认识无理数(一)
- 格式:ppt
- 大小:571.00 KB
- 文档页数:21
第1课时认识无理数(一)教学目标1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2让学生体验用有理数估计一个无理数的大致范围的过程,掌握“逐次逼近法”这种对数进行分析、猜测、探索的方法[来源:]3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点(二)教材分析“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。
由2、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。
重点:无理数、实数的意义,在数轴上表示实数。
难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
[来源:学科网ZXXK](三)学生分析学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。
但对七年级学生来讲,思维仍较直观,无理数显得比较抽象,难以理解。
对2的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。
(四)设计理念让学生主动参与合作交流,探索、发现,注重知识形成的过程(五)教学方法启发式、探索式教学(六)教学过程1复习旧知,揭示矛盾,引入概念复习前面所学的有理数的分类,2既然在1与2之间就不是整数,也不是分数,因为如果是分数的话它的平方也应是分数,也就是说2不是有理数,但由此题可知2确实是存在的,同时π也是如此。
[来源:学#科#网Z#X#X#K]出现矛盾以后,本课以2为例,从2开始,来探索无理数的特征,学习实数。
2 联系实际创设问题情境:如果你是布料销售店的售货员,假设我要买剪2米布,你将会给我剪多少比较合适?学生能用上节知识估计2在1与2之间引导学生借助计算器进行合作学习:(1)根据上节课 1<2<2,确定√2=1.…(2)确定小数点后第一位数计算1.12 1.22 1.32 1.42 1.521.42 =1.96<2 1.52 =2.25>2 就不必再算下去了很明显1.4<2<1.5 。
1 认识无理数祸兮福之所倚,福兮祸之所伏。
《老子·五十八章》涵亚学校陈冠宇一、基本目标【知识与技能】1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数,并能说出理由.【过程与方法】1.让学生亲自动手实践,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练学生的思维判断能力.【情感态度与价值观】1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养为真理而奋斗的献身精神.二、重难点目标【教学重点】无理数的概念.【教学难点】判断一个数是有理数还是无理数.环节1 自学提纲,生成问题【5 min阅读】阅读教材P21~P23的内容,完成下面练习.【3 min反馈】1.无限不循环小数称为无理数.2.下列实数中,是无理数的是( B )A.13B.πC.0 D.9环节2 合作探究,解决问题活动1 小组讨论(师生对学)【例1】下列各数中,哪些是有理数?哪些是无理数?3.14,-53,,-0.125,-5π,0.35,227,5.313 113 111 3…(相邻两个3之间1的个数逐次加1).【互动探索】(引发学生思考)有理数和无理数的区别是什么?【解答】有理数:3.14,-53,,-0.125,0.35,227;无理数:-5π,5.313 113 111 3…(相邻两个3之间1的个数逐次加1).【互动总结】(学生总结,老师点评)有理数与无理数的主要区别:(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.活动2 巩固练习(学生独学)1.下列说法正确的是( B )A.有理数只是有限小数.无理数是无限小数C.无限小数是无理数D.π3是分数2.在13,3.141 592 6,0.707 007 000 7…(每两个7之间0的个数逐次加1),0.6,π中,无理数有( B )A.1个B.2个C .3个D .4个3.