当前位置:文档之家› 大脑的生理结构与工作方式

大脑的生理结构与工作方式

大脑的生理结构与工作方式
大脑的生理结构与工作方式

大脑半球的外形

1.三个面

每侧大脑半球可分为上外侧面、内侧面和下面三个面。

2.三个叶间沟

中央沟、外侧沟、顶枕沟。

3.五个叶

额叶、顶叶、枕叶、颞叶、岛叶。

4.主要沟回

(1)额叶:中央前沟、额上沟、额下沟、中央前回、额上回、额中回、额下回。

(2)顶叶:中央后沟、中央后回、角回、缘上回等。

(3)颞叶:颞上沟、颞下沟、颞上回、颞中回、颞下回、颞横回等。

(4)内侧面:扣带沟、距状沟、侧副沟、扣带回、中央旁小叶、海马旁回等。

(5)下面:嗅球、嗅束等。

大脑半球内部结构

1.大脑皮质机能区

(1)躯体感觉区:中央后回和中央旁小叶后部。

(2)躯体运动区:中央前回和中央旁小叶前部。

(3)视区:距状沟两侧皮质。

(4)听区:颞横回。

(5)语言中枢

·听觉语言中枢:缘上回。

·视觉语言中枢:角回。

·书写中枢:额中回后部。

·运动性语言中枢:额下回后部。

2.基底核

是包埋于大脑髓质中的灰质团块,位于大脑基底部。主要包括屏状核、尾状核、豆状核、杏仁体等。

纹状体:尾状核、豆状核合称纹状体。主要功能是维持骨骼肌的张力,协调肌群运动。

基底核

基底核,埋脑底屏尾豆状杏仁体

尾豆合称纹状体协调运动及张力

3.大脑髓质

(1)联络纤维:连结同侧大脑半球。

(2)连合纤维:即胼胝体。

(3)投射纤维:主要是内囊。

内囊:位于背侧丘脑、尾状核、豆状核之间,由上行的感觉纤维和下行的运动纤维构成。在脑的水平切面上呈“><”状,分为内囊前肢、内囊膝、内囊后肢三部。

(1)内囊前肢:位于背侧丘脑与尾状核头部之间。

(2)内囊后肢:位于背侧丘脑与豆状核之间。主要有皮质脊髓束、脊髓丘脑束、视辐射等纤维束通过。

(3)内囊膝:位于内囊前肢和内囊后肢交汇处,有皮质核束通过。

一侧内囊受损,可致对侧肢体深浅感觉丧失、骨骼肌瘫痪等症状。

大脑的主要构成

脑干位于大脑的最底端,与脊髓相连。这部分区域负责控制生命的基本功能,比如头部和眼部的反射动作、呼吸、心率、睡眠、消化等。脑干对人体至关重要,只是人们很难意识到它的存在。脑干向上是丘脑,丘脑也负责一些与生命息息相关的功能,但它的工作似乎更加多样,包括释放应激激素和性激素,调节性行为,感觉饥饿、口渴,控制体温及日常睡眠周期等。

大脑皮层是人脑中最大的部分,占据了整个大脑重量的3/4,其形状看上去像一大块揉皱了的布,盖住了大脑的顶部和四周。早在1.3亿年前哺乳动物起源时,大脑皮层便产生了。之后,随着不断进化,大脑皮层在人和动物大脑中所占的比重越来越大。科学家将大脑皮层分成四个部分,每一部分称为一个“叶”。位于大脑后部的叫做枕叶,负责视觉观察;位于两耳上方的叫做颞叶,负责听觉和语言理解,同时,它还与杏仁核和海马区密切联系,对于学习、记忆和情感反应等起着重要作用;位于大脑两侧的是顶叶,接收通过皮肤传递的信息,同时它还负责收集所有的感官信息,并判断出注意力的方向;额叶,顾名思义,是位于大脑前面的部分,它负责发出运动指令,控制着语言能力,并且根据不同的目的和环境选择适当的行为。

人类和动物的情感,特别是恐惧和焦虑,由杏仁核来控制。这部分杏仁状的区域位于每只耳朵的上方,使动物在面对危险情况时能够做出逃跑还是出击的决定。在它旁边是海马区,负责储存事实和信息,是形成长期记忆所必需的区域。小脑位于大脑的后面,负责收集感官信息并协助身体的运动。

脑又分为左、右两半部,右半球就是「右脑」,左半球就是「左脑」。而左右脑平分了脑部的所有构造。左脑与右脑形状相同,功能却大不一样。左脑司语言,也就是用语言来处理讯息,把进入脑内看到、听到、触到、嗅到及品尝到(左脑

五感)的讯息转换成语言来传达,相当费时。左脑主要控制著知识、判断、思考等,和显意识有密切的关系。

右脑的五感包藏在右脑底部,可称为「本能的五感」,控制著自律神经与宇宙波动共振等,和潜意识有关。右脑是将收到的讯息以图像处理,瞬间即可处理完毕,因此能够把大量的资讯一并处理(心算、速读等即为右脑处理资讯的表现方式)。一般人右脑的五感都受到左脑理性的控制与压抑,因此很难发挥即有的潜在本能。然而懂得活用右脑的人,听音就可以辨色,或者浮现图像、闻到味道等。心理学家称这种情形为「共感」这就是右脑的潜能。

大脑的工作方式

大脑以其仅约3磅重的重量,包含了通过不计其数的神经键连接起来的上百亿神经元及辅助脑细胞。大脑由细胞组成的。大脑细胞有两种,一种叫神经元,互相之间以及与人体其他部分之间能够进行信息交流;另一种叫胶质细胞,为大脑的工作提供必须的支持。神经元内的信号通过电荷的运动进行传递。正负电荷(如钾离子和氯离子)分布不均匀,每个神经元的细胞膜内侧聚集着大量的负电荷,其密度大大高于细胞膜的外侧。神经元内的正负离子不断运动,以保持这一电荷的分布状态,这一运动所消耗的能量占去了大脑总消耗能量的大部分。为使电子信号从一个神经元传递到另一个神经元,神经元打开了通道,从而使离子能够穿透细胞膜,形成电流,将电子信号送出细胞膜。大脑中有一种叫做树突的树状结构,可收集来自各种渠道的信号,神经元就是通过这种树突接收信号的。然后,神经元便可以通过神经轴突(一种形状如电线的结构)向另外一个神经元发送电子信号了。

大脑要完成诸多任务,神经元扮演了十分重要的角色。每个神经元都有不同

的分工,会对不同的特定事件做出反馈,比如辨别某种特定声音,辨认某个人的脸,完成某个动作以及其他许多从外部看不出来的反应。在任何情况下,大脑的所有神经元中都只有一小部分保持活跃。当然,根据大脑的不同思维,活跃的神经元也有所不同,神经元之间交流的信息也不同。

所有的脑,包括丘脑、大脑、小脑、下丘脑、基底核等都是由一种结构组成——神经元,神经元中遗传有信息,脑所要完成的工作就是整理、组织遗传信息,使之有序化、条理化。脑的主要功能就是经过神经元一级一级的信息交换传递,获得一个有意义的信息集合,这个过程称为样本分析。神经元一级一级进行信息交换传递的过程称为分析,有意义的信息集合既为样本。样本分析是脑的主要功能,包括大脑、小脑、下丘脑、基底核等,这些脑的主要功能都是进行样本分析。

