八年级数学上册第五章二元一次方程组
- 格式:doc
- 大小:1.16 MB
- 文档页数:13
八年级数学上册第五章《二元一次方程组》应用练习题(五)一.选择题1.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A.B.C.D.2.《九章算术》有题曰:“今有五雀,六燕,集称之衡,雀俱轻,一雀一燕交而处,衡适平,并燕雀重一斤.问燕雀一枚各重几何?”,其大意是:“现在有5只雀,6只燕,分别集中在天平上称重,聚在一起的雀重燕轻,将一只雀一只燕交换位置,质量相等.5只雀和6只燕共重一斤,问燕、雀各重多少?”古代记八两为半斤,则设1只雀x两,一只燕y两,可列方程()A.B.C.D.3.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.4.在抗击“新冠肺炎”的战役中,某品牌消毒液生产厂家计划向部分学校共捐赠13吨消毒液,如果这13吨消毒液的大瓶装(500克)与小瓶装(250克)两种产品分装的数量(按瓶计算)比为3:7,那么这两种产品应该各分装多少瓶?若设生产的消毒液应需分装x 大瓶、y小瓶,则以下所列方程组正确的是()A.B.C.D.5.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A、B两种长方体形状的无盖纸盒.现有正方形纸板120张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?”则下列结论正确的个数是()①甲同学:设A型盒子个数为x个,根据题意可得:4x+3•=360②乙同学:设B型盒中正方形纸板的个数为m个,根据题意可得:3•+4(120﹣m)=360③A型盒72个④B型盒中正方形纸板48个.A.1 B.2 C.3 D.46.如图,长为12,宽为m的长方形,被7个大小相同的边长分别为a,b的小长方形分割成对称的图案(图中每个小于平角的角都为直角),则下列选项正确的是()①;②;③若m=8,则;④若m为正整数,则a,b不可能同时为正整数.A.①②④B.②③④C.①②③D.①③④7.一艘船有一个漏洞,水以均匀的速度进入船内,发现漏洞时船内已经进入了一些水,如果9个人淘水,4小时淘完,如果6个人淘水,10小时才能淘完,假设每个人向外淘水的速度一样,现在要在两个小时内淘完,需要()人.A.14 B.16 C.18 D.208.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31 B.32 C.33 D.34二.填空题9.程大位《算法统宗》中有一道题为“隔沟计算”其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只,二家之数相当.两人闲坐恼心肠,画地算了半晌.这个题目翻译成现代文的意思是:甲、乙两个牧人隔着山沟放羊,两个人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙说:“我若得你9只羊,我们两家的羊数就一样多.”两人都在用心计算着对方的羊数,在地上列算式算了半天才知道对方的羊数.若设甲有x只羊,乙有y只羊,则可列二元一次方程组为.10.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分x张做侧面,另一部分y张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为11.在一年一度的“药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,为了求解x和y的值,你认为小明应该列出的方程组是:.12.某学校有两种类型的学生宿舍30间,大宿舍每间可以住8人,小宿舍每间可以住5人,该学校共有198个住宿生,恰好可以住满这30间宿舍,若设大宿舍x间,小宿舍y间,则可以列出的方程组为:.13.一条船顺流航行,每小时行20km,逆流航行,每小时行16km,则船在静水的速度km/h.14.今年甲和乙的年龄和为24,6年后,甲的年龄就是乙的年龄的2倍,则甲今年的年龄是岁.15.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为.三.解答题16.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是200cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?17.“无夜景,不重庆”,以“祖国万岁”为主题的庆祝中华人民共和国成立70周年灯光秀,9月21日至10月10日在“山水之城,美丽之地”重庆上演.据了解,此次以重庆大剧院灯光“领舞”,临近的12栋楼宇灯光联动变化的“梦幻江北嘴”灯光秀共使用LED 照明灯和LED投射灯共50万个,共花费860万元.已知LED照明灯的售价为每个8元,LED投射灯的售价为每个100元.请用方程或方程组的相关知识解决下列问题:(1)本次“梦幻江北嘴”灯光秀使用LED照明灯和LED投射灯各多少个?(2)某栋楼宇计划安装LED照明灯18000,LED投射灯500个因楼宇本身的设计原因,实际安装时LED投射灯比计划多安装了20%,LED照明灯的数量不变,商家为祖国70华诞而让利把LED照明灯和LED投射灯售价分别降低了m%、m%,实际上这栋楼宇LED照明灯和LED投射灯的总价为159000元,请求出m的值.18.某农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)求每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)农场要租赁两种型号的收割机一共10台,要求2小时完成的小麦收割任务不少于8公顷,则至少需要租赁大型收割机几台?19.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,需要215元;若购进A种纪念品5件,B种纪念品10件,需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费750元,那么该商店购进这A、B两种纪念品有几种可行的方案,并写出具体的购买方案.20.