已知半径为1的圆. (1)它的周长l 是有理数还是无理数?说说你的理由;(2)估计l 的值(结果精确到十分位);(3)如果结果精确到百分位呢?解:(1)它的周长l =2π是无理数,理由如下:2π是无限不循环小数.(2)果精确到十分位,2π≈6.28≈6.3.(3)结果精确到百分位,2π≈6.282≈6.28.活动3 拓展延伸(学生对学)【例2】正数x 满足x 2=17,则x 精确到十分位的值是________.【互动探索】哪个正整数的平方最接近17,下一步该怎么办呢?【解答】已知x 2=17,所以4<x <5,4.12=16.81<17,4.22=17.64>17,所以4.1<x <4.2.又因为4.12=16.9744<17,4.132=17.0569>17,所以4.12<x <4.13.故x 精确到十分位是4.1.互动总结】(学生总结,老师点评)估计x 2=a (a >0)中的正数x 各位上的数字的方法:(1)估计x 的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x 的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x 的百分位、千分位…上的数,从而确定x 值.环节3 课堂小结,当堂达标(学生总结,老师点评)无理数⎩⎨⎧ 定义:无限不循环小数识别请完成本课时对应练习!【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。
2.1认识无理数(一)一、教材解读《2.1认识无理数(一)》是北师大版八年级上第二章第一节第一课时,在此之前学生已经经历了数系从非负有理数到有理数的扩充,学习了勾股定理,本节课学生将经历数系的第二次扩充,既是对前面有理数的一个扩展,也是前一章勾股定理内容的一个重要应用,同时是后续深入学习实数的基础,是承前启后的一个重要知识节点。
二、学情分析学生已经有了数系扩充的经验,本次数学的扩充同样是有实际的背景和必要性,前面勾股定理的学习为本次无理数产生提供了很好的知识储备。
学生具备了操作经历产生无理数的知识基础和基本经验。
三、教学目标1、知识与技能:感受无理数的存在,初步把握无理数的特征。
能够说明一个数既不是整数,也不是分数,不是前面学习的有理数。
2、过程与方法:通过观察、计算、探索,经历无理数产生的实际背景和必要性。
通过方格纸画图进一步感受无理数的存在事实和可操作性。
学会用勾股定理这一工具构造长度为无理数的线段,进一步研究无理数。
经历由具体到抽象,由特殊到一般的概念形成过程。
3、情感态度价值观:让学生在构造无理数的过程中感受到数学学习的乐趣,让学生感受到数学来源于生活和实际,具有看得见,摸得着,可操作的特点,改变以往学生心目中数学枯燥,乏味的观念。
四、教学设计 【回顾迎新】1. 整数和___________统称为有理数.整数又可分为正整数,_________,________. 2. 下列不是分数的是( )A .3.14 B.5% C.π D. ..11.0 3. 下列说法错误的是( )A .两个整数的乘积一定是整数B .最简分数的平方一定是分数C .有限小数和无限循环小数不是分数D .一个数既不是整数又不是分数,则这个数不是有理数4. 如图,斜边所在的正方形面积2b =___________.我们知道,如果22243<<m (m 为正数),则43<<m ,根据这个例子,我们可以判断 < b < (填两个整数),b 可能是整数吗? (填“可能”或“不可能”).【新课教学】一、感受新数如图,设每个小方格的边长为1个单位.问题1:图中有几种面积不同的正方形?它们的面积分别是多少?问题2:如果记正方形ABCD 的边长为a ,则2a =________. 问题3:a 整数吗?a 是分数吗?与同伴交流你的想法.训练:下列各数中,不是有理数的是( ) A .722 B. 2b =4中的b 值 C.0π D. 72=m 中的m 值 二、走进新数探究一:如图1,设每个小方格的边长为1个单位.线段AB ,CD ,EF 的长度是有理数吗?说明你的理由.请在图2的方格纸上仿照图1的方式,画出两条线段,使线段的长度不是有理数.探究二:创建新数(1)骰子创建:(2)人造创建:三、应用新数1. 