当前位置:文档之家› 磷去除方法

磷去除方法

磷去除方法
磷去除方法

污水中的磷主要来自生活污水中的含磷有机物、合成洗涤剂、工业废液、化肥农药以及各类动物的排泄物。如污水没有完全处理,磷还会流失到江河湖海中,造成这些水体的富营养化。除磷方法可分为物化除磷法和生物除磷法及人工湿地除磷法。物化除磷法包括化学沉淀法、结晶法、吸附法。根据磷在污水中不同的存在方式,应采用不同的除磷技术。

1 污水除磷方法

1. 1 化学沉淀法

化学沉淀法除磷的基本原理是通过投加化学药剂形成不溶性磷酸盐沉淀,然后通过固液分离将磷从污水中除去,根据使用的药剂可分为石灰沉淀法和金属盐沉淀法。化学沉淀法具有管理方便、占地面积小、投资省、处理效率高等优点,但化学沉淀法投加药剂费用太贵,且产生的化学污泥含水量大,脱水困难,难以处理,容易产生二次污染[ 。

根据加药点的不同,化学沉淀法除磷工艺可分为预沉淀、同步沉淀、后沉淀及两点加药工艺。这几种工艺可以结合应用,但要注意混合与反应条件,通过紊流扩散与混合作用会出现良好的沉淀效果。

1. 2 结晶法

在污水中,特别是城市污水厂剩余污泥处理后的上清液及养殖废水中,含有浓度较高的磷酸盐,氨氮、钙离子、镁离子及重碳酸盐碱度,通过人为改变条件(提高pH

值或同时加入药剂增加金属离子浓度) ,使不溶性晶体物质析出,主要是磷酸铵镁晶体与羟基磷酸钙。

结晶法除磷效率高,出水水质好,当其他水质指标达到规定值时,出水可满足中水回用的要求;结晶法除磷使水中的磷在晶种上以晶体的形式析出,理论上不产生污泥,不会造成二次污染;结晶法除磷操作简单,使用范围广,可用于城市生活污水厂二级出水的深度处理、去除污泥消化池中具有较高磷浓度的上清液等。

1. 3 吸附法

吸附法除磷是利用某些多孔或大比表面积的固体物质,通过磷在吸附剂表面的附着吸附、离子交换或表面沉淀来实现污水的除磷过程。吸附除磷的过程既有物理吸附,又有化学吸附。对于天然吸附剂主要依靠巨大的比表面积,以物理吸附为主,而人工吸附剂较之天然吸附剂孔隙率及表面活性明显提高,以化学吸附为主[

3 ]

。天然的吸附剂有粉煤灰、钢渣、沸石、膨润土、蒙托石、凹凸棒石、海泡石、活性氧化铝、海棉铁等;人工合成吸附剂在低磷浓度下仍有较高的吸附容量,有着巨大的优越性。现在已有Al,Mg ,Fe ,Ca , Ti ,Zr 和La 等多种金属的氧化物及其盐类作为选择材料。

1. 4 生物除磷法

在厌氧区(无分子氧和硝酸盐) ,兼性厌氧菌将污水中可生物降解的有机物转化为VFAs(挥发性脂肪酸类),在厌氧条件下,聚磷菌吸收了这些以及来自原污水的VFAs(VFAs 主要来自于污水中可生物降解的组分,生活污水中的VFAs 大约为总有机物的40%~50 %左右) ,将其运送到细胞内,同化成细胞内碳能源储存物(PHB),所需能量来源于聚磷的水解及细胞内糖的酵解,并导致磷酸盐的释放。进入好氧状态后, 这些专性好氧的聚磷菌(PAOs)活力得到恢复,并以聚磷的形式摄取超过生长需要的磷量,通过PHB的氧化分解产生能量,用于磷的吸收和聚磷

的合成,磷酸盐从液相中去除,产生的富磷污泥,通过剩余污泥排放,磷从系统中得以去除。

反硝化聚磷菌(DPB) 能在缺氧(无分子氧有硝酸盐) 环境下摄磷,反硝化除磷细菌DPB利用硝酸盐为电子受体,产生生物摄磷作用。在生物摄磷的同时,硝酸盐被还原为氮气,这使得摄磷和反硝化脱氮这两个不同的生物过程能够利用同一类细菌、在同一个环境中完成。