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉m盆,求当m的值等于40时,两种花卉全部销售后获得的利润是多少?21.如图,在平面直角坐标系中,点O是坐标原点,点A在y轴的正半轴上,坐标为(0,a),点B在x轴的负半轴上,坐标为(b,0),同时a、b满足.连接AB,且AB=10.点D是x轴正半轴上的一个动点,点E是线段AB上的一个动点,连接DE.(1)求A、B两点坐标;(2)若∠BED=90°,点D的横坐标为x,线段DE的长为d,请用含x的式子表示d;(3)若∠BED=100°,AF、DF分别平分∠BAO、∠BDE相交于点F,求∠F的度数.参考答案一.选择题1.解:设有x人,商品的价格为y,依题意,得.故选:D.2.解:设1只雀x两,一只燕y两,依题意,得:.故选:C.3.解:由题意可得,,故选:A.4.解:设生产的消毒液应需分装x大瓶、y小瓶,由题意得,.故选:A.5.解:设A型盒子个数为x个,则A型纸盒需要长方形纸板4x张,正方形纸板x张,∵制作一个B型纸盒需要两张正方形纸板,∴可制作B型纸盒的数量为个,需要长方形纸板3×张,∴4x+3•=360,故①正确;设B型盒中正方形纸板的个数为m个,则B型纸盒有个,需要长方形纸板3×个,A型纸盒有(120﹣m)个,需长方形纸板4(120﹣m)个,∴3×+4(120﹣m)=120,故②正确;设制作A型盒子a个,B型盒子b个,依题意,得:,解得:,∴A型纸盒有72个,B型纸盒有24个,∴B型盒中正方形纸板48个.故③④正确.故选:D.6.解:∵小长方形的长为b,宽为a,∴,∴结论①符合题意;解方程组①,得:,∴结论②符合题意;将m=8代入②,得:,∵a,b均为正数,∴结论③不符合题意;∵a>0,b>0,即,解得:6<m<8,∵m为正整数,∴m=7,∴,∴结论④符合题意.故选:A.7.解:设x为原有水量,y为每小时进水量,z为每个人每小时向外淘水量,依题意,得:,解得:,∴=14.故选:A.8.解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.二.填空题(共7小题)9.解:设甲有x只羊,乙有y只羊,根号题意得,,故答案为:.10.解:设用x张白卡纸做侧面,用y张白卡纸做底面,由题意得,.故答案为:.11.解:设买了甲种药材x斤,乙种药材y斤,根据题意可得:.故答案为:.12.解:由题意可得,,故答案是:.13.解:设船在静水的速度为xkm/h,水流的速度为ykm/h,依题意,得:,解得:.故答案为:18.14.解:设甲今年的年龄是x岁,乙今年的年龄是y岁,依题意,得:,解得:.故答案为:18.15.解:设小长方形的长为x,宽为y,依题意,得:,解得:,∴2x=,x+y=,∴点B的坐标为(﹣,).三.解答题(共6小题)16.解:(1)依题意,得:,解得:.答:图甲中a的值为50,b的值为40.(2)设可以做竖式无盖礼品盒m个,横式无盖礼品盒n个,依题意,得:,解得:.答:可以做竖式无盖礼品盒200个,横式无盖礼品盒400个.17.解:(1)设本次“梦幻江北嘴”灯光秀使用LED照明灯x个,使用LED投射灯y个,依题意,得:,解得:.答:本次“梦幻江北嘴”灯光秀使用LED照明灯450000个,使用LED投射灯50000个.(2)依题意,得:8×(1﹣m%)×18000+100×(1﹣m%)×500×(1+20%)=159000,解得:m=25.答:m的值为25.18.解:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:,解得,答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机用m台,则小型收割机用(10﹣m)台,根据题意得:2×0.5m+2×0.3(10﹣m)≥8,解得m≥5.答:至少需要租赁大型收割机5台.19.解:(1)设A种纪念品的购进单价为x元,B种纪念品的购进单价为y元,依题意,得:,解得:.答:A种纪念品的购进单价为15元,B种纪念品的购进单价为13元.(2)设购进A种纪念品m件,B种纪念品n件,依题意,得:15x+13y=750,∴x=50﹣y.∵x,y均为正整数,∴y为15的倍数,∴或或,∴该商店共有3种进货方案,方案1:购进37件A种纪念品,15件B种纪念品;方案2:购进24件A种纪念品,30件B种纪念品;方案3:购进11件A种纪念品,45件B种纪念品.20.解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,,解得,,即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W=6m+,化简,得W=4m+100,即W与x之间的函数关系式是:W=4m+100,当m=40时,W=260元,答:当m的值等于40时,两种花卉全部销售后获得的利润是260元.21.解:(1)∵a、b满足,∴解方程组得,,∴点A坐标为(0,8),点B坐标为(﹣6,0);(2)如图1,连接AD,∵A(0,8),B(﹣6,0),∴OA=8,OB=6,在Rt△AOB中,由勾股定理可得AB=10.∵点D是x轴正半轴上的一个动点,点D的横坐标为x,∴OD=x,∴BD=6+x,∵AB=10,DE=d,∠BED=90°,∴S△BAD=AB•DE=BD•OA,∴10d=8(6+x),∴d=x+(x>0);(3)如图2,延长AF,交BD于点C,∵AF、DF分别平分∠BAO、∠BDE,∴∠CAO=∠BAO,∠CDF=∠BDE,∵∠BED=100°,∠BOA=90°,∴∠ABD=180°﹣∠BED﹣∠BDE=80°﹣∠BDE,又∵∠ABD=90°﹣∠BAO,∴80°﹣∠BDE=90°﹣∠BAO,∴∠BAO﹣∠BDE=10°,∵∠ACD=90°﹣∠CAO=90°﹣∠BAO,∴∠AFD=180°﹣∠CFD=∠ACD+∠CDF=90°﹣∠BAO+∠BDE=90°﹣(∠BAO﹣∠BDE)=90°﹣×10°=85°.。
北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