丘脑是一个十分特殊的器官,丘脑神经元中的遗传信息具有觉知特性,丘脑能够将各个遗传信息合成为一个特殊的信息集合,这个具有特殊性质的信息集合是对事物觉知,称为丘觉。丘觉的合成发放活动,样本的分析产出活动,本质上就是反射活动。丘脑是发放丘觉的器官,是“我”的本体器官,大脑联络区是丘觉的活动场所,意识在大脑联络区得以实现。丘脑的唯一功能就是合成发放丘觉。丘脑由神经元构成,每个神经元中都遗传有信息,丘脑的功能就是将数个神经元的信息合成为丘觉,并发放到大脑联络区,使大脑产生觉知,也就产生了意识。丘觉是想法、是念头,是意识的核心。脑包括的结构众多,不是所有的脑都能合成丘觉,丘觉只是丘脑的功能,只能是丘脑合成发放出来才能产生意识。丘觉一般不会随意合成发放,特别是关于客观事物的丘觉,需要样本激活才能由丘脑合成,样本的分析产出是大脑(还有基底核、小脑、下丘脑、杏仁核等)的功能,大脑有着极其强悍的样本分析功能,通过对视、听、触等信息的分析,产出需要

的样本到丘脑,激活丘脑的功能,合成一个相应的丘觉发放到大脑联络区产生意识。

大脑分析产出样本的目的就是激活丘觉进入意识,如果杂乱无章的信息激活丘觉,只能引起意识的昏乱,样本是具有一定意义的条理化信息,大脑经过舍弃无用信息、填补有用信息、放大主要信息、简化次要信息等多种形式的分析,获得一个有意义的完整信息,这个信息与传入信息相匹配,激活丘觉产生清晰意识。大脑联络区是意识活动的场所,有两个,一个是大脑额叶联络区,一个是大脑后部联络区,这两个联络区都能产生意识。正常状态下,两个联络区的意识活动可以同时存在,并以大脑额叶联络区的意识为主导。大脑额叶联络区是各种意识汇集的场合,在清醒状态下一直处于活动状态,如果大脑额叶联络区不活动,人就一定处于睡眠状态。当大脑额叶联络区的活动被逐步抑制,人就逐步进入睡眠状态,如果大脑额叶联络区突然活动,人也就突然清醒。在大脑额叶联络区休眠时,如果大脑后部联络区单独活动,这时就表现为做梦,也是意识活动的一种形式。大脑分析产出的样本是表示事物的信息,但样本只是表示事物的信息,相当于一些符号,进入意识还必须有丘觉的支持。

丘脑虽然能够合成发放丘觉产生意识,但丘脑不是意识活动的场所,意识也不在丘脑中存在。大脑联络区是丘觉的活动场所,丘觉能够使大脑产生对事物的觉知,产生对事物的“知道”、“明白”。丘脑通过联络纤维将丘觉发放到大脑联络区,在大脑联络区产生意识。在临床病例中,丘脑、大脑联络区、联络纤维发生了损伤或病变,产生的症状都是一样的,都将导致意识的缺损或丧失。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,

供参考,感谢您的配合和支持)

大脑结构与功能

大脑结构与功能 大脑结构详解

大脑(Brain)包括左、右两个半球及连接两个半球的中间部分,即第三脑室前端的终板。大脑半球被覆灰质,称大脑皮质,其深方为白质,称为髓质。髓质内的灰质核团为基底神经节。在大脑两半球间由巨束纤维—相连。 具体内容有大脑半球各脑叶、大脑皮质功能定位、大脑半球深部结构、大脑半球内白质、嗅脑和边缘系统五大部分。 各叶的位臵、结构和主要功能如下: 1、额叶:也叫前额叶。位于中央沟以前。在中央沟和中央前沟之间为中央前回。在其前方有额上沟和饿下沟,被两沟相间的是额上回、额中回和额下回。额下回的后部有外侧裂的升支和水平分支分为眶部、三角部和盖部。额叶前端为额极。额叶底面有眶沟界出的直回和眶回,其最内方的深沟为嗅束沟,容纳嗅束和嗅球。嗅束向后分为内侧和外侧嗅纹,其分叉界出的三角区称为嗅三角,也称为前穿质,前部脑底动脉环的许多穿支血管由此入脑。在额叶的内侧面,中央前、后回延续的部分,称为旁中央小叶。负责思维、计划,与个体的需求和情感相关。 2、顶叶:位于中央沟之后,顶枕裂于枕前切迹连线之前。在中央沟和中央后沟之间为中央后回。横行的顶间沟将顶叶余部分为顶上小叶和顶下小叶。顶下小叶又包括缘上回和角回。响应疼痛、触摸、品尝、温度、压力的感觉,该区域也与数学和逻辑相关。 3、颞叶:位于外侧裂下方,由颞上、中、下三条沟分为颞上回、颞中回、颞下回。隐在外侧裂内的是颞横回。在颞叶的侧面和底面,在颞下沟和侧副裂间为梭状回,,侧副裂与海马裂之间为海马回,围绕海马裂前端的钩状部分称为海马钩回。负责处理听觉信息,也与记忆和情感有关。 4、枕叶位于枕顶裂和枕前切迹连线之后。在内侧面,,距状裂和顶枕裂之间为楔叶,与侧副裂候补之间为舌回。负责处理视觉信息。 5、岛叶:位于外侧裂的深方,其表面的斜行中央钩分为长回和短回。 6、边缘系统:与记忆有关,在行为方面与情感有关。 大脑的总结构 大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。 现在按Brodmann提出的机能区定位简述如下: ·皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位臵、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮质中枢的部分功能。 ·皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、