1. 5 人工湿地法

湿地对磷有很好的去除效果,理论上人工湿地对磷的去除是植物吸收、基质的吸附过滤和微生物转化三者的共同作用,各种附着生长和悬浮在水中的微生物,在生长繁殖过程中可以吸收和利用污水中的无机磷酸盐。部分研究发现:人工湿地植物根区磷酸酶活性与总磷的去除率相关性不是十分显著。也有研究表明,湿地生态系统中的磷主要被截留在土壤中,而在植物体内和落叶中很少,而且仅有少数的水生植物可以吸收磷,大多数种类植物的根部对磷的吸收能力较弱,所以植物和微生物对磷的去除起得作用不大,不是除磷的主要过程。所以最主要的是基质对磷的吸附和沉淀作用。

一般湿地的除磷效率不是很高,在40 %~60 %之间。为了提高除磷效果,基质的选取有着重要的作用。目前常有的基质主要有:浮石、砂、活性多孔介质(L ECA) 、硅灰石和工业废弃物的高炉渣和石灰等。

2 磷回收

从磷的可持续发展、回收磷潜在的市场价值的角度来看,磷的回收势在必行。在目前对污水回收磷的研究与应用中,以鸟粪石形式回收磷的实例居多,其次是磷酸钙和磷酸铝。鸟粪石(磷酸铵镁)

含有氮、磷元素,所以其回收必然会降低剩余污泥中的氮、磷含量,特别是对于磷元素的影响将非常明显。污水中氮磷比通常为8∶1 ,而鸟粪石中二者比例为1∶1,所以理论上回收鸟粪石可以使污水中的氮降低12. 5 % 。

如图1 所示,在稳定区内Mg2 + ,NH4+ 以及PO4 3 - 浓度较低,浓度较高,其离子积大于溶度积,极易生成颗粒微小的晶体(即化学沉淀),沉淀法形成的化学污泥含水率高,磷酸盐也难以达到太高的纯度,回收困难;两曲线之间的这个区称为亚稳区,这时Mg2 + ,NH+4 以及PO4 3 - 离子积小于浓度积,通常不会产生沉淀。若在反应器中投加晶种,则可以加快晶体成核速度,使其结晶于晶体表面,同时有利于晶体与水的分离,减少因晶粒微细所造成的随出水流失,以提高除磷效率与回收率。所要做的就是将反应控制在亚稳定区,这时磷酸铵镁反应处在结晶过程,晶体可以自发的析出到晶种上,以此实现磷的回收。

目前荷兰开发出DHV —结晶法,南非开发了CSIR 流化床,日本有Kurita 固定床—结晶沉淀。

另外,对污泥进行加热是一种实现磷回收的简单有效的方法,在70 ℃对污泥加热1 h ,能使生物固体中的聚磷酸盐大量分解释放,再加入氯化钙进行沉淀,能获得污泥中总磷的75

%左右;还可以利用具有高吸附能力的物质对磷吸附截留实现磷回收,反应所得混合物可以用来作肥料。

3 结语

随着时代的发展,污水除磷技术也在不断地进步,可以根据不同的条件,合理选择不同的除磷方法,以期达到最好的效果。当前,为了实现磷的可持续发展,

有必要从现在起研发从污水或污泥中分离磷的技术,最大限度地实现污水磷回收。无论是应用广泛的化学沉淀法、生物处理法,还是日益受到重视的吸附法和结晶法,都存在各自的弊端,因此,还需进一步加强对除磷技术的基础研究,研制开发适合我国国情的新型除磷工艺。