.八(上) 第五章二元一次方程组 分节练习第 1 节 认识二元一次方程组01、【基础题】若方程 3x 3m+2 y n=4 是二元一次方程,那么 m + n 的值是 ______. 02、【基础题】下面 4 组数值中,哪些是二元一次方程 2x + y =10 的解?x -2 x 3 x 4 ( 1) 6 ( 2) 4 (3) ( 4)y y y 3x + = 2.1 、【基础题】二元一次方程组2 y 10y 的解是 ______.=2xx 6y -2x 4 ( 2) x 3x 2x4( 1)3y (3)y 4( 4)2 y6y= + x 3m 1 是二元一次方程 4x -3y =10 的一个解,求 m 的值 .2.2 、【基础题】若= - y 2 2m 3、根据题意列方程组:( 1)小明从邮局买了面值 50 分和 80 分的邮票共 9 枚,花了 6.3 元,小明买了两种邮票各多少枚?( 2)周末, 8 个人去红山公园玩,买门票一共花了 34 元,已知每张成人票 5 元,每张儿童票 3 元,请问8个人中有几个成人、几个儿童?( 3)某班共有学生45 人,其中男生比女生的 2 倍少 9 人,则该班男生、女生各多少人?( 4)老牛比小马多驮了 2 个包裹,如果把小马驮的其中 1 个包裹放到老牛背上,那么老牛的包裹是小马的 2 倍,请问老牛和小马开始各驮了多少包裹?( 5)将一摞笔记本分给若干同学 . 每个同学 5 本,则剩下 8 本;每个同学 8 本,又差了 7 本 . 共有多少本笔记本、多少个同学?第 2 节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:y =2 x (1) (2) x +y =12 x =y -52( 3)x +y =11 x -y 7 (4)3x -2y =9 x +2 y 3x -3 y =2 ( 5) (6)y x3x +2 y =14 (9) (10) x y +34x +3y =65x +y =52x +y 82x +3y =16x +4 y 13 ( 7)4x +3 y =5 x -2y 4( 8)m - n =222m +3n 125、【基础题】用加减消元法解下列方程组:..(1) 7x -2y =3 ; ( 2) 6x -5y =3 ; ( 3) + 2 y - 6x + y -9x 19 152x + = - = + 3y 12 ( 6)3( x 1) y 5( 5) + ; - ;3x 4 y 17 5( y +1) 3( x 5)+ = ; ( 4) 5x-= 9 ; 4s 3t 5 6 y - - 7x - 4 y - 5 2s t 55.1 、【基础题】用加减消元法解下列方程组:- 3y =- 5y =- 21 + =- ( 1) 4 x 14( 2) 2x 4x 7 y 19; + ;+ ; (3) ; (4)31 3y 23 -17 5x 3y4x 4x 5 y( 5) 3x -5 y =3(6)y +1= x +2 ; ( 7) x - y ; 4 31 x -(3y - x)=12 35.2 、【综合Ⅰ】 如果 x 1 是二元一次方程组ax by 1) y 2 bx ay 的解,那么 a ,b 的值是(2 ( A ). a 1( B ). a1 a 0 a 0 bb0 ( C ). 1 ( D ).1bb第 3 节 应用二元一次方程组 —— 鸡兔同笼6、【综合Ⅰ】 列方程解应用题:( 1)小梅家有鸡也有兔,鸡和兔共有头 16 个,鸡和兔共有脚 44 只,问:小梅家的鸡与兔各有多少只? ( 2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?( 3)今有牛五、羊二,直金十两;牛二、羊五,直金八两 . 请问牛、羊各直金几何? 题目大意是: 5 头牛和2 只羊共价值 10 两金子, 2 头牛和 5 只羊共价值 8 两金子,每头牛、每只羊各价值多少两金子 .( 4)《孙子算经》中记载了一道题,大意是: 100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉 3 片瓦, 3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?( 5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出 8 元,多 3 元;每人出 7 元,少 4 元 . 问有多少人?该物品价值多少元? 6.1 、【综合Ⅱ】列方程解应用题:( 1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺 . 请问,绳长、井深各几何? ( 2)用一根绳子环绕一棵大树,若环绕大树 3 周,则绳子还多 4 尺;若环绕大树 4 周,则绳子又少了3 尺, 那么这根绳子有多长?环绕大树一周需要多少尺?第 4 节应用二元一次方程组——增收节支..7、【综合Ⅱ】列方程解应用题:( 1)某工厂去年的利润(总产值减总支出)为200 万元 . 今年总产值比去年增加20%,总支出比去年减少 10%,今年的利润为 780 万元 . 去年的总产值、总支出是多少万元?( 2)一、二班共有100 名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是 87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?( 3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5 单位蛋白质和1 单位铁质,每克乙原料含 0.7 单位蛋白质和 0.4 单位铁质,若病人每餐需要 35 单位蛋白质和 40 单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?