卫星姿态
- 格式:docx
- 大小:36.99 KB
- 文档页数:3
反作用轮在具体卫星姿态控制中的应用实例反作用轮在卫星姿态控制中的应用非常广泛,具体实例包括:
1.姿态调整:卫星在运行过程中,为了完成某些科学实验或拍摄任务,需要不断调整其姿态。
反作用轮可以提供一定的扭矩,帮助卫星实现姿态的快速调整。
2.轨道保持:在卫星进入轨道后,为了防止其在重力或其他因素的干扰下偏离预定轨道,需要使用反作用轮进行轨道保持。
通过反作用轮的转动,产生一定的推力,使卫星能够维持在预定轨道上。
3.姿态稳定:在某些情况下,卫星的姿态可能会受到干扰而发生偏转。
反作用轮可以通过转动产生扭矩,帮助卫星恢复稳定的姿态。
4.动力补偿:当卫星受到其他力的作用时,如太阳辐射压、地球引力等,反作用轮可以提供一定的补偿力,帮助卫星保持稳定的运行状态。
总之,反作用轮在卫星姿态控制中扮演着重要的角色,其应用场景多种多样,对保证卫星的稳定运行和任务的顺利完成具有重要意义。
第1篇随着科技的不断发展,卫星技术在各个领域得到了广泛应用。
然而,在卫星发射、运行和回收过程中,存在许多物理问题。
本文将针对物理卫星问题进行分析,并提出相应的解决方案。
一、物理卫星问题1. 发射阶段(1)卫星姿态控制问题卫星在发射过程中,由于地球自转、空气阻力等因素,容易导致卫星姿态失控。
姿态失控会影响卫星的轨道、寿命以及任务执行效果。
(2)卫星振动问题卫星在发射过程中,火箭发动机的推力会产生强烈的振动,这可能导致卫星结构损伤、仪器故障等问题。
2. 运行阶段(1)卫星轨道衰减问题卫星在轨道上运行时,会受到地球引力、大气阻力等因素的影响,导致轨道高度逐渐降低,甚至脱离轨道。
(2)卫星热控制问题卫星在太空环境中,受到太阳辐射和宇宙辐射的影响,会产生高温或低温。
这会导致卫星仪器损坏、寿命缩短等问题。
(3)卫星电磁干扰问题卫星在运行过程中,可能会受到其他卫星、地球表面设施等产生的电磁干扰,影响卫星的正常工作。
3. 回收阶段(1)卫星回收姿态控制问题卫星在回收过程中,需要精确控制姿态,以保证回收过程的顺利进行。
(2)卫星回收速度控制问题卫星回收过程中,需要精确控制速度,以保证卫星安全返回地球。
二、解决方案1. 发射阶段(1)卫星姿态控制采用先进的姿态控制系统,如星敏感器、陀螺仪等,实时监测卫星姿态,并根据需要进行调整。
(2)卫星振动问题优化卫星结构设计,采用缓冲材料、减震装置等,降低振动对卫星的影响。
2. 运行阶段(1)卫星轨道衰减问题采用轨道维持技术,如电推进系统、轨道转移火箭等,提高卫星轨道寿命。
(2)卫星热控制问题采用辐射散热、热交换器、热控材料等,降低卫星表面温度。
(3)卫星电磁干扰问题优化卫星天线设计,采用抗干扰技术,降低电磁干扰对卫星的影响。
3. 回收阶段(1)卫星回收姿态控制采用先进的姿态控制系统,实时监测卫星姿态,并根据需要进行调整。
(2)卫星回收速度控制采用精确的制导系统,实时监测卫星速度,并根据需要进行调整。
卫星姿态控制实现方式嘿,朋友们!今天咱就来聊聊卫星姿态控制实现方式这个神奇的事儿。
你想啊,卫星在那遥远的太空里,就像一个孤独的舞者,得时刻保持着优美的姿态呢。
那它是怎么做到的呢?这就好比咱人走路,得知道怎么迈腿、怎么保持平衡吧。
卫星也有它的“小窍门”。
首先呢,有一种方式叫自旋稳定。
这就好像一个不停旋转的陀螺,转起来就稳稳当当的啦。
卫星让自己快速地旋转起来,这样就能在太空中保持稳定的姿态啦。
这是不是很有意思?就像一个会自转的小星球一样。
还有啊,三轴稳定也是很常用的办法呢。
想象一下卫星有三个轴,就像一个立体的坐标系,通过各种神奇的装置和算法,来精确地控制每个轴的转动和稳定。
这可比咱平时走直线难得多啦!它得随时应对各种情况,就像咱在复杂的路况中开车一样,得时刻注意着方向。
然后呢,还有一种叫重力梯度稳定的方式。
这就好像卫星被太空里的某种神秘力量拉着,让它乖乖地保持一定的姿态。
是不是很神奇呀?卫星姿态控制就像是一场精彩的表演,各种手段和方法相互配合。
这可不是随随便便就能搞定的事儿,得靠科学家们的智慧和努力呀。
你说要是卫星的姿态控制没做好,那会咋样呢?哎呀,那可就糟糕啦,它就没办法好好工作啦,就像一个人走路东倒西歪的,还怎么能完成任务呢?所以啊,这卫星姿态控制可真是太重要啦!咱平时在地球上,可能觉得这事儿离我们很远,但其实卫星的作用可大着呢。
从天气预报到通信,从导航到科学研究,都离不开这些在太空中“跳舞”的小家伙们。
而它们能好好工作,全靠这神奇的姿态控制呀。
所以说呀,卫星姿态控制实现方式真的是太有趣、太重要啦!这背后凝聚着无数科学家的心血和智慧。
咱可得好好感谢他们,让我们的生活变得更加便利和精彩呀!这就是卫星姿态控制的奇妙世界,是不是让你大开眼界啦?。
卫星姿轨控模型 python
卫星姿轨控模型是指用于描述卫星在空间中的姿态(姿态控制)和轨道(轨道控制)的数学模型。
在Python中,可以使用各种库和
工具来建立和模拟卫星姿态和轨道控制模型。
下面我将从几个方面
来回答这个问题。
1. 姿态控制模型:
在建立卫星姿态控制模型时,可以使用旋转矩阵、四元数或
欧拉角等方式来描述卫星的姿态。
在Python中,可以使用NumPy库
来进行矩阵运算和姿态变换的计算。
同时,也可以使用SymPy库来
进行符号计算,以便分析和推导姿态控制模型的数学表达式。
2. 轨道控制模型:
卫星的轨道通常可以由开普勒定律或者其他轨道动力学方程
来描述。
在Python中,可以使用Astropy库来进行天体力学计算,包括轨道参数的计算和轨道的建模。
同时,也可以使用poliastro
库来进行轨道传播和轨道控制相关的计算。
3. 数值仿真和可视化:
一旦建立了卫星姿态和轨道控制模型,可以使用Python中
的诸如Matplotlib和Mayavi等库来进行数值仿真和三维可视化,
以便直观地观察卫星在空间中的运动轨迹和姿态变化。
总之,Python作为一种功能强大的编程语言,提供了丰富的科
学计算库和工具,可以很好地支持卫星姿态和轨道控制模型的建立、仿真和分析。
希望这些信息能够对你有所帮助。
卫星姿态控制系统设计报告一、概述卫星姿态控制是指通过控制卫星的姿态,使其在轨道上保持稳定和精确的方向和位置。
本文将设计一种卫星姿态控制系统,该系统旨在实现对卫星姿态的精确控制,提高卫星任务的执行效率和准确性。
二、系统架构卫星姿态控制系统主要由以下几个部分组成:1. 姿态传感器:用于感知卫星当前的姿态状态,如陀螺仪、加速度计等。
2. 姿态控制器:根据姿态传感器的反馈信号,计算并控制卫星的姿态调整,保持期望的姿态目标。
3. 执行器:负责执行姿态控制器计算得到的控制指令,如推力器、反动轮等。
4. 数据处理与通信模块:处理传感器和执行器的数据,并与地面控制中心进行通信,接收姿态目标和发送卫星状态信息。
三、系统设计1. 姿态传感器选择根据卫星姿态控制的要求,选择适合的姿态传感器进行姿态状态的感知。