脑的基本结构

脑的基本结构、组成——脑包括端脑、间脑、中脑、脑桥和延髓,可分为大脑、小脑和脑干三部分。(小延站在桥的中间端) 大脑皮层的结构是什么? 皮层神经元都是呈层状排列的,而且绝大部分神经元胞体与脑的表面平行。 分子层: 最靠近表面的神经细胞层, 由一层无神经元的组织将皮层与软脑膜分隔开。 它们至少都有一层细胞,伸出大量的称为顶树突的树突,这些顶树突会伸入到第一层,在那里形成众多的分叉。细胞骨架:微管;微丝;神经丝 1.微管:组成→微管蛋白和微管相关蛋白,tau(与老年痴呆症相关)异二聚体为单位,有极性。功能:细胞器的定位和物质运输 2.微丝:成分→Actin肌动蛋白,组装需要ATP修饰蛋白,微丝是由球形-肌动蛋白形成的聚合体,生长锥运动 3.神经丝:星形胶质细胞标记物;调节细胞和轴突的大小和直径 什么是轴浆运输,它的分子马达? 轴浆运输指化学物质和某些细胞器在神经元胞体和神经突起之间的运输,是双向性的。 1)快速轴浆运输 顺向运输: 囊泡、线粒体等膜结构细胞器;逆向运输:神经营养因子病毒如狂犬病毒、单纯疱疹病毒 2)慢速轴浆运输 顺向运输:胞浆中可溶性成分和细胞骨架成分 分子马达:驱动蛋白动力蛋白 应用:追踪脑内突触连接 什么是离子通道,它的类型? 是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道。 离子通道的开放和关闭,称为门控(gating)。根据门控机制的不同,将离子通道分为受体门控离子通道和电压门控离子通道。 动作电位的兴奋性周期性变化 绝对不应期:兴奋性为零,阈刺激无限大,钠通道失活。相对不应期:兴奋性从无到有,阈上刺激可再次兴奋,钠通道部分复活。 超常期:兴奋性高于正常,阈下刺激即可引起兴奋,膜电位接近阈电位水平,钠通道基本复活。 低常期:兴奋性低于正常,钠泵活动增强,膜电位低于静息电位水平。 生理意义:由于绝对不应期的存在,动作电位不会融合。。神经元信息传导与动作电位:作电位双向传导,通过极化与去极化。神经元之间是单向传导。 神经细胞在静息状态下,是外正内负的静息电位(外钠内钾)。当受到刺激,细胞膜上少量钠通道激活,钠离子少量内流,膜内外电位差减小,产生局部电位。 当膜内电位到达阈电位时,钠离子通道大量开放,膜电位去极化,动作电位产生。随着钠离子的进入,外正内负逐渐变成外负内正。 从变成正电位开始,钠离子通道逐渐关闭至内流停止,同时钾离子通道开放,钾离子外流,膜内负值减小,膜电位逐渐恢复到静息电位,由于在正常情况下细胞膜是外钠内钾,此时却是外钾内钠,所以这时钠-钾泵活动,将钠离子泵出,钾离子泵回,恢复静息状态。此时完成一个动作电位的产生。传递是依靠局部电流传递的。 神经系统的发育过程:源于外胚层;神经板→神经沟→神经管(整个神经系统的由来);神经褶→神经嵴(所有外周神经元的细胞体和神经元由来) 胚胎发育第13天外胚层的细胞增生形成原条;原条前末端细胞形成原结; 原结和脊索诱导神经板形成,神经板中线凹陷发育为神经沟; 神经沟进一步凹陷加深,沟两侧边缘融合成神经管;(此过程称神经胚形成,在第四周末完成神经系统的早期发育); 神经管的背部细胞向外迁移形成神经嵴,神经嵴最后发育为外周神经系统;神经管则发育为CNS; 神经管的头端膨大发育为脑;脊髓与胚胎的体节发生相适应成为节段性结构(31); 三胚层的构造和最终的发育 内胚层:发育成呼吸系统和消化管; 中胚层:最终发育成结缔组织、血细胞、心脏、泌尿系统以及大部分内脏器官; 外胚层最终发育成神经系统和皮肤。 神经胚的形成?神经板发育成神经管的过程称为神经胚形成 神经管是什么?为脊椎动物及原索动物的神经胚期所见到的一种最明显的变化,神经板闭合作为中枢神经系统最初原基的神经管形成过程的总称。 神经细胞增殖的舞蹈表演 室层中一个细胞的突起向上延伸至软脑膜; 该细胞的细胞核从脑室侧迁移至软膜侧;同时细胞DNA 被复制; 含复制所得的双倍遗传物质的细胞核,重新回到脑室侧;细胞突起从软膜侧缩回; 细胞分裂成两个子细胞。 神经细胞的分化过程 较早分化的较大神经元先迁移并形成最内层,依次顺序向外; 而较晚分化的较小神经元则通过已形成的层次迁移并形成其外侧新的层次; 不论皮质的什么区域,其最内层总是最早分化,而最外层则最后分化。 备注:放射胶质细胞是一切神经干细胞的来源 神经元迁移方式是怎样的?分为以下两种方式: 放射性迁移(细胞引导端先移动,再带动其他部分) 切线性迁移(整个细胞一起移动) 备注:神经细胞迁移有缺陷(起始过程缺陷,迁移过程缺陷,分成缺陷,终止信号缺陷) 生长锥的概念:位于轴突的尖端,呈扁平掌形结构,是神经轴突生长的执行单元。向外部突出丝状伪足,在内部的微管、微丝构成的动力骨架支撑下进行生长。膜表面富含不同的感觉器和黏接分子,感受环境中适宜的生长方向,从而决定轴突生长导向。 成年脑神经元再生(热点问题) 概念:指成年脑内持续产生有功能的新生神经元的现象。神经发生区(即脑内能够产生神经元的区域)所要满足的条件: 1)神经前体细胞 2)域的微环境能够适应神经元再生什么是马赫带 定义:马赫发现的一种明度对比现象。它是一种主观的 边缘对比效应。当观察两块亮度不同的区域时,边界处 亮度对比加强,使轮廓表现得特别明显。 原理:通过水平细胞实现的; 作用:提高边缘对比度,增强分辨能力。 1.通路(What通路) –形状和面容识别:V1→V2 →TE(颞下回前部) –颜色:V1 →V2 →V4 →V8 → TEO (颞下回后部) 2.通路(Where或How通路)运动和深度:V1 →V2 → V5(MT) →顶叶后部 脑干的灰质结构主要有:与脑神经(Ⅲ-ⅩⅡ)相关的神经核; 脑干的白质纤维束:有上行传导束和下行传导束;另外, 脑干网状结构是界与灰质与白质的神经组织) 脑神经12对: 对称性分布于头,颈,躯干,四肢;脊神经31 对:颈神经C1-8对,胸神经T1-12对,腰神经L1-5对,骶神经 S1-5对,尾神经1对; 脊神经由与脊髓相连的前根、后根合并而成,从椎间孔 穿出椎管;前根为前角运动神经元发出的传出性突起组 成;后根为传入性神经,与脊髓的后角相关连; 自主神经系统:为内脏神经的感觉和运动神经部分,主要 分布于内脏,心血管,腺体;内脏运动神经系统的活动因较 不受随意控制而得名; 神经系统活动的基本过程是反射;不受意识控制的神经 系统活动就是反射;实现反射活动的神经通路称反射弧; 进行信号转换处理的中枢部位称神经中枢; 反射弧的基本组成:感受器、传入神经、神经中枢、传 出神经、效应器;反射弧最简单的结构是由2个神经元 组成的单突触反射(如膝跳反射), 胞体内的嗜染色质在碱性染料着色后呈现颗粒状或块状 或虎斑纹样----尼氏体----本质为粗面内质网,核糖核蛋白 体为其主要成分,轴丘部位无尼氏体分布,是组织学确 定轴突的依据之一; 树突和轴突;轴突:从胞体或树突主干的基部发出,只一条; 起始段细;表面光滑,粗细均匀;有髓或无髓;不含核糖体及 粗面内质网(尼氏体); 树突:从胞体发出一至多条;起始 段的树突主干最粗,其胞质成分与核周质者相同;分支逐 渐变细,一般不均匀或表面有小棘;一般无髓; 传导信号和处理信息的结构都是以神经元为单位相互连 接成的神经网络;神经元在结构上只是相互接触而不相 通; 神经元膜相互接触并可以传递信号的特化部位称突触, 有化学性突触和电突触两类; 有髓神经纤维是周围神经系统中雪旺细胞(神经胶质细 胞的一种)以伪足样结构包绕轴突呈螺旋包绕8-12层, 相 邻雪旺细胞间的轴突裸露区称为郎飞结;传导动作电位 的方式是”跳跃式”传导 细胞的兴奋特性:几乎所有的细胞的膜两侧存在一定的 电位差(静息电位);有部分细胞在受到刺激时,能产生短 暂的,快速的跨膜电位变化,这种变化还可以沿细胞表面 主动向远端扩布; 在受到刺激后能产生可扩布电位的细 胞是可兴奋细胞; 可兴奋细胞未受到刺激时存在的跨膜 电位称静息电位; 对细胞膜内外两侧溶液中带电离子化学成份分析表明,外 液的主要成分是氯离子,钠离子;内液中主要为钾离子以 及与钾离子维持电中性的阴离子. 