如图是由个边长为的小正方形拼成的,任意连结 这些小正方形的若干个顶点,可得到一些线段,在线段 AB 、AC 、AD 、AE 、BE 五条线段中,长度是有理数的线 段有__________________,长度不是有理数的线段 有______________________.2.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O ′,点O ′对应的数是多少?它是有理数吗?161ABCDAB CE DF 图1 图2 DCBEAO3.正△ABC 的边长为2,高为h ,h 可能是整数吗?可能是分数吗?4.如图:在长方形ABCD 中,,AD=, 则AE ,BE 的长是有理数吗?△ABE 的面积是有理数吗?五、教学反思1.数学来源于生活新数(无理数)不是人为构造,庸人自扰,它是来源于活生生的生活实践的。
《认识无理数(一)》教学设计发表时间:2019-04-23T09:58:06.973Z 来源:《现代中小学教育》2019第3期作者:黄嫚[导读] 《认识无理数》是北师大版八年级数学(上)第二章《实数》的第一节内容,共两个课时完成.本节课是第1课时,主要是从实际背景中发现“非有理数”,从形、数两方面感受这样的数的广泛性,为引入无理数的概念奠定基础。
西北工业大学附中分校黄嫚一、教材分析1.教材的地位与作用《认识无理数》是北师大版八年级数学(上)第二章《实数》的第一节内容,共两个课时完成.本节课是第1课时,主要是从实际背景中发现“非有理数”,从形、数两方面感受这样的数的广泛性,为引入无理数的概念奠定基础;在知识的联系上,本节课再一次让学生感受“数怎么又不够用了”,进而引入“无理数”,把数的范围扩大到实数.本节课通过丰富多彩的数学活动,让学生感受无理数产生的实际背景和引入的必要性,以及无理数存在的合理性.本节课既是有理数和勾股定理的知识及应用的进一步深化,又是实数概念及运算的开始,起着承前启后的作用. 在能力的培养上,本节课在数学活动中提升了学生的动手能力和思维能力;在思想方法和情感态度上,本节课既培养了学生数形结合的数学思想方法,又培养了学生探索真理的精神和实事求是的科学态度.2.学情分析学生通过“有理数”的学习,经历了一次数系的扩充,建立了有理数的概念;又通过“勾股定理”的学习,明白了直角三角形的三边关系,建立了勾股数的概念,积累了一些数学活动经验,这为引入无理数奠定了基础.但无理数不象有理数那样直观易懂,学生理解起来会有些困难.因此,在教学中要通过丰富多彩的数学活动逐步渗透和加强概念,以达到教学目标.3.教学目标根据《数学课程标准》的要求,以及教材分析和学情分析,确定本节课的教学目标如下:(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性. (2)从形数两方面让学生再感受“非有理数”广泛存在,并会判断一个数不是有理数.(3)在探究活动中提高学生的动手能力和思维能力,渗透数形结合的数学思想方法,培养学生的探索精神,积累学生的数学学习经验. (4)通过了解数学史话,让学生感悟勇于追求真理的人生价值观,树立实事求是的科学态度.4.教学重点难点重点: 感受“非有理数”广泛存在,会判断一个数不是有理数. 难点:判断一个数不是有理数的过程.关键:掌握重点、突破难点的关键是利用电子白板交互技术,进行拼图活动的直观教学,给学生动手、思维、交流和展示的时间和空间,让学生感受无理数产生的实际背景和引入的必要性;再通过进一步的探究活动,从形数两方面让学生再感受“非有理数”广泛存在,进而学会判断一个数不是有理数.二、教法学法教法:根据以上教材分析和学情分析,本节课采用问题情境导入法引入新课,用探究分析法展开教学,把电子白板交互技术有效地融入教学环节之中.教师最大程度地发挥了学生的主观能动性,在思维的最近发展区,引导学生观察思考、动手动脑,分析归纳,解决问题,从而提高学生发现问题和解决问题的能力.学法:本节课采用学生自主探究、合作交流为主的学习方式,学生通过拼一拼、议一议、做一做、画一画、算一算的数学活动,经历观察、动手、思考、交流、归纳等思维过程,同时经历无理数的发现和生成过程,从中培养学生的动手能力、思维能力和探索精神,积累学生的数学学习经验.三、技术应用本节课是在交互一体机的平台上使用电子白板进行教学的.