常用的姿态传感器有陀螺仪、加速度计、磁强计等。
根据卫星需要实现的精度和稳定性要求,综合考虑成本和性能因素,确定最佳的姿态传感器组合。
2. 姿态控制器设计姿态控制器是卫星姿态控制系统的核心部分,根据姿态传感器提供的姿态状态信息,计算出控制指令以调整卫星的姿态。
姿态控制器的设计主要包括以下几个关键步骤:- 卫星姿态描述和数学模型的建立;- 设计姿态控制算法,如PID控制器、模糊控制器等;- 姿态控制算法的参数调整和优化。
3. 执行器选择根据卫星姿态控制系统的需求和任务特点,选择合适的执行器。
根据不同的执行任务,常用的执行器有推力器、反动轮、电动机等。
根据执行器的特性和系统需求,确定最佳的执行器组合。
4. 数据处理与通信模块卫星姿态控制系统需要实时处理传感器数据,并与地面控制中心进行通信,传输姿态目标和卫星状态信息。
数据处理与通信模块需要具备以下功能:- 传感器数据采集和预处理;- 数据处理算法的实现,如滤波、解算等;- 与地面控制中心进行数据交互和通信。
四、系统测试与优化完成卫星姿态控制系统的设计后,需要进行系统测试和性能优化。
第22卷第1期2024年1月动力学与控制学报J O U R N A L O FD Y N AM I C SA N DC O N T R O LV o l .22N o .1J a n .2024文章编号:1672G6553G2024G22(1)G001G021D O I :10.6052/1672G6553G2023G011㊀2022G12G02收到第1稿,2023G01G14收到修改稿.∗国家自然科学基金资助项目(U 21B 2050),N a t i o n a lN a t u r a l S c i e n c eF o u n d a t i o no fC h i n a (U 21B 2050).†通信作者E Gm a i l :111976345@i m u .e d u .c n卫星磁姿态控制方法与算法综述∗穆硕1㊀占英2†㊀宝音贺西1(1.清华大学航天航空学院,北京㊀100084)(2.内蒙古大学电子信息工程学院,呼和浩特㊀010021)摘要㊀自太空探索之初,姿态控制磁控系统便因其体积小㊁质量轻㊁成本低㊁可靠性高等优点被广泛应用于各类轨道卫星.近些年,随着微小卫星技术的迅猛发展,姿态控制磁控系统满足了微小卫星对质量㊁空间等资源的限制,成为了学者们研究的热点.本文综述了自20世纪60年代以来卫星尤其是微小卫星所采用的主要磁姿态控制方法和算法,包括飞轮起旋与卸载算法㊁被动以及主动磁姿态控制算法等.其中主动磁姿态控制算法包括主动磁阻尼算法㊁磁控与自旋㊁定转速飞轮㊁重力梯度力矩结合的算法以及纯磁控算法.最后对该研究进行了总结与展望.关键词㊀卫星磁控,㊀飞轮起旋与卸载,㊀被动磁控,㊀主动磁阻尼,㊀磁控与其他方式结合,㊀纯磁控中图分类号:V 412.4+2文献标志码:AA nO v e r v i e wo fM a g n e t i cA t t i t u d eC o n t r o lA l go r i t h m s f o r S a t e l l i t e s ∗M uS h u o 1㊀Z h a nY i n g 2†㊀B a o yi nH e x i 1(1.S c h o o l o fA e r o s p a c eE n g i n e e r i n g ,T s i n g h u aU n i v e r s i t y ,B e i j i n g㊀100084,C h i n a )(2.S c h o o l o fE l e c t r o n i c I n f o r m a t i o nE n g i n e e r i n g ,I n n e rM o n g o l i aU n i v e r s i t y,H u h h o t ㊀010021,C h i n a )A b s t r a c t ㊀M a g n e t i c a t t i t u d e c o n t r o l s y s t e m s h a v e b e e nw i d e l y us e d f o r l o we a r t h o r b i t s a t e l l i t e s s i n c e t h e b e g i n n i n g o f s p a c e e r a b e c a u s e o f t h e i r r e l i a b i l i t y ,l i g h t w e i g h t ,l o wc o s t a n d e n e r g y e f f i c i e n c y .R e c e n t l y,s m a l l s a t e l l i t e sa r e i n c r e a s i n g l y a t t r a c t i v e .M a gn e t i cc o n t r o l l e r s m e e t t h e l i m i t a t i o n so f s m a l l s a t e l l i t e s a n d a r e c o n s i d e r e da s f a v o r a b l e c a n d i d a t e s f o r s m a l l s a t e l l i t e s .I n t h i s p a p e r ,t h e s a t e l l i t em a gn e t i c a t t i Gt u d e c o n t r o l a l g o r i t h m s ,i n c l u d i n g a l g o r i t h m s f o r r e a c t i o nw h e e l s t a r t Gu p a n du n l o a d i n g ,pa s s i v e a n d a c Gt i v em a g n e t i c a t t i t u d e c o n t r o l a l g o r i t h m s ,a r e c o v e r e d .T h e a l g o r i t h m s h e r e i n a r e e s p e c i a l l y f o r s m a l l s a t Ge l l i t e s .A s f o r a c t i v em a g n e t i c a t t i t u d e c o n t r o l a l g o r i t h m s ,m a g n e t i c d a m p i n g a l g o r i t h m s ,t h e a l g o r i t h m s c o