有机化合物红外光谱谱图的基本特征
- 格式:ppt
- 大小:1.93 MB
- 文档页数:63
红外光谱的四大特征
红外光谱的四大特征包括谱带的数目、谱带的位置、谱带的强度以及谱带的形状。
这四大特征可以帮助科学家们在鉴定化合物时确定化合物的类型。
具体来说,
1. 谱带的数目:不同的化合物在红外光谱中表现出不同数量的吸收谱带。
2. 谱带的位置:每个基团都有其特征振动频率,在红外光谱中表现出特定的吸收谱带位置,通常用波数表示。
在鉴定化合物时,谱带位置是最重要的参数之一。
3. 谱带的强度:谱带的强度可以反映化合物中相关基团的含量,也可以反映基团间的相互作用。
4. 谱带的形状:如果所分析的化合物较纯,其谱带较尖锐、对称性好;若是混合物,有时会出现谱带的重叠、加宽,对称性被破坏。
对于晶体固态物质,其结晶的完整性程度也影响谱带形状。
一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。
若分子中含有C、H、N原子,-C ≡N基吸收比较强而尖锐。
若分子中含有O原子,且O原子离-C ≡N 基越近,-C ≡N基的吸收越弱,甚至观察不到。
1900~1200 cm-1为双键伸缩振动区该区域重要包括三种伸缩振动:①C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。
酸酐的羰基吸收带由于振动耦合而呈现双峰。
②C=C伸缩振动。
烯烃的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。
单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。
③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。
(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O 等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。
各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。
不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。
有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。
在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。
2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。
在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。
3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。
在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。
在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。
4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。
在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。
在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。
5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。
在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。
在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。
6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。
在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。
在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。
7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。
在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。
8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。
在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。
各类化合物的红外光谱特征讲解红外光谱是一种重要的分析技术,可以用于确定化合物的结构和化学键的类型。
在红外光谱图中,横坐标表示波数(单位为cm⁻¹),纵坐标表示吸收强度或透射率。
有机化合物:1. 烷烃:烷烃的红外光谱图通常没有明显的峰。
C-H键的拉伸振动一般在3000-2900 cm⁻¹范围内,C-H键的弯曲振动通常在1450 cm⁻¹附近。
2. 烯烃:烯烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1650-1600 cm⁻¹范围内。
C-H键的拉伸振动和弯曲振动与烷烃类似。
3. 芳香烃:芳香烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1600-1475 cm⁻¹范围内。
C-H键的拉伸和弯曲振动在3100-3000 cm⁻¹和1500-1000 cm⁻¹范围内。
4. 醇和酚:醇和酚的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-3200 cm⁻¹范围内。
C-O键的拉伸振动通常在1300-1000 cm⁻¹范围内。
5. 酮:酮的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-C和C-H键的伸缩振动可以在3000-2850cm⁻¹范围内观察到。
6. 醛:醛的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-H键的拉伸振动通常在2850-2700 cm⁻¹范围内。
7. 酸:酸的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-2500 cm⁻¹范围内。
C=O伸缩振动通常在1800-1600 cm⁻¹范围内。
9. 酯:酯的红外光谱图中通常有一个称为C=O伸缩振动的特征峰,在1750-1735 cm⁻¹范围内。
有机化合物的红外光谱分析有机化合物的红外光谱分析系别:化学物理系学号:PB09206108姓名:倪宇飞有机化合物的红外光谱分析⼀、实验⽬的(1)初步掌握两种基本样品制备技术及傅⽴叶变换红外光谱仪的简单操作。
(2)通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的⼀般过程。