细胞膜在静息状态下 (未受到刺激),只对钾离子有中等的通透性,而对其他离子 的通透性很小;浓度差产生的扩散力驱动钾离子向胞外 扩散; 随着钾离子向胞外扩散,膜两侧逐渐形成外正内负 的电位差,电位差产生的库仑力(静电力)阻止钾离子的向 外扩散; 当驱动钾离子向外扩散的扩散力和阻止钾离子 向外扩散的静电力达到平衡时,钾离子的净移动为零,这 一离子扩散平衡时的跨膜电位称为—平衡电位(此时的 状态称极化状态);由于此平衡电位是钾离子扩散达到平 衡造成的,故称为钾平衡电位; 动作电位的特性:在生理条件下,动作电位触发于轴丘并 沿轴突向末梢传导;动作电位有阈值现象; 动作电位遵循”全或无”原则,其大小与刺激强度无关, 与传导的距离无关;刺激后产生兴奋有一个潜伏期,潜伏 期与刺激强度有关; 动作电位产生后,产生动作电位的部位的兴奋性经历规律 性的变化:绝对不应期,相对不应期,超常期;低常期; 动作电位所具有的特性的意义:限制传导频率;不会发生 重叠总和;不会在细胞表面来回往复振荡; 动作电位时相与兴奋性的关系(1)绝对不应期---钠离子通 道处于失活状态;(2)相对不应期---钠离子通道部分复活, 部分失活状态;(3)超常期---钠离子通道全部复活,膜电位 未恢复静息水平;(4)低常期---钠-钾离子泵活跃作用,导致 膜出现后超极化; 神经元的信号活动取决于跨膜电位的迅速变化;只有离 子通道才能实现;因此,它是信号转导的基本元件; 神经信息从一个细胞传到另一个细胞的过程---传递;神经 元间信息传递的方式有两类:化学传递与电传递; 神经元间实现信息传递的相互联系的特化结构:突触; 化学性传递又分为经典突触传递和非突触性传递; 经典突触的结构:由突触前成分(轴突末梢),突触间隙(细 胞的间隙),突触后成分(胞体,树突或肌细胞膜)组成; 递质的量子释放: 递质的释放以囊泡为单位,以胞裂外排 形式将一个囊泡的递质(为最基本单位量)全部释放出去, 递质释放的总量取决于参与释放的囊泡总数;递质释放 的总量总是囊泡包含的递质量的整数(量子)倍; 释放的 囊泡总数与动作电位的大小相关;动作电位的大小与静 息电位相关; 经典化学突触传递的效应:(1)兴奋性化学突触:突触 前成分释放兴奋性递质,使突触后膜去极化(兴奋性突触 后电位EPSP,可总和);达到阈值则产生动作电位;从而使 神经信号跨过突触;(2)抑制性化学突触:突触前成分 释放抑制性递质,使突触后膜超极化(抑制性突触后电位 IPSP);膜电位要到达阈电位水平更难, 突触传递的抑制作用(1)突触后抑制: 突触前成分释放 抑制性递质,使突触后膜超极化,由于突触后膜阈值升高, 兴奋性下降;这种抑制作用发生在突触后膜,故名----突触 后抑制; (2)突触前抑制: 突触后膜的兴奋或抑制程度 与递质和受体结合的量相关;递质的释放量与突触前成 分的动作电位的大小有关,动作电位的大小与静息电位的 大小有关;降低突触前膜的静息电位(局部兴奋,去极化), 最终导致突触后神经元受到抑制,这种抑制作用发生在突 触前成分,故名---突触前抑制; 电突触在组织学中为细胞的缝隙连接;通道中的微孔道 直径为2纳米,离子及小分子可通过,使两侧胞质连通起来 (机能合胞体结构);通道构象变化使通道的通透性发 生改变; 缝隙连接是细胞间电活动由一个细胞直接传导 到另一个细胞的低电阻通道,因此,它实现传导速度快,高 保真性及双向性;其意义是使两邻的可兴奋细胞活动的 同步化 电突触传递的特点:无时间延搁;不易受环境因素的影响; 传递定型化的兴奋性信号;双向传递; 经典化学突触传递机制是电信号转化为化学信号,再转 化为电信号或其它化学信号;有时间延搁;易受环境因素 的调制(短时间或长时间地改变传递效率,对学习,记忆非 常重要);可传递兴奋性信号,也可传递抑制性信号;单向传 递; 轴丘是发放动作电位的关键部位,因为轴丘有最高密度 的电压依赖性钠通道,且阈值很低; 神经元依两个特性编码信息:(1)放电频率---编码强度以 及时间-强度变化的内容;(2)投射部位---编码信息的空 间位置,性质特征等内容; 神经整合作用:(1)电紧张电位:突触电位的跨膜被动 扩布随着与突出电位产生部位的距离和时间而衰减---电 紧张电位;在神经细胞膜上产生的绝大多数突触电位均 低于阈电位,只能以电紧张的形式被动扩布;(2)空间和 时间总和:一个神经元上可以形成成千上万个突触,有兴 奋性的,也有抑制性的;任一时间内,一部分突触激活,或产 生EPSP,或产生IPSP,这种分级突触电位的特殊性是能够 总和和叠加.如果产生足够数目的EPSP,总和后轴丘膜电 位达到阈电位便可触发动作电位; 时间总和:发生在不同时间内的突触后电位的总和现象 称为时间总和; 如果一个传入神经元连续而快速发放一 系列动作电位,在突触后细胞上最早产生的突触电位在后 续电位到达前还没有消失,因此,后续的突触电位在时间 上总和; 空间总和:发生在神经元表面不同位点的突触后电位的 总和称为空间总和; 人体通过感觉了解内部和外部的世界;所有的感觉源于 感觉系统的活动;各类刺激兴奋不同的感受器,产生感觉 信号;在感觉通路中经过复杂的加工处理传到中枢,形成 感知; 感受器是一种换能装置,把接受到的各种形式的刺激能量 转换为电信号,再以神经冲动的形式经神经纤维传入到中 枢神经系统------转导; 感受器就是一级传入神经元的末 梢终端,接受刺激直接产生去极化(感受器电位);刺激加大, 可以产生动作电位; 皮肤感受器的分布特点:在皮肤表面呈点状分布; 不同的 感受器在身体的不同部位分布的密度不同; 感受器有适应现象:超时连续刺激时感受器的反应性减 弱; 根据感受器产生适应的时间长短,可分为:慢适应性感 受器(SA)和快适应性感受器(RA); 躯体感觉传导通路的规律:(1)从感受器到形成感觉一 般经过三级神经元接替(突触联系),第一级胞体位于 外周(脑神经节和脊神经节),第二级位于脊髓灰质或 脑干神经核团),第三级位于丘脑外侧核;(2)第二级 神经元发出的突起在上行的过程中向对侧投射;(3)投 射到大脑皮层的中央后回及旁中央小叶; 人体的体表感觉区位于中央后回和旁中央小叶,感觉投 射有以下规律: (1)投射区域具有精细的定位,下肢代表 区在中央后回顶部(膝以下代表区在旁中央小叶后半),上 肢代表区在中间部,头面代表区在底部,总的安排是倒立 的,但头面部内部的安排是正立的;(2)躯体感觉传入向 皮质投射具有交叉的特点,即一侧的体表感觉传入是向对 侧皮质的相应区域投射,但头面部感觉的投射是双侧性的; (3)投射区域的大小与躯体各部分的面积不成比例,而 与不同体表部位的感觉敏感程度,感受器数量,以及传导 这些感受器冲动的传入纤维的数量有关; 平衡感觉是指头在空间的位置和运动的感觉;它的感受 器位于内耳的迷路部分(前庭和半规管); 晕车病:由直线运动感觉的错觉(平衡感受器敏感性过 高)而引起,常伴有一系列的植物性神经系统症状; 对光敏感的感受器有两种:视杆细胞(晚光觉系统),视锥 细胞(昼光觉系统).