mb i n i n g m a g n e t ic c o n t r o lw i t hs p i n ,c o n s t a n t s p e ed f l y w he e l a n d g r a v i t yg r a d i e n t t o r q u e ,a n d p u r e l y m a g n e t i c c o n t r o l a l g o r i t h m s a r e c o v e r e d .F i n a l l y,t h e r e s e a r c h i s s u mm a r i z e d .K e y wo r d s ㊀s a t e l l i t em a g n e t i c c o n t r o l ,㊀r e a c t i o nw h e e l s t a r t Gu p a n du n l o a d i n g ,㊀p a s s i v em a g n e t i c c o n Gt r o l ,㊀a c t i v em a g n e t i c a n g u l a r v e l o c i t y d a m p i n g ,㊀m a gn e t i c c o n t r o l w i t h o t h e r a c t u a t o r s ,㊀p u r e l y m a gn e t i c c o n t r o l动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷引言自探索太空之初,磁姿态控制系统便因其轻便,可靠等诸多优点受到卫星设计者的青睐.第一颗成功使用磁姿态控制系统的卫星是T r a n s i t1B,由美国约翰霍普金斯大学应用物理实验室(A P L)设计.该卫星于1960年4月发射,采用被动磁控,进行了89天在轨操作[1].1960年11月,第一颗采用主动磁姿态控制的卫星T i r o s I I成功发射[2].相比于其他控制方式,磁姿态控制系统具有质量轻㊁体积小㊁成本低㊁可靠性高,使用寿命长等诸多优点,是低轨近地卫星尤其是微小卫星实现稳定控制的首选.磁姿态控制系统依靠卫星自身磁矩m与地磁场强度矢量B相互作用,产生控制力矩T.被动磁控卫星主要通过永磁体与磁滞棒产生磁矩;主动磁控卫星则需要通过电流驱动磁力矩器产生所需磁矩.磁控力矩计算公式为:T=mˑB(1)从公式(1)中可看出,磁姿态控制系统的主要缺点是无法施加独立的三轴控制力矩,在每一瞬时只能产生垂直于卫星所处地磁场的控制力矩,这会大幅降低姿态控制效果,甚至出现瞬时不可控.磁姿态控制卫星的可控性一直困扰着学者们.直到2003年,B h a t与D h a m[3]基于周期性地磁场假设,证明了磁控卫星的可控性:当卫星沿非赤道轨道运行时,地磁场方向会随卫星位置改变而不断发生变化.这种变化使得磁控系统不可控方向也在不断变化,确保了磁控卫星的可控性.随后, S m i r n o v等[4]证明了在偏离平衡点较小时,可利用两轴磁控实现卫星稳定姿态控制.Y a n g[5]基于线性时变系统理论,证明了在卫星惯量满足一定条件时,可实现磁控卫星稳定姿态控制.地磁场模型精度是决定所设计磁姿态控制系统能否成功实施的另一个关键因素.目前,最精确的地磁场模型为国际地磁参考场(I G R F模型),由国际地磁与气象学协会(I A G A)于1968年提出,此后每五年更新一次,目前为第13代[6].I G R FG13采用13阶球谐函数模型,结构复杂,通常适用于数值仿真过程.而对磁控算法的理论分析,学界通常采用偶极子假设.常用的偶极子模型有倾斜偶极子模型㊁直接偶极子模型以及简化偶极子模型[7].基于偶极子假设并忽略地球自转的影响,卫星所处地磁场会随卫星轨道运动而周期性变化.同时,也可采用更高阶球谐函数进行更精确的理论分析[8,9].本文参考了前人的综述文章[10G13],沿用了文献[11]的分类结构,整理综述了自20世纪60年代以来卫星尤其是微小卫星所采用的主要磁姿态控制方法和算法,包括飞轮起旋㊁卸载,被动以及主动磁姿态控制算法,重点关注主动磁姿态控制算法的发展.其中主动磁姿态控制算法包括BGd o t等主动磁阻尼算法,磁控与自旋㊁定转速飞轮㊁重力梯度力矩结合的算法以及纯磁控算法.最后,本文对各类磁控算法进行了总结与展望.1㊀飞轮起旋与卸载1.1㊀飞轮起旋根据动量矩守恒原理,当飞轮的动量矩变化时会改变卫星的动量矩.目前主要有两类磁控算法用于飞轮起旋问题[14].第一种方法首先利用磁力矩器与飞轮实现卫星稳定控制.此阶段磁控制律可采用P D控制律.卫星稳定后加速飞轮至目标转速,利用磁力矩器维持卫星姿态稳定[14,15].另一种方法是在卫星实现稳定控制前起旋飞轮,再利用磁力矩器与定转速飞轮稳定卫星.C h a n g等人在姿态获取阶段起旋俯仰轴飞轮,并使用BGd o t控制律阻尼卫星角速度[14].该方案可更快实现稳定控制.研究表明,在BGd o t控制律下,卫星姿态误差会以指数形式进行收敛[16].M e n g 等人设计了两种用于飞轮起旋的磁控律[17]: m=Bˑ(-k1h )B 2(2)m=Bˑ(-k1h -k2θ )B 2(3)其中m为卫星本体系下磁力矩器产生的磁矩,B为本体系下的地磁场强度矢量,h 为飞轮起旋产生的干扰力矩,θ 为三轴姿态误差的时间导数,k1,k2为控制增益.上述控制律均可在姿态稳定前使用.当角速度信息可知时,卫星采用控制律(3)进行控制.1.2㊀飞轮卸载工程中磁控制系统常用于飞轮角动量卸载.飞轮可抵抗环境干扰力矩的影响,实现卫星高精度姿2第1期穆硕等:卫星磁姿态控制方法与算法综述态控制.但同时,由于一些常值干扰力矩的影响,如气动力矩,飞轮的转速可能会持续增加.当上升至最高转速时,飞轮将不能提供有效的控制力矩.需在飞轮转速达到其上限值前进行角动量卸载.常用的卸载方法有喷气卸载,磁卸载等.但喷气卸载需消耗卫星燃料.而磁卸载可利用电能进行卸载,且使用寿命长.1961年,W h i t e等人[18]提出了叉乘磁卸载控制律,在磁控卫星中应用广泛[19G21],具体形式为:m=kΔh wˑB(4)其中k为控制增益,Δh w为飞轮角动量与目标角动量差值.通过该控制律,磁控力矩可卸载垂直于地磁场强度矢量B的角动量分量.通常,当Δh w与地磁场矢量的夹角足够大时(如夹角处于45~135度之间),才启动磁力矩器卸载,以防止垂直于Δh w的磁力矩分量过大对卫星产生不利影响.该控制律也可采用b a n gGb a n g控制形式计算所需磁矩[22].针对叉乘控制律,后续文献进行了大量研究.C a m i l l o与M a r k l e y[22]推导了叉乘控制律解析分析公式.该公式可用于增益系数k的初步选取.N iGn o m i y a等人[23]对叉乘控制律进行了改进,使得控制律可同时实现飞轮角动量卸载与卫星章动阻尼.H a b l a n i[24]使用线性极点配置方法,对叉乘控制律增益系数进行设计.