UNITANK工艺提高氮、磷去除率的研究

吴牛嘴等^jNlTANK工岂提高氮、磷去除率的研究73 整的运行周期由6个阶段组成,主体1一过渡l一沉降1一丰体2一过渡2一沉降2阶段。后3个阶段的污水流向恰好与前3个阶段相反(如图2)、 罔2uNITANK上艺的周期运钉过程 22试验用水及试验污泥 试验地点为南京市锁金村污水处理厂,试验水质为典型的城巾生活t;水,污水水质如表l。试验开始时,驯化污泥取自该厂曝气池的活性污泥。 表l试验水质(曝气沉砂池出水 3结果与讨论 3l主体阶段运行时间试验 本试验没置了3个主体阶段反应时间210min、120min和90nlin,过渡阶段和沉降阶段分别采用30min和60min。水力停留时间恒定为12h,水温在49℃范围内变化,泥龄控制为25—30d,容积负荷范同为0290.52奴CoD/m3-d。 主体阶段的时间对coD和TP处理效果的影响如图3。cOD的去除率随主体段时间的变化不显著,但TP的去除率则与主体段时间设置有一定关系。随着主体段时间的延长,TP的去除旱升高的趋势。, 主体阶段的时间对TP去除率的影响可从微生物活性的角度进行解释,微牛物菌群的活性依赖于其有利的生存研=境。上体阶段时间为210m;n、l2【)min和9()mm时活性污泥处于厌氧状态与好氧状态的时间比例分别为0.64、O50和043。厌氧阶段对于除磷菌的蕈要性是不言而喻的。厌氧时段的缩短将会影响除磷茼的活性,使除磷菌不能充分释磷,进而导致曝气阶段的吸磷能力受到影响,致使除磷率降低¨。此外,uNITANK采用连续进水,能保证厌氧池源源不断地产生挥发‘怍脂肪酸(VFA),满足释磷。因此,适当延长厌氧阶段的时间冉利于活性污泥充分释磷,而小会因内源损耗引起无效释磷。同时,随着反应的进行,搅拌池中的污泥不断被椎流进入曝气池。搅拌池巾残留的污泥越来越少,相对可利用的碳源增多,这更有利于这部分污泥的充分释磷。 手体阶段的时同(mm) 盥3主体段时间试验 总的来说,主体阶段时间对于cOD的降解无很大影响,适当延长主体段时问有利于TP的去除。但3个试验工况下NfE—N去除率都不商。 32过渡阶段运行时间试验 前述试验中,NHi—N去除率较低.分析其可能的原因如下:(1)过渡段曝气时间不足;(2)好氧泥龄低;(3)水温较低。 针对上述原困,本试验调整了过渡阶段的时间,并且延长污泥泥龄至40—50d,试验水温在18—25℃范围内。中间曝气池的DO浓度控制在30—40mg/L范围内,HRT控制在12h,uNITANK反应器的平均MLSs浓度为3500mg/L。试验中考察了过渡段时间为60min、90min、120mln和150一n时的N}“。N和TP去除的情况。主体段和沉降段时间分别设定为90min和60min。 图4足NH?一N和TP的去除率随过渡段时问

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

如何去除废水中的次磷

如何去除/处理次磷/总磷? 一、如何去除次磷/总磷 在电镀废水处理,线路板废水处理中,排放口的水经常超标,包括重金属、氨氮、总磷等,其中总磷的太湖流域标准为0.5ppm,高的排放标准导致总磷经常超标,本文提出一种药剂,以及使用药剂的办法,解决总磷超标问题。 除磷剂是湛清环保与清华大学共同研制的特效药剂,是两种液体药剂HMC-P1和HMC-P2利用共沉淀的原理,通过架桥的方式,网捕、吸附废水中的次亚磷并形成不溶性无机高分子结构,从而去除废水中的次亚磷类污染物。与专用絮凝剂配合使用,去除效果更好,并且对于废水中的重金属尤其是化学镍的去除也有一定的作用。 二、产品用途 主要用于去除无机次磷、亚磷和有机磷废水等水体中的含磷污染物,达到国家标准 0.5mg/L以下,解决电镀废水、线路板废水、化工废水以及生活污水中的磷超标。 三、产品特点 适用范围广,对于各形态的含磷污染物均可处理达标; 操作简单,处理成本低,出水清澈透明; 具有除磷、絮凝、除重金属、降COD等多重功效; 四、外观指标