它们含有感光物质,光刺激可以引起 化学变化和电位变化,从而产生神经冲动; (1)视杆细胞 数量为视锥细胞的20倍,除视乳头和视凹外,分布整个视 网膜;对光的敏感性为视锥细胞的1000倍,主要适应暗视 觉;(2)视锥细胞在视网膜的视凹处最密集,但在视凹5 度外密度明显减少;它对光的敏感性很低,一般不会达到 饱和;因此,视锥细胞适合于明视觉; 视敏度:指分辨物体细微结构的能力;在视网膜的正后方 为黄斑,黄斑中央有一个很小的窝为中央凹(宽约1度),为 视力最清晰区(对应视野的中心,视敏度最高);其感光细胞 为视锥细胞(分布密度大,感光阈值高,向中枢传导时汇聚 作用小); 视觉反射(1)瞳孔对光反射:瞳孔的大小随光的强度变 化而发生变化;(2)光的会聚反射:眼对不同距离的调节 使光线聚焦在视凹; 色觉与视锥细胞有关;有3种类型的视锥细胞,它们分别 含有光谱敏感性不同的视锥色素(视觉的三元色学说); 色盲几乎所有的色盲都是遗传的,其主要原因是视锥细胞 的丧失和异常造成的; 明适应与暗适应(视觉二元理论)在暗视下,由于视锥细胞 的光敏度低,微弱的光不能使之兴奋,此时,光由视杆细胞 感受(最大峰值为500nM),强光导致视杆细胞的感光色 素大量分解(漂白),视杆细胞产生快速放电,人眼感到一片 耀眼的光亮;稍等片刻后,才能恢复视觉;在明视下,光波长 敏感性由视锥细胞决定(最大峰值约为550nM); 人眼从 明亮进入暗处,明处下被漂白的视杆细胞色素还没有恢复, 而视锥细胞的感光色素不能对弱光产生敏感效应,故开始 一段时间看不清楚任何物体;首先由红敏视锥细胞工作, 再经过一段时间后,视杆细胞感光色素逐步恢复,视觉敏 感度逐渐提高,恢复暗处的视力,敏感性提高100万倍; 反射是神经系统最简单的运动形式; 反射是机体对特殊 的内外刺激产生的特定反应.,介导反射的特殊神经环路 称为反射弧; 单突触反射----反射弧中没有中间神经元;多突触反射---- 反射弧中有一个及以上的中间神经元的接替; 反射的可塑性:即可根据体验来修改:习惯化---反复应用 恒定的无害性刺激可以使反射变弱;突触的抑制引起;去 习惯化---刺激的任何改变使反射回到基点;敏感化----反复 应用伤害性刺激,使反射增强; 屈肌反射与对侧伸肌反射:皮肤受到伤害性刺激,受到刺 激一侧的肢体出现屈曲的反应,关节的屈肌收缩而伸肌弛 缓;屈肌反射具有保护性意义,屈肌反射的强度与刺激强 度有关; 刺激强度更大,同侧肢体发生屈曲反射时,出现对 侧肢体伸直的反射活动; 节间反射:刺激某一部位(某一脊髓节段支配)的皮肤,引 起其他脊髓节段支配的肢体的协调活动;如脊蛙的搔爬 反射; 姿态反射:姿态反射的目的是防止身体受外力的影响,使 身体向重心转移,还有助于肢体运动时维持身体重心.肌 肉收缩时涉及到抗重力肌(腿部和背部深层伸肌,上肢屈 肌)和协助重力肌.姿态反射的中枢在脑干, 前庭(迷路)反射:前庭(迷路)反射主要稳定头在空间的运 动方向; 颈反射:转动头部可兴奋颈部肌肉内的肌梭和颈椎关节 的传入神经,使颈部肌肉反射收缩(颈丘反射)和肢体的肌 肉收缩(颈脊反射) 矫正反射:动物被置于异常位置时,它能迅速地矫正自己 的姿位以保持正常的体位;它包括前庭矫正反射和颈矫 正反射;此外还有视矫正反射; 随意运动:是意识上为了达到某种目的而指向一定目标 的运动; 大脑皮质运动区(随意运动)对运动调节的特点: (1)对躯 体的运动调节呈现交叉支配的特点(但头面部及部分颈 部肌肉的运动是双侧性的) (2)具有精细的定位特点,功能 代表区的排列大致呈现倒立的人体投影(但头面部内部 代表区的安排是正立的) (3)大脑皮层运动功能代表区的 大小与运动的复杂和精细程度呈正相关关系; 小脑的功能:小脑协调由大脑皮质驱动的运动,也可自身 驱动运动和学习新的运动技巧;小脑的调控是以反馈或 者前馈的方式进行的; 基底神经节运动的调节:基底神经节---大脑皮层下神经核 团的总称;包括纹状体(尾核,壳核),苍白球,黑质,丘脑下核 等;基底神经节中与运动功能有关的主要是纹状体,而纹 状体的主要传入来自大脑皮质; 睡眠的功能理论:恢复理论----恢复体能;适应理论----逃 避敌害 觉醒与睡眠不是受环境昼夜交替调节的一种被动反应, 而是各自受机体内部不同振荡机制(生物钟)调控的结 果; 非REM睡眠的特征:从此状态被唤醒后,不能回忆有过 的思维活动;在REM睡眠期间,被唤醒者可能会报告清 晰、详细、生动的梦境,并常有离奇的情节; 整个睡眠过程中,非REM睡眠和REM睡眠周期性地交替, 平均大约没90分钟重复一个周期;健康成年人睡眠时间 的75%为非REM睡眠; 胆碱能神经元的活动诱发REM睡 眠; 人类是否需要做梦,我们不知道;但机体需要REM睡眠;选 择干扰REM睡眠处理后,受试者试图进入REM睡眠的次 数大大增加; 现在认为睡眠是一个主动的神经过程,而且要求许多脑 区参与: REM睡眠的控制来自于脑干深部,特别是脑桥的弥散调 制神经递质系统:蓝斑去甲肾上腺素递质系统和中缝核 群5-羟色胺递质系统的放电频率随REM的启始几乎下降 为零;而胆碱能神经元的放电频率急剧上升;有证据显 示,胆碱能神经元的活动诱发REM睡眠; REM睡眠行为疾病:经常在做梦期间有行为活动(梦游); 其神经基础是正常情况下介导REM无张力的脑干系统发 生故障; 将电极放在头皮上可以导出电位变化—脑电,它被认为是 大脑皮层神经细胞动作电位的总和;通常以脑电的特征 划分睡眠的时相; 学习是获得新信息和新知识的神经过程;记忆是对所获 取的信息的保存和读出的神经过程; 非联合型学习:习惯化;敏感化 联合型学习:经典条件反射;操作式条件反射 陈述性记忆:事实,事件以及它们之间关系的记忆,能够用 语言来描述;非陈述性记忆--许多类型的记忆是在无意识 参与的情况下建立的,内容无法用语言来描述; 陈述性记忆和非陈述性记忆的明显差异:(1)通常通过 有意识的回忆获取陈述性记忆;可以用语言描述被记忆 的内容;非陈述性记忆不能。但它可以很熟练地运用技 巧;(2)陈述性记忆容易形成也容易遗忘;非陈述性记 忆需要多次的重复练习,一旦形成则不容易遗忘; 遗忘症:脑震荡、慢性酒精中毒、大脑炎、脑肿瘤以及中 风可以损坏记忆;逆行性遗忘:对症状发生前一段时间的 经历不能回忆,忘掉了已知的事物,即不能从长期储存的 记忆中回忆; 记忆障碍“慢性酒精中毒-----顺行性遗忘症,不能将短时性 记忆转化为长时性记忆;脑震荡,脑溢血,电击,麻醉-----逆 行性遗忘症,不能从长时性记忆中提取信息或丧失记忆内 容; 大脑皮层由感觉皮层、运动皮层和联合皮层组成:感觉 皮层(视皮层、听皮层、躯体感觉区、味觉皮层、嗅觉 皮层);运动皮层(初级运动区、运动前区、运动辅助 区);联合皮层(顶叶联合皮层、颞叶联合皮层、前额 叶); 联合皮层不参与纯感觉和运动功能,而是接受来自感觉 皮层的信息并进行整合,再传到运动皮质,从而控制行 为;起感觉输入和运动输出的“联合作用”;随着动物 的进化,联合皮层由不发达到发达,最后进化到人类高 度发达的联合皮层; 研究大脑两半球功能对称性与不对称性的常用方法 *在单侧半球部分受损或全部受损(如中风或为缓解癫痫 而进行手术切除)的情况下观察病人的行为变化; *单侧颈动脉注射异戊巴比妥钠,选择性地使同侧半球短 暂失活,观察受试者的行为变化; *裂脑实验(手术切断胼胝体),应用严格设计的心理生 理学方法检测两半球的功能; *应用现代脑功能成像技术,观察正常人在进行某种认知 操作时的大脑两半球的活动; 大脑两半球功能一侧化的生物学意义:婴儿在出生前,与 语言相关的大脑皮层区就已经存在左右不对称,即婴儿在 学习语言之前,左半球的结构优势就已经存在;在婴儿或 儿童时期,左半球受到伤害后,经过一定时间,语言功能会