针对冗余配置的飞轮系统,L e b e d e v[25],H o g a n与S c h a u b[26]设计的叉乘控制律可确保每个飞轮的转速都卸载到零值附近.T rég o uët等人[27]与A v a n z i n i等人[28]改进的叉乘控制律可在磁卸载的同时保证姿态控制律的渐进稳定.一些优化方法也被用于飞轮磁卸载控制律设计.G l a e s e等人[29]设计了能量最优磁卸载控制律.F l a s h n e r与B u r n s[30]提出了一种基于单元映射方法的离散磁卸载控制律.该控制律基于周期性磁场假设,可离线设计优化方案.S t e y n[31]基于L Q R方法,通过最小化目标函数J=ʏt f t0(h T w Q h w+m T R m)d t(5)实现了磁卸载控制律的优化.其中h w为飞轮角动量,Q,R为权重矩阵.G i u l i e t t i等人[32]构建了结合时间最优与能量最优的目标函数,即:J=-aΔt-(1-a)2ʏt f t0(m2x+m2y)d t(6)其中a为调节机动时间与能量消耗比例的权重系数.通过最大化目标函数,文献[32]给出了包含参数a的磁卸载控制律.此外,Hɕ方法也被用于磁卸载控制律优化[33].磁卸载也可结合其他卸载方法提高效果.C h e n等人[34]将磁卸载与喷气卸载组合,节省了喷气卸载的燃料消耗,同时提高了卸载速度.B u r n s与F l a s h n e r[35]利用重力梯度力矩㊁磁力矩㊁气动力矩三种环境力矩,设计了具有自适应特性的磁卸载控制律.其他方案如模型预测方法[36],被动阻尼方法[37],点映射技术[38,39]等均可应用于磁卸载控制律设计.2㊀被动磁姿态控制被动磁姿态控制系统结构简单,性能可靠,不消耗卫星能源,常应用于设备有限且控制精度要求较低的卫星.其通常包括永磁体与磁滞棒两个组件.其中永磁体用于控制卫星指向,使其大致沿所处地磁场方向.磁滞棒通过磁化作用,可起到角速度阻尼作用.二者结合可实现低精度稳定姿态控制.被动磁姿态控制系统最早于1960年应用于美国海军通讯试验星[40].通过被动磁控与机械消旋设备,该卫星成功实现了角速度阻尼与稳定指向.1960年6月,该项目另一颗试验星T r a n s i t2A成功发射.该卫星仅凭借被动磁姿态控制系统实现了稳定控制[40].第一颗由大学自主研发的被动磁控卫星I n j u n3于1962年成功发射入轨[41].此后,更多被动磁控卫星任务成功实施,如E S R OG1A(1968),E S R OG1B(1969),A z u r(1969),E x o s(1978),M a g i o n(1978)[42].随着星载计算机与控制设备的发展,被动磁姿态控制系统已不能满足卫星任务高精度与多样化需求.至20世纪70年代中期,被动磁姿态控制系统逐渐被主动控制方法替代.直到微小卫星技术的兴起,被动磁姿态控制系统再次受到学者关注.其满足了微小卫星质量㊁空间以及设备成本的限制,在一些大学自主研发的试验星或演示卫星中应用广泛.1990年,四颗采用被动磁控的微小卫星被送入太空[43].此后,更多应用被动磁控的微小卫星相继发射[42,44G50].被动磁姿态控制原理简单,无需设计复杂的控3动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷制算法.目前学者更多关注主动磁姿态控制算法设计.3㊀主动磁姿态控制3.1㊀主动磁阻尼控制当卫星角速度过大时,部分星载仪器如星敏感器无法正常使用,需使用星载设备降低卫星角速度至一定阈值.与运载器分离㊁执行变轨等机动操作或是设备故障均可能使角速度过大,因此,角速度阻尼是卫星姿态控制的必需过程.虽然喷气控制,飞轮控制等方法均可阻尼角速度,但喷气控制会消耗卫星燃料,飞轮控制易饱和.相比之下,磁阻尼控制不仅节省能源,还具备性能可靠,成本低廉等优势,在各类卫星中应用广泛.S t i c k l e r与A l f r i e n d[19]提出了著名的主动磁阻尼算法 BGd o t 控制律.该控制律最早出现在1972年[51],利用地磁场导数信息进行角速度阻尼,具体表达式为:m=-k B (7)其中k为正增益系数,B 为地磁场强度矢量相对于卫星本体系的导数.利用绝对导数与相对导数的关系,即:d Bd t=B +ωˑB(8)其中d B/d t为地磁场强度矢量相对于惯性系的导数,式(7)可表示为:m=-k d B d t+k ωˑB(9)由于地磁场强度矢量在惯性系中变化的角频率仅为轨道角速度两倍,而通常在阻尼过程中卫星角速度较大,因此式(9)右侧第一项可近似为零.故式(9)可进一步简化为:m=k ωˑB(10)卫星转动动能E的时间导数可表达为:d Ed t=T ω=(mˑB) ω=-k(ωˑB)2ɤ0(11)从上式可看出,采用BGd o t控制律可有效减小卫星转动动能,实现角速度阻尼.BGd o t控制律具有很强的鲁棒性,通常利用当前时刻与前一时刻磁强计测量数据进行差分便可有效阻尼角速度.同时,BGd o t控制律可转化为b a n gGb a n g控制形式,适用于实际工程问题[52].基于等式(9)的假设,BGd o t控制律可以指数形式进行收敛[53,54],具体收敛速度受轨道倾角等因素影响[54].BGd o t也存在缺点.首先在阻尼精度方面,由于在上述分析中忽略了地磁场矢量相对于惯性系的时间变化率,即地磁场变化项,该项会对最终阻尼精度产生较大影响.研究发现,BGd o t控制律最终会有约二倍轨道角速度的误差[55].同时,剩磁等干扰力矩会进一步降低阻尼精度.为克服地磁场变化项等带来的不利影响,学者们对BGd o t控制律进行了改进[56G61],其中大部分变形基于等式(9).该变形可阻尼卫星角速度至零,但同时需要角速度测量数据,提高了测量设备需求.为减少测量设备,D e s o u k y与A b d e l k h a l i k[62]基于地磁场数据对角速度进行等效计算,给出了改进的BGd o t控制律.该控制律可保证磁力矩器需产生的磁矩m时刻垂直于卫星所处地磁场,提高了磁利用效率.蒙特卡罗仿真实验验证了该控制律的有效性.同时,该控制律可在一定程度上减少收敛时间,降低能源消耗.J i n等人为惯量缺陷卫星(z轴惯量大于其他两轴)提出了垂直消旋控制律[63]:m=k BˑBB 3(12)该控制律可避免z轴长时间指向太阳而造成仪器损坏.一些学者研究了增益系数k的选取方法.A v a n z i n i与G i u l i e t t i[57]基于卫星轨道与形状特征,提出了一种增益系数调整方法,具体表达式为: k=2ω0(1+s i nζm)J m i n/ B 2(13)其中ζm为卫星轨道倾角,ω0为轨道角速度,J m i n 为卫星最小惯量矩.W i sᶄn i e w s k i与B l a n k e[56]利用正定矩阵替换标量增益系数k,增强了阻尼效果,同时为后续优化提供了更多空间.