1.调节废水至特定pH; 2.按照一定比例加入HMC-P1和HMC-P2,反应20-30min; 3.调节pH后加入HMC-103絮凝沉淀,上清液即可达标排放; 六、应用实例 太仓XX电镀厂是一家专业从事电镀加工企业,废水处理设施完善,日处理量接近1000吨。其中化学镍清洗水约100吨/天,总磷浓度为100 mg/L,其中大部分为次亚磷。原处理工艺为大量次氯酸钠氧化后进行混凝沉淀,药剂用量大,反应周期长,总排口的总磷浓度依然在5 mg/L以上,远高于国家排放标准限值0.5 mg/L。采用我公司的次亚磷去除剂后,只需要很低的成本即可将这股次磷废水单独处理达标(<0.3 mg/L)。而且,该公司在我们的指导下对废水站的整体工艺进行了优化,减少了污泥量和总体运行成本。 附:苏州湛清环保简介 苏州湛清环保科技有限公司,是由清华大学技术团队在长三角地区投资的环保产业高新技术服务项目。公司主打废水处理技术服务,由专业的技术团队提供水处理技术支持,主要客户类型是电镀厂、线路板厂以及环保公司,客户广泛分布在苏州、昆山、太仓等地,是国内第一家以技术服务为主营业务的环保公司,公司致力于成为“您的废水处理技术合作伙伴”,不断努力与发展,目前提供的产品与服务涵盖以下领域:

如何提高A2O工艺的脱氮除磷效果

如何提高A2/O工艺的脱氮除磷效果 1.A2O池的检测与控制参数的确定 A2O生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH值等有关。一般厌氧池DO在0.2mg/l以下,缺氧池DO在0.5mg/l以下,而好氧池DO在2.0mg/l以上;污泥混合液的PH值大于7;SRT为8-15天。 然而A2O生物除磷脱氮过程,本质上是一系列生物氧化还原反应的综合,A2O生物池各段混合液中的ORP(氧化还原值)能够综合地反应生物池中各参数的变化。混合液中的DO越高,ORP值也越高;而当存在磷酸根离子和游离的磷时,ORP则随磷酸根离子和游离的浓度升高而降低。一般A-A-O生物除磷脱氮工艺处理过程中,厌氧段的ORP应小于-250mV,缺氧段控制在-100mV左右,好氧段控制在40mV以上。 如厌氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧及回流污泥中带入太多的氮有关,还与搅拌强度太大产生空气复氧有关。 如缺氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧有关,另外还与搅拌强度太大产生空气复氧有关。 根据以上说明的A2O池中各参数变化对污水除磷脱氮处理工艺的影响,合理选择检测仪表,对污水处理过程中各参数的变化情况进行检测,为污水处理厂的运行控制提供依据。一般A2O工艺中需要检测的数据为: 进水:进水量Q COD COD5 PH T A2O池厌氧段:溶解氧DO 氧化还原值ORP A2O池缺氧段:溶解氧DO 氧化还原值ORP A2O池好氧段:溶解氧DO 氧化还原值MLSS 出水:COD BOD5 根据以上推荐的典型仪表配置与工艺控制特点,我们提出以ORP和DO为主要控制参数,来对曝气系统、内回流系统、外回流系统、剩余污泥排放系统进行控制,以实现良好的除磷脱氮效果,有效地降低污水中的BOD5,同时最大限度地节约能源,使整个系统高效稳定地运行。 2.A2O污水处理工艺过程控制方法 A2O污水处理工艺A2O池传统的控制是:DO值的PID调节(进气量)、MLSS的PID调节(回流比)均为对单一参数的单一对象控制。然而污水处理过程是一个滞后量非常大的过程,影响过程的参数也很多,不可能依据某一具体参数来实现整个过程的控制。污水处理过程中,生物池的曝气系统控制、污流回流系统控制都是极其复杂的控制过程。采用独立的单一的闭环控制很难达到控制要求。随着控制技术的不断发展,同时在污水处理运行过程中不断积累了大量的运行数据,这就为控制过程的查表运算,实现模糊控制带来了可能。 (1) 曝气系统自动化控制 根据季节、进水水质、进水水温、进水水量、好氧池DO、出水COD、BOD5、NH3-N 、TOP、TKN、SS等情况不同,分别确定不同的供气量,即确定空气调节阀的开度和鼓风机的开启台数及其转速。自动对工艺过程控制进行自动修整,实现模糊控制。 A2/O工艺是将厌/好氧除磷系统和缺氧/好氧脱氮系统相结合而成,是生物脱氮除磷的基础工艺,可同时去除水中的BOD、氮和磷。 工艺为:原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