从以往的教学来看,这节课让学生在黑板上拼、贴、画图,效果不理想还浪费时间,而利用电子白板教学,有效地发挥电子白板的拖拉、克隆、旋转、锁定、删除、随机画图、屏幕遮盖等功能,学生动态剪拼图形,画出图形,操作方便,直观形象,优化了教学,既节省了课堂时间,又提高了课堂效率,还培养了学生的学习兴趣,达到了很好的教学效果.教学实践证明,电子白板交互技术的有效应用是提高教学效益的有力技术支撑.四、教学过程(一)情境导入1.从数学发展史切入,复习有理数的概念;2.再从数学史话的故事,提出问题,引入本章学习,学生朗读学习目标;3.导入本节的学习,板书课题.设计意图:第一节课从章前页引入,一是设疑激趣,唤起学生的求知欲;二是明确目标,学生胸有成竹地进入新的一章的学习.这样导课从数学知识的连续性与数学发展史两方面入手,亲切自然,一气呵成. (二)合作探究环节1:拼一拼设计意图:教学的切入点是从动手剪拼正方形开始,然后解决三个问题,这是这节课的重点部分.让学生分组活动,动手操作剪拼图形,利用电子白板展示交流,发散思维多种拼法,使学生感受无理数产生的实际背景和引入的必要性,在原有的基础上提高了认知水平和思维能力.环节2:议一议(合情说理部分,判断a值是否为有理数)设计意图:此问题串是让学生感受“非有理数”的存在,教学从形数两方面让学生来判断数不是有理数,突破这节课的重难点.解决难点问题(3)的方案是:先提出一个问题做铺垫,即“一个最简分数的平方一定是分数吗”?再引导学生从原命题的逆否命题来说明理由,这样既严谨易懂,又渗透了原命题与逆否命题等价的逻辑关系,为今后学习反证法奠定了基础. 环节3:做一做设计意图:让学生类比“议一议”中三个问题的解决方法,运用所学的知识,从数形两方面自主完成“做一做”,再次感受“非有理数”的存在,提高学生发现问题和解决问题的能力. 环节4:画一画环节5:算一算由学生判断出OA 3的长是有理数,OA1,OA2,OA4,OA5,OA6的长都不是有理数,并用计算器求出非有理数的近似值(计算器显示为有限位小数).教师因势利导:这些非有理数在计算器上显示出的有限位小数与我们学过的有理数的有限小数的表示一样吗?它们是什么数呢?下节课我们继续探究学习.设计意图:“画一画,算一算”两个教学环节环环相扣,承前启后.让学生在“画一画”,“算一算”中会判断一个数是不是有理数,进而感受“非有理数”的广泛存在,也为下节课的学习无理数的概念埋下伏笔.培养了学生的动手能力和思维能力,积累了数学学习经验. (三)课堂小结1. 通过一系列数学活动,我们感受到实际背景中广泛存在着不是整数或分数的非有理数,并会判断一个数不是有理数.2. 在探究过程中培养了动手能力、思维能力和探索精神,体会到了数形结合思想的妙用,积累了数学学习经验. (四)布置作业必做题:1.P22习题2.1第1题; 2.阅读P22读一读《无理数的发现》.选做题:如图是5个单位正方形组成的纸片,请你把它剪成3块,拼成大正方形,并判断正方形的边长是有理数吗?(五)寄语:(六)板书设计五、教学反思本节课是一节典型的数学活动探究课.具体来讲本节课主要有以下几个特点:1. 渗透数学文化,激发学习兴趣本节课从数学知识的连续性与数学发展史两方面导入新课,通过五个教学环节的的设置引发学生学习的欲望,从多个层次训练了学生的思维能力,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的非有理数广泛存在,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.2. 化抽象为具体,落实多维度的教学评价《认识无理数》第一课时课本的正文只有一页,虽然简单内容少,但课堂以动手剪拼正方形为切入点,通过环环相扣的过程设计,充分展示了知识发生、发展的过程,体会了类比和数形结合思想的妙用,同时培养了学生的动手能力,思维能力,和探索精神,积累了数学学习经验,感悟到追求真理的人生价值观.3.电子白板的有效应用提高了教学效益本节课从技术手段上讲,有效的使用了交互一体机.有效地发挥电子白板的功能,节省了课堂时间,优化了教学过程,提高了课堂效率.通过学生动态剪拼图形,积极参与,达到了很好的教学效果.教学实践证明,电子白板的有效应用是提高教学效益的有力技术支撑.4.不足之处及今后努力方向当然,本节课也有不足之处,比如教学过程中,应该再多一点给学生提问的机会,增强学生的问题意识,从而培养他们的创新意识.这些在今后的教学中要进一步加强。
