伸缩振动:1250-1050 cm-17.醛(Aldehydes):C=O 伸缩振动:1720-1680 cm-1C-H 弯曲振动:900-830 cm-18.酮(Ketones):C=O 伸缩振动:1720-1680 cm-1C=C 伸缩振动:1650-1600 cm-19.羧酸(Carboxylic Acids):O=C=O 伸缩振动:1725-1705 cm-1C-O 伸缩振动:1350-1250 cm-1请注意,这只是部分官能团的红外光谱波数,并不是全部。
每个官能团的红外光谱波数可能会因分子的具体结构而有所差异。
因此,在实际应用中,需要综合考虑红外光谱的峰位、峰形以及峰强等信息来确定具体的官能团。
各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。
不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。
有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。
在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。
2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。
在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。
3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。
在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。
在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。
4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。
在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。
在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。
5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。
在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。
在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。
6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。
在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。
在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。
7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。
在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。
8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。
在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。
各类化合物的红外光谱特征讲解红外光谱是一种重要的分析技术,可以用于确定化合物的结构和化学键的类型。
在红外光谱图中,横坐标表示波数(单位为cm⁻¹),纵坐标表示吸收强度或透射率。
有机化合物:1. 烷烃:烷烃的红外光谱图通常没有明显的峰。
C-H键的拉伸振动一般在3000-2900 cm⁻¹范围内,C-H键的弯曲振动通常在1450 cm⁻¹附近。
2. 烯烃:烯烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1650-1600 cm⁻¹范围内。
C-H键的拉伸振动和弯曲振动与烷烃类似。
3. 芳香烃:芳香烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1600-1475 cm⁻¹范围内。
C-H键的拉伸和弯曲振动在3100-3000 cm⁻¹和1500-1000 cm⁻¹范围内。
4. 醇和酚:醇和酚的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-3200 cm⁻¹范围内。
C-O键的拉伸振动通常在1300-1000 cm⁻¹范围内。
5. 酮:酮的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-C和C-H键的伸缩振动可以在3000-2850cm⁻¹范围内观察到。
6. 醛:醛的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-H键的拉伸振动通常在2850-2700 cm⁻¹范围内。
7. 酸:酸的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-2500 cm⁻¹范围内。
C=O伸缩振动通常在1800-1600 cm⁻¹范围内。
9. 酯:酯的红外光谱图中通常有一个称为C=O伸缩振动的特征峰,在1750-1735 cm⁻¹范围内。
各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。
在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。
烷烃有下列四种振动吸收。
1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。
1380 cm-1峰对结构敏感,对于识别甲基很有用。
共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。
异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。
3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。
4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。
二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。
烯烃分子主要有三种特征吸收。
1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。
2、σC=C 吸收峰的位置在1670—1620 cm-1。
随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。
3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。