大脑中记忆的原理

大脑中记忆的原理 记忆的生理本质: 人类大脑内在数十亿个神经细胞,它们相互之间通过神经突触相互影响,形成极其复杂的相互联系。记忆就是脑神经细胞之间的相互呼叫作用,其中有些相互呼叫作用所维持时间是短暂的,有些是持久的,而还有一些介于两者之间。 记忆的形成原理: 当一个脑神经细胞受到刺激发生兴奋时,它的突触就会发生增生或感应阈下降,经常受到刺激而反复兴奋的脑神经细胞,它的突触会比其它较少受到刺激和兴奋的脑细胞具有更强的信号发放和信号接受能力。当两个相互间有突触邻接的神经细胞同时受到刺激而同时发生兴奋时,两个神经细胞的突触就会同时发生增生,以至它们之间邻接的突触对的相互作用得到增强,当这种同步刺激反复多次后,两个细胞的邻接突触对的相互作用达到一定的强度达到或超过一定的阈值,则它们之间就会发生兴奋的传播现象,就是当其中任何一个细胞受到刺激发生兴奋时,都会引起另一个细胞发生兴奋而,从而形成细胞之间的相互呼应联系,这就是即记忆联系。 说明:短期记忆脑细胞在受到反复刺激时,并不发生突触增生,而是发生突触感应阈下降,这种下降时短暂的,所以不能维持太长时间;而惰性记忆细胞则以突触增生为记忆基础,因而维持记忆的时间较长。 脑神经元的交互作用: 神经细胞之间存在四种基本相互作用形式: 单纯激发:一个细胞兴奋,激发相接的另一细胞兴奋。 单纯抑制:一个细胞兴奋,提高相接的另一细胞的感受阈。 正反馈:一个细胞兴奋,激发相接的另一细胞兴奋,后者反过来直接或间接地降低前者的兴奋阈,或回输信号给前者的感受突触。 负反馈:一个细胞兴奋,激发相接的另一细胞兴奋,后者反过来直接或间接地提高前者的兴奋阈,使前者兴奋度下降。多由三个以上细胞构成负反馈回路 由于细胞的交互作用,记忆会受到情绪、奖励、惩罚等的影响。 脑细胞的记忆分工: 人脑内存在多种不同活性的神经细胞,分别负责短期、中期、长期记忆。

脑的结构与功能

脑的结构与功能 一、大脑 又称端脑,脊椎动物脑的高级神经系统的主要部分,由左右两半球组成,是人类脑的最大部分,是控制运动、产生感觉及实现高级脑功能的高级神经中枢。脊椎动物的端脑在胚胎时是神经管头端薄壁的膨起部分,以后发展成大脑两半球,主要包括大脑皮层和基底核两部。大脑皮层是被覆在端脑表面的灰质、主要由神经元的胞体构成。皮层的深部由神经纤维形成的髓质或白质构成。髓质中又有灰质团块即基底核,纹状体是其中的主要部分。广义的大脑指小脑以上的全部脑结构,即端脑、间脑和部分中脑。 二、大脑的结构 大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。 1、皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动