需要注意的是,文献[56]中关于被动重力梯度稳定性的证明在文献[64]中进行了更正.随着仪器设备与微小卫星技术的发展,BGd o t 控制律也发展出了适用于纳卫星㊁立方星的方案[65G70],如嵌入式磁线圈控制等.同时,新型磁阻尼方案如反馈阻尼控制律[71]也相继提出.但由于BG4第1期穆硕等:卫星磁姿态控制方法与算法综述d o t 的简便性与鲁棒性,其仍是目前乃至未来很长一段时间磁阻尼算法的首选.目前磁阻尼算法体系已较为完备,要取得较大研究进展十分困难.3.2㊀组合磁姿态控制系统由于磁姿态控制系统无法施加独立的三轴控制力矩,其通常结合其他设备与方法实现高精度稳定控制,如自旋㊁飞轮㊁重力梯度力矩等.3.2.1㊀磁控与自旋结合磁控与自旋结合克服了磁控的固有缺陷,同时具有低功耗㊁低成本㊁高控制精度等优点,因此应用广泛,也是目前磁控卫星的主要控制方案之一.通过围绕最大惯量主轴旋转,自旋卫星可获得自旋稳定性.若无外界干扰,自旋卫星可在惯性空间中维持稳定.但由于太阳光压力矩等的影响,自旋卫星会发生章动,需采用其他控制方法对自旋卫星的旋转轴指向与转速进行控制,而磁控则是首选.第一颗磁控与自旋相结合的卫星发射于1960年[2].此后,该方案被广泛应用于各类卫星任务.其中由S h i g e h a r a [72]提出的b a n g Gb a n g 控制律应用广泛.该控制律采用特定开关函数实现磁力矩器磁矩的正负控制,具体公式如下:m j =m 0,Δh (e j ˑB )>0-m 0,Δh (e j ˑB )<0{(14)其中m j 为沿卫星本体系坐标轴e j 的磁矩大小;j =1,2,3;m j 的幅值为m 0;Δh 为当前卫星角动量与目标角动量差值.该控制律可使卫星沿特定轴自旋,并调整自旋轴的惯性空间指向.该方案也广泛应用于立方星等微小卫星[73].C r o c k e r 与V r a b l i k[74]提出了可使卫星自旋轴z 轴垂直于太阳矢量的b a n g Gb a n g 控制,即:m z =m 0,㊀㊀e s >0-m 0,㊀e s <0{(15)其中e 为卫星自旋轴,s 为本体系下太阳方向矢量.b a n g Gb a n g 控制还可与BGd o t 控制律结合解决自旋卫星章动问题.H o l d e n 与L a w r e n c e [75]基于李雅普诺夫方法设计了章动控制律,该控制律仅使用自转轴方向磁力矩器进行控制:m z =m 0s i g n [(C -A )B y ωx -(C -B )B x ωy ](16)其中A ,B ,C 为卫星三轴转动惯量;ωx ,ωy 及B x ,B y 分别为卫星角速度与地磁场强度矢量沿卫星本体系x ,y 轴的分量.该控制律不仅适用于轴对称卫星,对非轴对称卫星也有较好控制表现.O v c h i n n i Gk o v 等人[76,77],R o l d u gi n 与T e s t a n i [78]基于B Gd o t 提出了简化控制律,利用磁场导数信息即可完成章动阻尼:m z =-k (Be )e(17)该控制律可使用一轴磁力矩器完成控制.Z a v o l i 等人[79]分析了控制律(17)的具体性质,包括全局渐近收敛性质与自旋轴指向等.需要注意的是,由于该控制律所施加的控制力矩垂直于自旋轴,因此不能使卫星起旋.O v c h i n n i k o v 等人[76]提供了一种卫星起旋控制律:m =k (B y ,-B x ,0)(18)该控制律可产生沿自转轴方向的控制力矩,但同时会引入沿其他两轴的干扰力矩,需通过控制律(17)消除.针对自旋卫星起旋问题,T h o m s o n [80]提出了 Y GT h o m s o n 控制律,利用当前转速与目标转速差值对卫星转速进行控制.C r e a m e r [81]基于B Gd o t控制律提出了另一种自旋卫星控制方法,具体形式为:m =-k (B+ωd ˑB )(19)其中ωd 为卫星期望转速.该控制律可有效阻尼卫星初始角速度,使得卫星按照所设定角速度旋转.C u b a s 等人[82]对该控制律的稳定性,收敛时间,自转轴指向以及控制精度进行了详细分析,并在考虑实际工程限制条件下进行了仿真,验证了控制律的可靠性.可利用卫星当前角动量与目标角动量差值进行控制律设计.A v a n z i n i 等人[83]利用本体系与惯性系下的角动量差值,分别控制卫星角速度与自旋轴指向.此外,A v a n z i n i 等人[84]利用投影方法,即将角动量差值投影至与地磁场矢量垂直的平面,设计了另一种控制律:T =k (I -B B T )Δh (20)基于文献[57]的分析方法,文中提供了增益系数k 的选取方法.D eR u i t e r [85]同样利用投影方法,融合了章动阻尼㊁起旋以及自转轴指向等多个控制律,设计了应用于纳卫星的磁控方案.文中利用李雅普诺夫方法,证明了即使在两轴磁力矩器失效以及磁力矩器饱和等限制下,控制律也可保证渐进稳定.在考虑各种扰动以及设备故障等情况下,控制系统5动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷表现均能满足任务需求[86].该控制律已被成功应用于纳卫星E S T C u b eG1[87].卫星可携带的能源有限,对于装备太阳能帆板的卫星,需尽快将电池板对准太阳.Y o u等人[88]基于投影方法提出了一种太阳获取控制律,具体形式如下:T=-k(ω-ωd),|l z|ɤ0.8-k(ω-ωd)-k1|L z|θ[lˑ(s ˑl)]-㊀k2s ˑe3,|l z|>0.8ìîíïïïï(21)其中L为卫星角动量,l为其单位矢量,k1,k2为相关增益系数,θ=a r c c o s(-s z),下标z表示该矢量沿本体系z轴的分量(z轴为其自旋轴).卫星首先进行角速度阻尼,然后切换至指向控制律,利用太阳敏感器读数实现太阳指向.C h a s s e t等人[89]介绍了太阳获取控制律在具体卫星任务中的应用.利用太阳矢量与卫星本体系z轴夹角以及目标转速,文中构建了包含指向信息与转速信息的目标转速,通过投影方法实现了太阳获取.A l f r i e n d[90]利用地磁场信息以及卫星滚转角构建闭环控制律:m2=k1B xφ-k2B y(22)其中φ为1G2G3转序下相对于轨道坐标系的卫星滚转角.使用多时间尺度方法,文中对控制律的渐进稳定性进行了分析,通过与数值仿真以及F l oGq u e t理论对比,对控制律进行了验证.