⼆、实验原理(1)原理概述物质分⼦中的各种不同基团,在有选择的吸收不同频率的红外辐射后,发⽣振动能级之间的跃迁,形成各⾃独特的红外吸收光谱。
据此,可对物质进⾏定性和定量的分析。
特别是对化合物结构的分析,应⽤更为⼴泛。
(2)对试样的要求A.试样应该是单⼀组分的纯物质,纯度应⼤于98%,便于与纯化合物的标准进⾏对照,多组分试样应尽量在测试前预先⽤分馏、萃取、重结晶、区域熔融和⾊谱法进⾏分离提纯;B.试样中不应含有游离⽔。
本⾝⽔有红外吸收,会严重⼲扰样品的谱图,⽽且会侵蚀吸收池的盐窗,游离⽔的吸收为⽌约为3400cm-1以及1630cm-1;C.试样的浓度和测试厚度应该选择适当,以使光谱图中的⼤多数吸收峰透射⽐处于10%~80%范围内。
(3)制样⽅法本次实验中的提供了固体和液体两种未知待测样品,因此有针对性的采⽤了两种制样⽅法A.液膜法对于沸点较⾼的的液体,直接将样品滴在两块NaCl盐窗之间,形成没有⽓泡的⽑细厚度液膜,之后⽤夹具固定,放⼊仪器的光路中进⾏测试。
本实验中由于液体的流动性较差,故只⽤⼀⽚盐窗即可;B.KBr压⽚法,将1~2mg固体试样与200mg纯KBr研细混合,研磨⾄粒径⼩于2微⽶,在油压机上压成透明薄⽚即可⽤于测定。
(4)仪器⼯作原理傅⽴叶变换红外光谱仪主要由光源(硅碳棒、⾼压汞灯)、Michelson⼲涉仪、检测器、计算机和记录仪组成FTIR仪器⼯作原理图Michelson⼲涉仪光学⽰意及原理图测试样品时时,由于样品对某些频率的红外光有吸收,使检测器的⼲涉强度发⽣变化,从⽽得到不同的⼲涉图。
红外光是复合光,检测器接收到的信号是所有频率的⼲涉图的加和。
红外光谱仪的使用及谱图解析利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的化学结构式或立体结构。
原理:样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射-分子振动能级跃迁-红外光谱-官能团-分子结构。
2、红外光谱特点:红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3、分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
分子结构与红外光谱分子官能团与红外光谱吸收峰:(1)分子的整体振动图像可分解为若干简振模式的叠加,每个简振模式(振动能级跃迁)对应于一定频率的)对应于一定频率的光吸收峰,全部具有红外活性的简振模式的光吸收峰就构成了该分子的振动吸收光谱,即红外光谱。
(2)分子的简振模式(振动能级)决定于分子的结构,因此可以将分子结构与其红外光谱联系在一起。
(3)分子的一个简振模式是其所有原子特定运动分量的叠加,也就是说,在一个简振模式下,所有原子都在进行(相同频率)运动运动。
但是一般只有某一个(或几个)基团的运动起着主要作用,而其它原子的运动相对弱的多。
所以,分子的一个简振模式可以看作只是个别基团(官能团)的运动,因此,可以将分子的红外光谱吸收峰与其官能团相对应。
各类化合物的红外光谱特征有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。
根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。
一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。
所以,有必要对各类有机化合物的光谱特征加以总结。
一、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。
二、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。
2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 一元取代炔烃RC≡CH|| 2260-2190 二元取代炔烃四、芳香烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. 面外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强而宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳香醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.乙烯醚:1225-12005、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在气相或极稀的非极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强而宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发生,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现一个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)八、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现一个强的宽带或一组较尖的谱带。
各类有机化合物的红外特征吸收2007-02-06 21:45:09| 分类:药物分析| 标签:|字号大中小订阅第一峰区(4000-2500cm-1)X-H 伸缩振动吸收范围。
(1). O-H醇与酚:游离态--3640~3610cm-1,峰形尖锐。
缔合态--3300cm-1附近,峰形宽而钝羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽而散;(2) . N-H胺类:游离——3500~3300cm-1缔合——吸收位置降低约100cm-1伯胺:3500,3400 cm-1(吸收强度比羟基弱)仲胺:3400 cm-1(吸收峰比羟基要尖锐)叔胺:无吸收酰胺:伯酰胺:3350,3150 cm-1 附近出现双峰仲酰胺:3200 cm-1 附近出现一条谱带叔酰胺:无吸收(3). C-H烃类: 3300~2700 cm-1范围,3000 cm-1是分界线。
不饱和碳(三键、双键及苯环)>3000 cm-1饱和碳(除三元环外)<3000 cm-1饱和烃基:3000~2700 cm-1,四个峰-CH3:~2960(s)、~2870 cm-1(m)-CH2-:~2925(s)、~2850 cm-1(s)>CH-:~2890 cm-1炔烃:~3300 cm-1,峰很尖锐,与nOH 和nNH有重叠;烯烃、芳烃:3100~3000 cm-1两种氢易于混淆醛基:2820 cm-1,2740~2720 cm-1,两个中强峰,区别醛和酮的特征谱带。
巯基:2600~2500 cm-1,谱带尖锐,容易识别叁键:-C≡C-、-C≡N累积双键:>C=C=C<、-N=C=O、-N=C=S特点:谱带为中等强度吸收或弱吸收。
干扰少, 容易识别。
1.C≡C 2280~2100cm-1 乙炔及全对称双取代炔,无红外吸收。
2.C≡N 2250~2240cm-1,谱带较C≡C强。
C≡N与苯环或双键共轭,谱带向低波数位移20~30cm-1。