作协调有关,也具有植物神经皮质中枢的部分功能。 2、皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、7)为精细触觉和实体觉的皮质区。 3、额叶联合区:为额叶前部的9、10、11区,与智力和精神活动有密切关系。 4、视觉皮质区:在枕叶的距状裂上、下唇与楔叶、舌回的相邻区(17区)。每一侧的上述区域皮质都接受来自两眼对侧视野的视觉冲动,并形成视觉。 5、听觉皮区:位于颞横回中部(41、42区),又称Heschl氏回。每侧皮质均按来自双耳的听觉冲动产生听觉。 6、嗅觉皮质区:位于嗅区、钩回和海马回的前部(25、28、34)和35区的大部分)。每侧皮质均接受双侧嗅神经传入的冲动。 7、脏皮质区:该区定位不太集中,主要分布在扣带回前部、颞叶前部、眶回后部、岛叶、海马及海马钩回等区域。 8、语言运用中枢:人类的语言及使用工具等特殊活动在一侧皮层上也有较集中的代表区(优势半球),也称为语言运用中枢。它们分别是: ①运动语言中枢:位于额下回后部(44、45区,又称Broca区)。 ②听觉语言中枢:位于颞上回42、22区皮质,该区具有能够听到声音并将声音理解成语言的一系列过程的功能。 ③视觉语言中枢:位于顶下小叶的角回,即39区。该区具有理解看到的符号和文字意义的功能。 ④运用中枢:位于顶下小叶的缘上回,即40区。此区主管精细的协调功能。 ⑤书写中枢:位于额中回后部8、6区,即中央前回手区的前方。

大脑结构与功能分区

大脑结构与功能分区 一、大脑 又称端脑,脊椎动物脑的高级神经系统的主要部分,由左右两半球组成,是人类脑 的最大部分,是控制运动、产生感觉及实现高级脑功能的高级神经中枢。脊椎动物 的端脑在胚胎时是神经管头端薄壁的膨起部分,以后发展成大脑两半球,主要包括大脑 皮层和基底核两部。大脑皮层是被覆在端脑表面的灰质、主要由神经元的胞体构成。皮层的深部由神经纤维形成的髓质或白质构成。髓质中又有灰质团块即基底核,纹状 体是其中的主要部分。广义的大脑指小脑以上的全部脑结构,即端脑、间脑和部分 中脑。 二、大脑的结构

大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感 觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。 1、皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它 主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势 和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮质中枢的部分 功能。 2、皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管 理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受 身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、7)为精细触觉和实体觉的皮质区。 3、额叶联合区:为额叶前部的9、10、11区,与智力和精神活动有密切关 系。 4、视觉皮质区:在枕叶的距状裂上、下唇与楔叶、舌回的相邻区(17区)。每一侧的上述区域皮质都接受来自两眼对侧视野的视觉冲动,并形成视觉。 5、听觉皮区:位于颞横回中部(41、42区),又称Heschl氏回。每侧皮质均 按来自双耳的听觉冲动产生听觉。 6、嗅觉皮质区:位于嗅区、钩回和海马回的前部(25、28、34)和35区的 大部分)。每侧皮质均接受双侧嗅神经传入的冲动。

大脑的解剖结构和功能——布鲁德曼分区

大脑的解剖结构和功能——布罗德曼分区系统 布罗德曼分区是一个根据细胞结构将大脑皮层划分为一系列解剖区域的系统。神经解剖学中所谓细胞结构(Cytoarchitecture),是指在染色的脑组织中观察到的神经元的组织方式。 布罗德曼分区1909年由德国神经科医生科比尼安·布洛德曼(Korbinian Brodmann)提出。根据皮质细胞的类型及纤维的疏密把大脑皮质分为52个区,并用数字给予表示。Brodmann Area 1, BA1 Brodmann Area 2, BA2 Brodmann Area 3, BA3 位置:位于中央后回 (postcentral gyrus) 和前顶叶区。 功能:分别为体感皮层内侧、末尾和前端区,BA1、BA2、BA3共同组成体感皮层; 具备基本体感功能(first somatic sensory area)接受对侧肢体的感觉传入。Brodmann Area 4, BA4 位置:位于中央前回(precentral gyrus),中央沟(central sulcus)的内侧面 功能:初级运动皮层(first somatic motor area),包含“运动小人”(motor homunculus )。 控制行为运动,与BA6 (前)和BA3 、BA2 、BA1、(后)相连,同时与丘脑腹外侧核相连。 体感小人(Somatosensory Homunculus ) 传入体感信息较多的身体区域获得的皮层代表区域较大。比如手部在初级体感皮层中的代表区域比背部的大。体感皮质定位可用“体感小人”(Somatosensory homunculus)来表示。 Brodmann Area 5, BA5 位置:位于顶叶前梨状皮质区(梨状皮质piriform cortex为下边缘皮质的组成部分)。功能:与BA7形成体感联合皮层。 Brodmann Area 7, BA7 位置:位于顶叶皮质顶部,体感皮层后方,视觉皮层(visual area)上方。 功能:将视觉和运动信息联合起来;与BA5形成体感联合皮层;视觉-运动协调功能。 Sensory Areas---------Somatosensory Association Area 位置:位于初级躯体感觉皮层后方(BA5、BA7)

人脑的结构及其功能

脑的功能与结构 1?总体分为三个层次: 最深层称为脑干,主要与自主过程,例如心率、呼吸、吞咽和消化功能有 关。外包在这个中央结构的是边缘系统,他与动机、情感和记忆有关。包括在这两层之外的是大脑,是人类全部心理活动产生的地方。大脑及其表层即大脑皮层整合感觉信息,协调你的运动,促成抽象思维和推理。 2?脑干、丘脑和小脑 ⑴脑干(brain stem)是含有综合调节体制内部状态的脑结构。延髓(medulla)位 于脊髓的最上端。是呼吸、血压和心搏调节中枢。从身体所发出的自上神经和自脑发出的下行神经在延脑发生交叉,这就意味着身体的左侧和右脑相连,右侧和左脑相连。 ⑵.紧贴在延脑之上的是桥脑(pons),它提供传入纤维到其他脑干结构和小脑之 中。 ⑶.延脑和桥脑之中有一种网状结构(reticular formation),它唤醒大脑皮层去注意新 的刺激,甚至在睡眠中也保持脑的警觉性。这个区域受损会导致昏迷。 ⑷.网状结构有经丘脑(thaiamus)的长纤维束,传入的感觉信息可通过丘脑到达大脑 的适当区 (5).小脑(cerebellum)在头骨的基底在脑干之上,协调着身体的运动,控制姿势并维持 平衡,在平滑性运动的协调方面和运动技能学习方面小脑有着重要作用。 3.边缘系统 边缘系统(limbic system)与动机、情绪状态和记忆有关。有三个结构组成:海马