第二章认识无理数考点类型大总结【知识点及考点类型梳理】知识点一、无理数1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)特殊结构的数(看似循环而实则不循环):如:2.01001000100001…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-π是无理数(4)无理数乘或除以一个不为0的有理数结果是无理数。
如2π,(5)开方开不尽的数,如:39,52等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点类型一、判断无理数1.下列4个数:0.13 ,73,π﹣3.14_____个.【答案】2【详解】∵0.13 是无限循环小数,是有理数;73是分数,是有理数,π﹣3.14数.∴有两个无理数,故答案为:2.2.请将下列各数填入相应的集合内:74-,0,π,311,-1.010010001···(每两个1之间多一个0),0.5∙有理数集合:{···};无理数集合:{···};非负数集合:{···}.【答案】有理数集合:{74-,0,311,0.5∙···};无理数集合:{π,-1.010010001···(每两个1之间多一个0)···};非负数集合:{0,π,311,0.5∙···}.【分析】根据有理数的概念、无理数及非负数的概念可直接进行求解.【详解】有理数集合:{74-,0,311,0.5∙···};无理数集合:{π,-1.010010001···(每两个1之间多一个0)···};非负数集合:{0,π,311,0.5∙···}.举一反三1.在3.14,0,5π-,227-,2.010010001…(每两个1之间的0依次增加1个)中,无理数有_______个.【答案】3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:3.14是有限小数,属于有理数;0是整数,属于有理数;-227-是分数,属于有理数;无理数有:5π-,2.010010001…(每两个1之间的0依次增加1个)共3个.故答案为:3.2.把下列各数分别填在相应的集合中:227,3.14159260.8-,3π.【答案】见解析.【分析】根据无理数的定义先判断是否是无理数,剩下的就是有理数.无理数有①含π的,②开方开不尽的根式,③一些有规律的.【详解】【点睛】此题考查无理数和有理数的理解,解题关键在于区分无理数和有理数.无理数是指无限不循环小数,有理数是指有限小数和无限循环小数.考点类型二、无理数的估算(夹逼法)1.阅读下列材料:2<3,的整数部分为2,小数部分为-2).请根据材料提示,进行解答:的整数部分是;(2)a b,求a+b【答案】(1)2;(2)1.【解析】【分析】(1(2【详解】解:(1)2(2)由(1)a2,即,b=3,则a+b2+ 1.【点睛】此题考查估算无理数的大小,解题关键在于掌握运算法则.举一反三1.(阅读材料)23,∴11<21的整数部分为1-1-2(解决问题)(1的小数部分是;(2)已知a4的整数部分,b4的小数部分,求代数式(﹣a)3+(b+4)2的值.【答案】(19;(2)21.【分析】(1)由于81<91<100(24的整数部分和小数部分,再代入代数式进行计算即可.【详解】(1)∵81<91<100,∴910,9,9;(2)∵16<21<25,∴45,∵a4的整数部分,b4的小数部分,∴a=4﹣4=0,b=4,∴(﹣a)3+(b+4)2=0+21=21.【点睛】本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.考点类型三、利用勾股定理构造无理数的线段1.在下列44⨯网格中分别画出一个符合条件的直角三角形,要求三角形的顶点均在格点上,且满足:(1)三边均为有理数;(2)其中只有一边为无理数.【答案】答案见解析【分析】(1=5,画出图形即可;(2)由勾股定理得出直角边长为2、斜边长为【详解】(1=5,△ABC即为所求,如图1所示;(2)由勾股定理得:=△DEF即为所求,如图2所示.【点睛】本题考查了勾股定理、实数的定义;熟练掌握勾股定理,并能进行推理计算与作图是解决问题的关键.考点类型四、无限循环小数1.阅读下列材料:。