同时,文中分析了控制律对干扰力矩的鲁棒性.W h e e l e r[91]使用沿自旋轴方向的单轴磁线圈,利用卫星姿态㊁角速度与磁场信息构建反馈函数,实现了卫星稳定控制.O v c h i n n i k o v与R o l d u g i n[92]使用单轴磁力矩器,设计了可使小卫星在轨道平面内任意方向旋转的控制律.E r g i n与W h e e l e r[93]利用卫星姿态误差与地磁场信息,使用固定时间间隔内的恒定控制力矩设计了磁控制律.R e n a r d[94]比较了在轨道偏心率,地球自转等影响下,仅使用沿自旋轴方向单轴磁线圈,不同控制律的表现.结果表明,基于轨道周期进行磁矩极性转换可实现较好鲁棒性.C h e o n等人[95]利用星载地磁场模型,设计了仅使用磁强计与G P S信息的磁控制律,其具体形式为:m=1|b m|[-12Kb^p-D(b^ p-b^ m)-㊀Λd(ω~z-Ψz)(b^mˑe)](23)其中b m为磁强计测量的磁场矢量;K,D为正定增益矩阵;Λd为矩阵D对角元素;ω~z为通过磁强计测量值估计得到的当前卫星沿自转轴方向角速度,Ψz为目标角速度;上标 ^ 表示该矢量的单位矢量;b p为通过特殊优化方法得到的期望磁场矢量,其具体计算方式如下.通过星载磁场模型,计算出当卫星达到目标姿态时地磁场矢量在本体系下所有可能的表示,这些矢量在空间中构成一个圆锥,而b p则是圆锥与b m㊁e所确定平面的交线.控制律通过减小b p与b m之间夹角,使得卫星自旋轴指向目标方向.文中使用线性估计模型与李雅普诺夫方法对控制律稳定性进行了分析,通过仿真验证了控制律的可行性.需要注意的是,只有当卫星自旋速度足够大时,该控制律才可保证卫星稳定控制.J u n k i n s等人[96]基于庞特里亚金最值原理,给出了控制自旋轴指向的时间最优机动设计方法.S o r e n s e n[97]使用L Q R方法对所需磁矩进行设计.自旋卫星磁控制律时至今日仍在推陈出新[98,99].但自旋卫星的高速旋转特性不利于实施优化方法,同时相关研究也较为成熟,难以实现大突破.3.2.2㊀磁控与定转速飞轮结合当一轴飞轮以一定转速旋转时,会为卫星提供陀螺稳定性,使飞轮轴向保持在轨道法向方向,该类卫星称为偏置动量卫星.此类卫星无需高速旋转,降低了设备及卫星惯量要求.加入磁控可进一步提高偏置动量卫星控制精度,使卫星姿态误差渐近收敛.由于飞轮在轨道法向提供了足够的稳定性,磁控偏置动量卫星甚至可在赤道轨道实现稳定控制.偏置动量卫星也需进行章动阻尼.S t i c k l e r与A l f r i e n d[19]使用控制律(22)进行章动与进动控制.G o e l与R a j a r a m[100]对该控制律进行改进,应用于近赤道轨道卫星,并给出了时间响应表达式.H aGb l a n i[101]改进了控制律(22),提供了增益系数选取方法.同时,H a b l a n i[102]还考虑了非圆轨道下章动与进动控制,给出了控制律进一步改进形式.P u l e cGc h i等人[103]对H a b l a n i改进的控制律进行了详细的性能分析.T s u c h i y a与I n o u e[104]在控制律中添加积分项,提高了控制力对干扰力矩的鲁棒性.6第1期穆硕等:卫星磁姿态控制方法与算法综述P D 控制是偏置动量卫星常用的磁姿态控制方案之一.其基本形式为[105]:m =B ˑ(-k ωωe -k q q ңe ) B 2(24)其中k ω与k q 为增益矩阵,ωe 为误差角速度,q ңe 为误差四元数矢量部分.Z h a n g 等人[106]利用滚转与偏航两轴P D 控制及俯仰轴飞轮实现了小卫星稳定控制.同时,通过调节增益系数,文中对收敛时间及控制误差进行了优化.D o r o s h i n [107,108]研究了偏置动量卫星在控制律m =k ω(25)下的运动问题.O v c h i n n i k o v 等人[16]提出了可使卫星在轨道平面内实现任意指向的磁控制律,具体形式为:T =0k s i n (α0-α)-k s i n (α0-α)B y B z éëêêùûúú(26)其中α为3G1G2转序下第一个姿态角,α0为其目标值.文中分析了重力梯度力矩干扰下卫星的运动,并给了运动形式.W a n g 与Sh t e s s e l [109]基于滑模控制提出了偏置动量卫星磁控制律.通过解耦俯仰轴运动方程,设计了针对滚转偏航轴及俯仰轴两种滑模控制律,通过开关转换函数,实现了b a n g Gb a n g 控制.基于L Q R 方法的优化方案也可用于偏置动量卫星控制律设计.早在1993年,P i t t e l k a u[110]就基于L Q R 方法,提出了针对极轨道卫星的最优控制律.文中建立了干扰力矩周期模型,通过求解R i c Gc a t i 方程得到了最优控制增益.此后,L a gr a s t a 与B o r d i n [111]同样使用L Q R 方法设计了磁控制律,该控制律可抵抗恒定干扰力矩.G u e l m a n 等人[112]介绍了应用于小卫星G u r w i n GT e c h S A T 的优化控制律.同时,文中提到了一种类似于控制律(22)的b a n g Gb a n g 控制,具体形式为m =-k 1(Bm e a s -Be x p )-k 2(B m e a s -B e x p )(27)其中B m e a s 与B e x p 分别为磁强计测量与星载磁场模型计算得到的地磁场强度矢量.P u l e c c h i 等人[113]提出了适用于星载计算机的离散L Q R 方法.偏置动量卫星磁控制律的另一种优化方法为H 2与H ɕ方法.W i s ᶄn i e w s k i [114]等人使用H 2方法设计了小卫星磁控制律,T r égo u ët [115]等人将H 2方法应用于偏置动量卫星.H ɕ方法则可提高控制律对干扰力矩及参数不确定性等因素[116G118]的鲁棒性.偏置动量卫星的陀螺稳定性质克服了磁控固有缺陷,同时其设备简单,控制精度高,自上个世纪以来应用广泛,并不断与新技术融合[119G122].后续关于磁控偏置动量卫星的研究会多集中于优化方法应用,如时间最优机动方案设计等.但偏置动量轮体积较大,应用于纳卫星,皮卫星等存在一定局限性,需做进一步研究.3.2.3㊀磁控与重力梯度力矩结合重力梯度力矩也可为卫星提供被动稳定.通过重力梯度杆等装置,地球重力可为卫星提供一轴稳定力矩.该方式在上个世纪卫星任务中应用广泛.同时,为防止卫星绕重力梯度杆旋转等,需利用磁力矩对卫星进行姿态控制.M a r t e l 等人[123]将主动磁姿态控制应用于重力梯度卫星,解决了卫星重力梯度杆稳定指向及热量处理问题.文中提出了两种主动磁控制律.控制律(27)在姿态获取阶段进行角速度阻尼控制.三轴稳定控制阶段则采用P D 控制,通过投影方法,实现高精度稳定.G r a s s i [124]同样利用控制律(27)及基于误差矢量e ң的P D 控制实现了重力梯度小卫星稳定控制,其P D 误差控制律为:m =k 1e ң+k 2eң(28)同时,文中还设计了控制律(27)的实施阈值,即当误差大于一定阈值时该控制律才会施加于卫星,以防止卫星因仪器测量与执行误差在平衡点附近发生摆动.L o v e r a 与A s t o l f i [125]证明了P D 控制律的稳定性.