体、杏仁核和下丘脑 ⑴.海马体(hippocampus)在外显记忆中具有重要作用。外显记忆是一类提取自己感觉 到的已知晓记忆的过程。但是海马体受损不妨碍意识觉知外的内隐记忆。如果你的海马体受损你能学到一些新的任务,但却不能记住它,也不记得发生了什么事。 ⑵.杏仁核(amygdale),杏仁核受损可能对特别活跃的的个体产生镇定作用(情 绪控制),但一些地区受损也会伤害到面孔表情的识别能力(情绪记忆能力) (3).下丘脑(hypothalamus),它调节动机行为包括摄食、饮水、体温调节和性唤醒。维 持身体内部平衡(内稳态)。当身体能力储存低,下丘脑维持兴奋激发机体寻找食物和进食。当温度降低,下丘脑引起血管收缩并引起非随意的微微颤抖。这就是通常所说的发抖产生热量以平衡温度下降。下丘脑也调节内分泌活动。 4.大脑 大脑(cerebrum)表层有一层10%英寸厚的薄层组织,称为大脑皮层 (cerebral hemi-spheres)。大脑由左右两个半球组成,并由一种称为胼胝体(corpus callos nm) 得神经纤维联系起来。 ⑴.在脑解剖上脑分为四个部分:额叶、顶叶、枕叶、颞叶 ①额叶(frontai lobe)具有运动控制和进行认知活动的功能。如筹划,目标设定。 位于外侧裂和中央沟之前。因意外而损伤额叶就会毁坏一个人的行为能力,并引起人格的改变。 ②.顶叶(parietal lobe)负责触觉、痛觉和温度觉,位于中央沟之后。 ③.枕叶(occipital lobe)是视觉信息到达的部位,位于后头部 ④.颞叶(temporal lobe)负责听觉过程,位于外侧裂下部。

大脑结构与功能(培训学习)

大脑结构与功能

大脑结构详解 大脑(Brain)包括左、右两个半球及连接两个半球的中间部分,即第三脑室前端的终板。大脑半球被覆灰质,称大脑皮质,其深方为白质,称为髓质。髓质内的灰质核团为基底神经节。在大脑两半球间由巨束纤维—相连。 具体内容有大脑半球各脑叶、大脑皮质功能定位、大脑半球深部结构、大脑半球内白质、嗅脑和边缘系统五大部分。 各叶的位置、结构和主要功能如下: 1、额叶:也叫前额叶。位于中央沟以前。在中央沟和中央前沟之间为中央前回。在其前方有额上沟和饿下沟,被两沟相间的是额上回、额中回和额下回。额下回的后部有外侧裂的升支和水平分支分为眶部、三角部和盖部。额叶前端为额极。额叶底面有眶沟界出的直回和眶回,其最内方的深沟为嗅束沟,容纳嗅束和嗅球。嗅束向后分为内侧和外侧嗅纹,其分叉界出的三角区称为嗅三角,也称为前穿质,前部脑底动脉环的许多穿支血管由此入脑。在额叶的内侧面,中央前、后回延续的部分,称为旁中央小叶。负责思维、计划,与个体的需求和情感相关。 2、顶叶:位于中央沟之后,顶枕裂于枕前切迹连线之前。在中央沟和中央后沟之间为中央后回。横行的顶间沟将顶叶余部分为顶上小叶和顶下小叶。顶下小叶又包括缘上回和角回。响应疼痛、触摸、品尝、温度、压力的感觉,该区域也与数学和逻辑相关。 3、颞叶:位于外侧裂下方,由颞上、中、下三条沟分为颞上回、颞中回、颞下回。隐在外侧裂内的是颞横回。在颞叶的侧面和底面,在颞下沟和侧副裂间为梭状回,,侧副裂与海马裂之间为海马回,围绕海马裂前端的钩状部分称为海马钩回。负责处理听觉信息,也与记忆和情感有关。 4、枕叶位于枕顶裂和枕前切迹连线之后。在内侧面,,距状裂和顶枕裂之间为楔叶,与侧副裂候补之间为舌回。负责处理视觉信息。 5、岛叶:位于外侧裂的深方,其表面的斜行中央钩分为长回和短回。 6、边缘系统:与记忆有关,在行为方面与情感有关。 大脑的总结构 大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。 现在按Brodmann提出的机能区定位简述如下: ·皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮

人脑的结构及其功能

脑的功能与结构 ⒈总体分为三个层次: 最深层称为脑干,主要与自主过程,例如心率、呼吸、吞咽和消化功能有关。外包在这个中央结构的是边缘系统,他与动机、情感和记忆有关。包括在这两层之外的是大脑,是人类全部心理活动产生的地方。大脑及其表层即大脑皮层整合感觉信息,协调你的运动,促成抽象思维和推理。 ⒉脑干、丘脑和小脑 ⑴.脑干(brain stem)是含有综合调节体制内部状态的脑结构。延髓(medulla) 位于脊髓的最上端。是呼吸、血压和心搏调节中枢。从身体所发出的自上神经和自脑发出的下行神经在延脑发生交叉,这就意味着身体的左侧和右脑相连,右侧和左脑相连。 ⑵.紧贴在延脑之上的是桥脑(pons),它提供传入纤维到其他脑干结构和小脑之中。 ⑶.延脑和桥脑之中有一种网状结构(reticular formation),它唤醒大脑皮层去 注意新的刺激,甚至在睡眠中也保持脑的警觉性。这个区域受损会导致昏迷。 ⑷.网状结构有经丘脑(thaiamus)的长纤维束,传入的感觉信息可通过丘脑到达 大脑的适当区 ⑸.小脑(cerebellum)在头骨的基底在脑干之上,协调着身体的运动,控制姿势 并维持平衡,在平滑性运动的协调方面和运动技能学习方面小脑有着重要作用。 ⒊边缘系统 边缘系统(limbic system)与动机、情绪状态和记忆有关。有三个结构组成:海马体、杏仁核和下丘脑 ⑴.海马体(hippocampus)在外显记忆中具有重要作用。外显记忆是一类提取自己 感觉到的已知晓记忆的过程。但是海马体受损不妨碍意识觉知外的内隐记忆。 如果你的海马体受损你能学到一些新的任务,但却不能记住它,也不记得发生了什么事。 ⑵.杏仁核(amygdale),杏仁核受损可能对特别活跃的的个体产生镇定作用(情 绪控制),但一些地区受损也会伤害到面孔表情的识别能力(情绪记忆能力)⑶.下丘脑(hypothalamus),它调节动机行为包括摄食、饮水、体温调节和性唤 醒。维持身体内部平衡(内稳态)。当身体能力储存低,下丘脑维持兴奋激发机体寻找食物和进食。当温度降低,下丘脑引起血管收缩并引起非随意的微微颤抖。这就是通常所说的发抖产生热量以平衡温度下降。下丘脑也调节内分泌活动。 ⒋大脑 大脑(cerebrum)表层有一层10%英寸厚的薄层组织,称为大脑皮层(cerebral hemi-spheres)。大脑由左右两个半球组成,并由一种称为胼胝体(corpus callosnm)得神经纤维联系起来。 ⑴.在脑解剖上脑分为四个部分:额叶、顶叶、枕叶、颞叶 ①额叶(frontal lobe)具有运动控制和进行认知活动的功能。如筹划,目标设 定。位于外侧裂和中央沟之前。因意外而损伤额叶就会毁坏一个人的行为能力,并引起人格的改变。

相关主题
文本预览
相关文档 最新文档