含磷废水的处理方法

含磷废水的处理方法 目前,国内外污水除磷技术主要有生物法、化学法两大类。生物法如A/O、A2/O、UCT工艺,主要适合处理低浓度及有机态含磷废水。化学法主要有混凝沉淀法、结晶法、离子交换吸附法、电渗析、反渗透等工艺,主要适合处理无机态含磷废水,其中混凝沉淀与结晶综合处理技术可以处理高浓度含磷废水,除磷率较高,是一种可靠的高含磷废水处理方法。 1. 生物法 20世纪70年代美国的Spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的Fe和Al的氧化物反应或与粘土中的OH-或SiO22-进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,这是目前国内外应用最为广泛的一类生物脱磷技术。生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。对于二级活性污泥法工艺,不需增加大量设备,只需改变运转流程即可达到生物除磷的效果。但要求管理较严格,为了形成VFA,要保证厌氧阶段的厌氧条件。 张林生等采用石灰沉淀结晶法处理高浓度含磷废水取得成功,该法结合了沉淀法与结晶法的优点,克服了两者的缺点,具有很好的发展前1/ 4

景。实验结果与工程实践表明,该法处理含磷废水除磷效率高,出水水质稳定,且可回用。 2. 化学沉淀法 通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。常用的混凝沉淀剂有石灰、明矾、氯化铁,石灰与氯化铁的混合物等。影响此类反应的主要因素是pH、浓度比、反应时间等。 为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。王光辉发现,原水含磷 10mg/L时,投加300mg/L的Al2(SO4)3或90mg/L的FeCl3,可除磷70%左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的PO43-污染问题。混凝沉淀法是一种传统的除磷方法,具有简便易行,处理效果好的优点。但是长期的运行结果表明,化学沉淀剂的投加会引起废水pH 值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。另外,研究表明:除磷效率对应沉淀剂剂量的曲线是指数型的,当化学沉淀剂超出一定量,曲线即达到停滞期。所以,试图用沉淀法将废水中磷的质量浓度降到0.1mg/L以下,是不太经济的。 丛广治等主持的大连开发区污水厂A/O改造实践表明,系统在下列参数下可取得较好的净化效果:BOD5负荷为0.2~0.3kg/(kgMLSS·d),TP 负荷为(2.8~3.0)×10-3kg/(kgMLSS·d)。厌氧段容积∶好氧段容积 2/ 4

两种藻类对水体氮磷去除效果

第52卷第4期 2006年8月武汉大学学报(理学版) J.Wuhan Univ.(Nat.Sci.Ed.)Vol.52No.4 Aug.2006,487~491 收稿日期:2006202228 通讯联系人 E 2mail :Huzy @https://www.doczj.com/doc/a413069446.html, 基金项目:国家高技术研究发展计划(863)项目资助(2002AA601021);国家重点基础研究发展规划(973)项目资助(2002CB412309)作者简介:凌晓欢(19822),男,硕士生,现从事藻类水质净化研究. 文章编号:167128836(2006)0420487205 两种藻类对水体氮、磷去除效果 凌晓欢1,2,况琪军1,邱昌恩1,2,胡征宇1 (1.中国科学院水生生物研究所/淡水生态与生物技术国家重点实验室,湖北武汉430072; 2.中国科学院研究生院,北京100049) 摘 要:借助人工装置和露天水池,通过分析实验水体中氮、磷元素浓度的变化,研究了实验室条件下一种绿球藻(Chlorococcum sp.)和露天小型生态系统中寡枝刚毛藻(Cladophora oli goclona K ütz ).对污水中氮磷营养的去除效果.结果显示:绿球藻在高浓度氮和磷的污水中生长良好并维持较高的氮磷去除率,在6天处理期间,人工污水中总溶解性氮、硝酸盐氮、氨氮、总溶解性磷的去除率分别达到46.2%,37.8%,98.4%和79.3%;在对天然湖泊水的处理中,绿球藻对总溶解性磷的去除率在第5天为79.2%.室外条件下,该刚毛藻通过吸收水体中的氮、磷营养维持自身正常生长代谢,从而降低水体的电导率和改善水质.根据本次研究,结果两种被试藻类均可作为污水处理用藻类,其中Chlorococcum sp.适合用于静态水体的修复与改善,Cladop hora oli goclona 适合于流动水体的减负与治理. 关 键 词:绿球藻;刚毛藻;氮;磷;水质;净化中图分类号:X 171 文献标识码:A 0 引 言 应用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[1].早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘、活性藻 [2] 等.由于微型藻 悬浮培养技术在实际应用中有诸如过量藻体不易收获、出水中仍有藻类细胞残留等问题,科学家们随之将研究的焦点更多地集中在固着藻类的研究与应用上,如:固定化藻类技术[3]和藻菌生物膜技术.Da Costa [4]的研究结果证明,固定化藻类不但能有效去 除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著.由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道.吴永红等[5]以高分子材料的人工水草作为藻菌生物膜载体,用于改善富营养化水体的水质,同样获得较为理想的水质净化效果.为了进一步挖掘和筛选能有效净化污水且藻细胞易于收获的藻种,拓展藻类在污水处理中的应用范围,本文研究了一种极为耐污的 绿球藻(Chlorococcum sp.)和寡枝刚毛藻 (Cl adop hora oli goclona K ütz )对氮磷的去除效果,对二者各自的应用前景作了简要分析,同时对藻类水质净化的优势进行了探讨. 1 材料和方法 1.1 室内实验藻种与培养条件 绿球藻(Chlorococcum sp.)采自美国亚里桑那州一家污水处理厂,应用微藻分离纯化的方法,用B G11琼脂培养基分离纯化后保种培养.在无菌条 件下,将琼脂培养基上的单个藻落转接到B G11液体培养基中,置L R H 22502G 光照培养箱中培养,培养温度(25±1)℃,光照强度35~40μmol/m -2?s -1,在获得足够生物量后用于污水处理试验. 实验污水分别为人工合成污水和天然富营养化湖泊水.人工合成污水配方为:NaNO 30.425g 、(N H 4)2SO 40.075g 、MgSO 4?7H 2O 0.025g 、Ca (H 2PO 4)20.03g 、Na HCO 30.30g 、FeCl 30.0015g ,用自来水定容至1L.天然富营养化湖泊水采自 武汉东湖茶港湖区,经25号浮游生物网过滤去除明