同时,基于磁场平均化理论以及小角速度假设,L o v e r a 与A s t o l f i [125]证明了P D 控制可指数收敛.通常控制律得到的理想控制力矩T d 会使用投影方法计算所需磁矩m .此时施加于卫星的实际力矩T 根据式(1)进行计算.由于T 须垂直于地磁场矢量,因此与理想控制力矩T d 存在一定误差.A r Gd u i n i 与B a i o c c o [126]针对重力梯度卫星,提出了两种可使T d 与T 误差最小化的方法.其中一种是最小化二者欧拉二范数,另一种则是使T 两轴分量与T d 一致,在满足T 垂直于地磁场矢量的限制下,设计其第三轴力矩分量.B a k 等人[127]基于滑模控制提出了姿态阻尼控7。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
Vo1.24 No.3 34 航天器工程
SPACECRAFT ENGINEERING 第24卷第3期
2015年6月
敏捷卫星姿态对像移速度与偏流角的影响 黄敏 葛玉君 杨芳 黄群东 (航天东方红卫星有限公司,北京 100094)
摘 要 针对敏捷卫星需要具备在复杂姿态下推扫成像的能力,建立了卫星在不同姿态下的 像移速度和偏流角的数学模型,并进行了仿真分析,讨论了姿态改变对卫星成像带来的影响。仿真 分析表明:姿态改变是影响像移速度和偏流角的最大因素,敏捷卫星从一个姿态变化到另一个姿态 成像时,需要根据预期的姿态调整相机的积分时间以满足成像质量要求,同时偏流角也需要做相应 调整以补偿姿态改变带来的偏流角变化。 关键词 像移速度;偏流角;积分时间;敏捷卫星;姿态控制 中图分类号:V443.5 文献标志码:A DOI:i0.3969/j.issn.1673—8748.2015.03.006
Analysis on Image Motion Velocity and Drift Angle for Agile Satellite H UANG Min GE Yuj un YANG Fang H UANG Qundong (DFH Satellite Co.Ltd.,Beijing 100094,China)
Abstract:The agile satellite needs to have the capability to realize push—broom imaging in complex satellite attitude condition.In this paper,a mathematic model to calculate the image motion ve— locity and the drift angle of agile satellite is built,and the image motion velocity and the drift an gle in different attitudes are simulated in order to analyze their influence on image acquisition. The simulation and analysis show that the various satellite attitudes affect the image motion ve— loeity and the drift angle most.When the agile satellite changes its attitude from one to another, according to the expected attitude,its camera should adjust its integration time to attain high im aging quality,and at the same time,the yaw angle should be controlled to compensate the change of drift angle caused by the attitude change. Key words:image motion velocity;drift angle;integration time;agile satellite;attitude control
卫星系统与控制课程论文卫星姿态敏感器的现状及发展趋势姓名:包宇洋学院:信息学院测量航天器的姿态,有各种测量部件组成。
通常用的有太阳敏感器、红外地球敏感器、速率陀螺、星敏感器等。
不同的测量部件可组成不同的测量系统,达到不同的测量精度。
卫星姿态敏感器的任务是对姿态测量部件所测得的信息进行处理,得出卫星本体坐标系相对于轨道坐标系的姿态。
本文将分析卫星姿态传感器的现状,讨论不同类型、不同制造工艺下的卫星姿态传感器的特点与技术参数,给出不同姿态传感器的优缺点以及适用环境,并对卫星姿态传感器的发展趋势做出预测,探讨新方法新工艺对于卫星姿态传感器的影响与推动作用。
关键词:卫星;姿态传感器;发展趋势第一章绪论 (4)1.1.概述 (4)1.2.本文的章节安排 (5)第二章卫星姿态敏感器 (6)2.1.卫星姿态敏感器简介 (6)2.2.磁强计 (6)2.3.地球敏感器 (6)2.4.太阳敏感器 (7)2.5.星敏感器 (8)2.6.陀螺 (9)第三章卫星姿态敏感器的发展趋势 (11)3.1.宇宙环境 (11)3.2.空间环境效应 (13)3.3.宇宙环境对于传感器的影响 (14)3.4.传感器的发展趋势 (14)第四章我国卫星姿态敏感器的发展 (20)4.1.我国卫星姿态敏感器的发展 (20)4.2.各种陀螺仪未来的发展趋势状况分析 (21)4.3.未来发展重点 (22)第五章总结 (24)第一章绪论1.1.概述1957年10月4日。
苏联宣布成功地把世界上第一颗绕地球运行的人造卫星送入轨道。
随后人造卫星工业不断发展,取得了长足的进步。
人造卫星,环绕地球在空间轨道上运行的无人航天器。
人造卫星基本按照天体力学规律绕地球运动,但因在不同的轨道上受非球形地球引力场、大气阻力、太阳引力、月球引力和光压的影响,实际运动情况非常复杂。
人造卫星是发射数量最多、用途最广、发展最快的航天器。
人造卫星发射数量约占航天器发射总数的90%以上。
卫星姿态
卫星姿态是指卫星星体在轨道上运行所处的空间指向状态。
直角坐标系的原点置于星体上,指向地面的Z轴反映偏航方向,Y轴反映俯仰方向,X轴反映滚动方向,通常采用三轴稳定、自旋稳定、重力梯度稳定等方式保持姿态的稳定。
根据对卫星的不同工作要求,卫星姿态的控制方法也是不同的。