总磷去除方法

总磷去除方法 污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥), 达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~5.5 式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5

污水处理脱氮、除磷的经验值汇总

污水处理脱氮、除磷的经验值汇总 1、脱氮除磷水质的要求 1、污水的五日生化需氧量与总凯氏氮之比是影响脱氮效果的重要因素之一。异养性反硝化菌在呼吸时,以有机基质作为电子供体,硝态氮作为电子受体,即反硝化时需消耗有机物。青岛等地污水厂运行实践表明,当污水中五日生化需氧量与总凯氏氮之比大于4时,可达理想脱氮效果;五日生化需氧量与总凯氏氮之比小于4时,脱氮效果不好。五日生化需氧量与总凯氏氮之比过小时,需外加碳源才能达到理想的脱氮效果。外加碳源可采用甲醇,它被分解后产生二氧化碳和水,不会留下任何难以分解的中间产物。由于城市污水水量大,外加甲醇的费用较大,有些污水厂将淀粉厂、制糖厂、酿造厂等排出的高浓度有机废水作为外加碳源,取得了良好效果。当五日生化需氧量与总凯氏氮之比为4或略小于4时,可不设初次沉淀池或缩短污水在初次沉淀池中的停留时间,以增大进生物反应池污水中五日生化需氧量与氮的比值。 2、生物除磷由吸磷和放磷两个过程组成,积磷菌在厌氧放磷时,伴随着溶解性可快速生物降解的有机物在菌体内储存。若放磷时无溶解性可快速生物降解的有机物在菌体内储存,则积磷菌在进入好氧环境中并不吸磷,此类放磷为无效放磷。生物脱氮和除磷都需有机碳,在有机碳不足,尤其是溶解性可快速生物降解的有机碳不足时,反硝化菌与积磷菌争夺碳源,会竞争性地抑制放磷。 污水的五日生化需氧量与总磷之比是影响除磷效果的重要因素

之一。若比值过低,积磷菌在厌氧池放磷时释放的能量不能很好地被用来吸收和贮藏溶解性有机物,影响该类细菌在好氧池的吸磷,从而使出水磷浓度升高。广州地区的一些污水厂,在五日生化需氧量与总磷之比为17及以上时,取得了良好的除磷效果。 3、若五日生化需氧量与总凯氏氮之比小于4,难以完全脱氮而导致系统中存在一定的硝态氮的残余量,这样即使污水中五日生化需氧量与总磷之比大于17,其生物除磷的效果也将受到影响。 4、一般地说,积磷菌、反硝化菌和硝化细菌生长的最佳pH在中性或弱碱性,当pH偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH维持在中性附近,池中剩余总碱度宜大于70mg/L。每克氨氮氧化成硝态氮需消耗7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原1g硝态氮成氮气,理论上可回收3.57g碱度,此外,去除1g五日生化需氧量可以产生0.3g碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量-7.14×硝化氮量,式中3为美国EPA推荐的还原1g硝态氮可回收3g碱度。当进水碱度较小,硝化消耗碱度后,好氧池剩余碱度小于70mg/L,可增加缺氧池容积,以增加回收碱度量。在要求硝化的氨氮量较多时,可布置成多段缺氧/好氧形式。在该形式下,第一个好氧池仅氧化部分氨氮,消耗部分碱度,经第二个缺氧池回收碱度后再进入第二个好氧池消耗部分碱度,这样可减少对进水碱度的需要量。 2、生物脱氮的经验值

污水处理中的化学除磷的工艺和方法

污水处理中的化学除磷的工艺和方法 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl 式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是 Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~5.5 式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓ 式4 Fe3++3OH-→Fe(OH)3 式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。 沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH 值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4的溶

如何除去污水中的磷

去除污水中磷的方法 常规的生物处理法通过剩余污泥排放和处理可以从废水中去除部分磷,一些特殊工艺或经过调整运行方式以后具有除磷功能的普通工艺可以取得较好的除磷效果,具体方法有A/O,A2/O、SBR、氧化沟等。但生物处理法的除磷效果有限,当磷的排放标准很高时,往往需要使用化学除磷或将生物法与化学除磷结合起来使用。 化学除磷是向水中投加化学药剂,生成不溶性的磷酸盐,然后再利用沉淀、气浮或过滤等方法将磷从污水中除去。用于化学除磷的常用药剂有石灰,铝盐和铁盐等三大类。 三、生物除磷 1、生物除磷的原理 污水生物除磷的原理就是人为创造生物超量除磷过程,实现可控的除磷效果。整个过程必须通过创造厌氧环节利用厌氧微生物的作用来实现生物除磷过程。 1)厌氧条件下释磷 在没有溶解氧或硝态氮存在的条件下,兼性细菌通过发酵作用将可溶性BOD5转化为低分子挥发性有机酸VFA。聚磷菌吸收这些发酵产物或来自原污水的VFA,并将其运送到细胞内,同化成胞内碳能源储存物质PHB,所需的能力来源于聚磷的水解以及细胞内糖的酵解,并导致磷酸盐的释放。 2)好氧条件下摄磷 好氧条件下,聚磷菌的活力得到恢复,并以聚磷的形式存储超过生长所需的磷量,通过PHB的氧化代谢产生能量,用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式捕集存储,磷酸盐从水中被去除。 3)富磷污泥的排放 产生的富磷污泥通过剩余污泥的形式排放,从而将磷去除。从能量角度来看,聚磷菌在无氧条件下释放磷获取能量以吸收废水中溶解性有机物,在好氧状态下降解吸收溶解性有机物获取能量以吸收磷。 除磷的关键是厌氧区的设置,可以说厌氧区是聚磷菌的生物选择器。聚磷菌能在短暂的厌氧条件下,由于非聚磷菌吸收低分子基质并快速同化和储存这些发酵产物,即厌氧区为聚