按是否采用专门的控制力矩装置和姿态测量装置,可把卫星的姿态控制分为被动姿态控制和主动姿态控制两类。
被动姿态控制是利用卫星本身的动力特性和环境力矩来实现姿态稳定的方法,有自旋稳定、重力梯度稳定等;主动姿态控制主要是三轴稳定姿态控制方式。
定义:卫星星体所处的空间位置状态
稳定方式:自旋/重力梯度/三轴稳定
分类:被动姿态控制,主动姿态控制
定义
卫星姿态是指卫星星体在轨道上运行所处的空间指向状态。
将直角坐标系的原点置于星体上,指向地面的Z轴反映偏航方向,Y轴反映俯仰方向,X轴反映滚动方向。
星体在高空中沿局部地球铅垂方向和轨道矢量方向运行,不时地产生对三轴的偏移。
姿态控制是通过姿态控制分系统(ACS)来实现,使用地平扫描仪可感应俯仰和滚动轴的姿态误差,使用速度陀螺仪和罗盘可感应偏航轴的姿态误差。
姿态控制方式
姿态的稳定通常采用以下几种方式:①三轴稳定。
依靠姿态控制分系统使卫星偏航轴方向始终保持与当地铅垂线方向一致,以保对地观测传感始终对准地面;②自旋稳定。
卫星自转轴对空间某点取向固定,使其姿态保持稳定;③重力梯度稳定。
在地球重力场作用下,转动物体的转轴逐渐达到平衡状态,与重力梯度方向一致,即同当地垂直线方向一致,以保持卫星姿态的稳定。
根据对卫星的不同工作要求,卫星姿态的控制方法也是不同的。
按是否采用专门的控制力矩装置和姿态测量装置,可把卫星的姿态控制分为被动姿态控制和主动姿态控制两类。
被动姿态控制:
被动姿态控制是利用自然环境力矩或物理力矩源,如自旋、重力梯度、地磁场或气动力矩等以及他们之间的组合来控制航天器的姿态。
这种系统不需要电源,因而也不需要姿态敏感器和控制逻辑线路。
主要类型有自旋稳定和环境力矩稳定等。
适用于中等指向精度的飞行任务。
一般试验性小卫星采用这种控制方式。
[2]
1、自旋稳定方式
有的卫星要求其一个轴始终指向空间固定方向,通过卫星本体围绕这个轴转动来保持稳定,这种姿态稳定方式就叫自旋稳定。
它的原理是利用卫星绕自旋轴
旋转所获得的陀螺定轴性,使卫星的自旋轴方向在惯性空间定向。
这种控制方式简单,早期的卫星大多采用这种控制方式。
使卫星产生旋转可以用在卫星的表面沿切线方向对称地装上小火箭发动机,需要时就点燃小发动机,产生力矩,使卫星起旋或由末级运载火箭起旋。
我国的东方红一号卫星、东
方红二号通信卫星和风云二号气象卫星都是采用自旋稳定
的方式。
2、重力梯度稳定
重力梯度稳定是利用卫星绕地球飞行时,卫星上离地球
距离不同的部位受到的引力不等而产生的力矩(重力梯度力
矩)来稳定的。
例如,在卫星上装一个伸杆,卫星进入轨道
后,让它向上伸出,伸出去后其顶端就比卫星的其它部分离
地球远,因而所受的引力较小,而它的另一端离地球近,所
受的引力较大,这样所形成的引力之差对卫星的质心形成一
个恢复力矩。
如果卫星的姿态(伸杆)偏离了当地铅垂线,
这个力矩就可使它恢复到原来姿态。
该种控制方式简单、实用,但控制精度较低。
一般试验性小卫星采用这种控制方式,如英国Uosat-1小卫星就采用的是重力梯度稳定。
主动姿态控制:
主动姿态控制,就是根据姿态误差(测量值与标称值之差)形成控制指令,产生控制力矩来实现姿态控制的方式。
控制力矩来自于航天器上的能源,它属于闭环控制系统。
主要分类有以飞轮执行机构为主的三轴姿态控制系统、喷气三轴姿态控制、地磁力矩控制系统。
这类系统基本对每个控制自由度都配备姿态敏感器和执行机构,并使用有效的逻辑控制线路,保持卫星本体坐标系相对某一参考基准的方位。
控制精度高,主要用于有效载荷精确指向,如通信、对地观察等。
目前绝大多数的应用卫星或科学探测卫星都采用这种姿态控制系统,如著名的Hubble太空望远镜、Clementine月球探测器等。
许多卫星在飞行时要对其相互垂直的的三个轴都进行控制,不允许任何一个轴产生超出规定值的转动和摆动,这种稳定方式称为卫星的三轴姿态稳定。
目前,卫星基本上都采用三轴姿态稳定方式来控制,因为它适用于在各种轨道上运行的、具有各种指向要求的卫星,也可用于卫星的返回、交会、对接及变轨等过程。
实现卫星三轴姿态控制的系统一般由姿态敏感器、姿态控制器和姿态执行机构三部分组成。
姿态敏感器的作用是敏感和测量卫星的姿态变化;姿态控制器的作用是把姿态敏感器送来的卫星姿态角变化值的信号,经过一系列的比较、处理,产生控制信号输送到姿态执行机构;姿态执行机构的作用是根据姿态控制器送来的控制信号产生力矩,使卫星姿态恢复到正确的位置。
据中国国防科技信息网报道,2012年12月1
日,法国侦察卫星“昴宿星”(Pleiades 1B)搭乘
“联盟”号火箭发射。
该星将与已在轨的两颗卫
星一起,每天向法国部队和全球商业用户提供
1000幅高分辨率图像。
该卫星安装了三轴姿态稳
定系统。
卫星姿态控制系统
姿态控制系统包括姿态确定子系统和姿态控制子系统两部分。
姿态确定子系统:
姿态确定是姿态控制的前提,它的任务是利用星上的姿态敏感器测量所得到的信息,经过适当的处理,求得固连于卫星本体的坐标系相对于空间某参考坐标系中的姿态。
姿态确定的输入信息是姿态敏感器的测量数据,输出是卫星的三轴姿态参数。
若姿态参数是相对于某个惯性空间中定向的参考坐标系给出的,则称为惯性姿态;若参考坐标系取为当地轨道坐标系,则称为对地姿态。
大部分卫星(如对地观测卫星、通信广播卫星)的有效载荷都要求对地定向,因此感兴趣的是它的对地姿态,也有些卫星(如天文卫星)的有效载荷要求对日或某颗恒星定向,这时采用惯性姿态比较方便。
姿态确定系统主要由姿态敏感器和相应的信息处理算法即姿态确定算法组成,姿态确定精度取决于姿态敏感器硬件精度和姿态确定算法的精度。
姿态敏感器:
根据不同的基准方位,姿态敏感器主要包括以下几类:(1)利用地球物理特性的敏感器,如红外地平仪、磁强计、地球反照敏感器、陆标跟踪器等;(2)利用天体位置的敏感器,如太阳敏感器、星敏感器;(3)利用惯性信标的敏感器,如陀螺仪、角加速度计;(4)利用无线电信标的射频敏感器。
太阳敏感器、星敏感器、红外地平仪、磁强计等都是通过测量外部参考坐标(如恒星、太阳、地球)相对星体坐标系的方位,来确定星体相对某参考坐标系的姿态角。
受敏感器带宽限制,仅利用这些角度敏感器无法精确获得卫星姿态的动态变化信息。
一般需引入高精度速率(积分)陀螺,连续测量星体姿态角速度,作为星体姿态基准。
但陀螺定姿精度受到陀螺漂移影响,需要其他敏感器提供校正信息。
因此,卫星姿态确定系统往往采用以陀螺为基准,几种角度敏感器组合对陀螺漂移进行校正的方式,至于采用哪些敏感器则取决于姿态确定精度的要求。
姿态控制子系统:
此处的姿态控制系统是相对于姿态确定系统而言,主要包括执行机构和控制规律设计问题。
其任务可分为姿态稳定和姿态机动两方面。
姿态稳定是使卫星姿态保持在给定方位上,如对地定向、对日定向;姿态机动则是使卫星从一种姿态过渡到另一种姿态的再定向过程。
与姿态确定系统类似,姿态控制系统精度也取决于执行机构的硬件精度和控制规律所能达到的控制精度。