第四节 废水生物除磷原理

第四节 废水生物除磷原理 一、磷在废水中的存在形式 通常磷是以磷酸盐(-42PO H 、-24HPO 、-34PO )、聚磷酸盐和有机磷等的形式存在于废水 中;细菌一般是从外部环境摄取一定量的磷来满足其生理需要;有一类特殊的细菌——磷细菌,可以过量地、超出其生理需要地从外部摄取磷,并以聚合磷酸盐的形式贮存在细胞体内,如果从系统中排出这种高磷污泥,则能达到除磷的效果。 二、生物除磷的基本过程 1、除磷菌的过量摄取磷 好氧条件下,除磷菌利用废水中的BOD 5或体内贮存的聚β-羟基丁酸的氧化分解所释放的能量来摄取废水中的磷,一部分磷被用来合成A TP ,另外绝大部分的磷则被合成为聚磷酸盐而贮存在细胞体内。 2、除磷菌的磷释放 在厌氧条件下,除磷菌能分解体内的聚磷酸盐而产生A TP ,并利用ATP 将废水中的有机物摄入细胞内,以聚β-羟基丁酸等有机颗粒的形式贮存于细胞内,同时还将分解聚磷酸盐所产生的磷酸排出体外。 3、富磷污泥的排放 在好氧条件下所摄取的磷比在厌氧条件下所释放的磷多,废水生物除磷工艺是利用除磷菌的这一过程,将多余剩余污泥排出系统而达到除磷的目的。 三、生物除磷过程的影响因素 1、溶解氧: 在除磷菌释放磷的厌氧反应器内,应保持绝对的厌氧条件,即使是NO 3-等一类的化合态氧也不允许存在;在除磷菌吸收磷的好氧反应器内,则应保持充足的溶解氧。 2、污泥龄: 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩余污泥的多少对脱磷效果有很大影响,一般污泥短的系统产生的剩余污泥多,可以取得较好的除磷效果;有报道称:污泥龄为30d ,除磷率为40%;污泥龄为17d ,除磷率为50%;而污泥龄为5d 时,除磷率高达87%。

脱氮除磷工艺原理及方法比较

1.水污染现状 自从我们进入和谐社会以来,随着科学和经济的发展,资源严重浪费、环境重度污染等一些问题逐渐突出。由于我国经济发展模式与环境承受能力不相融合,导致现在我国大部分水体造成严重污染。在我国坚持走可持续发展的道路上,水资源的污染和浪费已经成为我国推进现代化建设和可持续发展的绊脚石。防止水资源环境进一步被污染和治理被污染的水资源环境,早就成为我国目前最需要处理的棘手问题之一。水污染的现状也是触目惊心。 2.脱氮除磷工艺原理及方法比较 生物脱氮原理由同化作用、氨化作用、硝化作用、反硝化作用四个步骤组成。在污水生物处理过程中,一部分氮(氮氨或有机氮)被同化成微生物细胞的组分;氨化作用将有机氮化合物在氨化菌的作用下,分解、转化为氨氮;硝化作用实际上是由种类非常有限的自养微生物完成的,该过程分两步:氨氮首先由亚硝化单胞菌氧化为亚硝酸氮,继而亚硝酸氮再由硝化杆菌氧化为硝酸氮;反硝化作用是由一群异养型微生物在缺氧的条件下完成的生物化学过程。生物除磷原理过程中,在好氧条件下细菌吸收大量的磷酸盐,磷酸盐作为能量的储备;在厌氧状态下吸收有机底物并释放磷。 现在,广泛应用的生物脱氮除磷工艺方法有氧化沟法、SBR法、A2/O法等。 ①氧化沟又称连续循环反应器,是20世纪50年代由荷兰的公共卫生所(TNO)开发出来的。氧化沟是常规活性污泥法的一种改型和发展,是延时曝气法的一种特殊形式。其主要功能是供氧;保证其活性污泥呈悬浮状态,是污水、空气、和污泥三者充分混合与接触;推动水流以一定的流速(不低于0.25m/s)沿池长循环流动,这对保持氧化沟的净化功能具有重要的意义。 氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。但是,在实际的运行过程中,仍存在一系列的问题,如污泥膨胀问题、泡沫问题、污泥上浮问题、流速不均及污泥沉积问题。 ②?间歇式活性污泥法简称SBR工艺,一个运行周期可分为五个阶段即:进水、反应、沉淀、排水、闲置。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池。 SBR法?工艺流程:?污水?→?一级处理→?曝气池?→?处理水? 特点有:大多数情况下,无设置调节池的心要;SVI值较低,易于沉淀,一般情况下不会产生污泥膨胀;通过对运行方式的调节,进行除磷脱氮反应;自动化程度较高;得当时,处理效果优于连续式;单方投资较少;占地规模较大,处理水量较小。 ③?A2/O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2/O法是最简单的同步除磷脱氮工艺,总水力停留时问短,在厌?氧缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,

相关主题
文本预览
相关文档 最新文档