( 4)甲、乙两人从相距36 km 的两地相向而行,如果甲比乙先走 2 h ,那么他们在乙出发2.5 h 后相遇;如果乙比甲先走 2 h ,那么他们在甲出发3 h 后相遇,请问甲、乙两人的速度各是多少?7.1 、【综合Ⅱ】列方程解应用题:( 1)某旅馆的客房有三人间和两人间两种,三人间每人每天25 元,两人间每人每天 35 元,一个 50 人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510 元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长 400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔 30 s 相遇一次;如果同向而行,那么每隔80 s 乙就追上甲一次 .甲、乙的速度分别是多少?( 3)某一天,蔬菜经营户花 90 元从蔬菜批发市场批发了黄瓜和茄子共40 kg ,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价 / (元 /kg ) 2.4 2零售价 / (元 /kg ) 3.6 2.8他当天卖完这些黄瓜和茄子可赚多少元?第 5 节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:( 1)小明和小亮做加法游戏,小明在一个加数后面多写了一个 0,得到的和为 242;而小亮在另一个加数后面多写了一个 0,得到的和为 341,原来的两个加数分别是多少?( 2)有一个两位数,个位上的数字比十位上的数字的 3 倍多 2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的 3 倍少 2,求原来的两位数.( 3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数 .( 4)一个两位数,减去它的各位数字之和的 3 倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是 1. 这个两位数是多少?8.1 、【综合Ⅱ】列方程解应用题:( 1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min ,已知小颖在上坡路上的平均速度是 4.8 km/h ,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?..(2)某商店准备用两种价格分别为36 元 / kg 和 20 元 / kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28 元/ kg 。
一、选择题1.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .45271020x y x y -=⎧⎨+=⎩C .452710320x y x y -=⎧⎨-=⎩D .452710320x y x y +=⎧⎨+=⎩2.长方形ABCD 可以分割成如图所示的七个正方形.若10AB =,则AD 等于( )A .252B .353C .14011D .150113.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( ) A .3x =7+3m B .5x ﹣2y =10 C .﹣3x+6y =2 D .3x ﹣6y =2 4.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( )A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩ 5.若关于x ,y 的二元一次方程组432x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( )A .2B .10C .2-D .4 6.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -=C .93t =D .91t = 7.已知正比例函数y =kx 的图象经过点P (-1,2),则k 的值是( )A .2B .12C .2-D .12-8.已知关于x ,y 的方程组232x y a x y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( )A .①②B .①③C .②③D .①②③9.若方程x-y=3与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,则这个方程可以( ) A .3x-4y=16 B .1254x y += C .1382x y -+= D .2(x-y)=6y 10.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y +=⎧⎨=⎩D .22103x y x y+=⎧⎨=⎩ 11.若点(2,1)P -在直线y x b =-+上,则b 的值为( ) A .1 B .-1 C .3D .-3 12.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( ) A .8 B .83 C .2 D .1二、填空题13.如图,已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 为y 轴交于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:①方程组12ykx b y x m =+⎧⎪⎨=+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩; ②BCD △为直角三角形;③6ABD S =;④当PA PC +的值最小时,点P 的坐标为()0,1.其中正确的说法是______.14.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay +=⎧⎨+=⎩的解,则a b +=________. 15.在平面直角坐标系中有两点(1,2)A -,()2,3B ,如果函数1y kx =-的图象与线段AB的延长线相交(交点不包括点B ),则实数k 的取值范围是__________.16.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知约定的加密规律为:明文x 、y 、z 分别对应加密文2x y +、23x y +、4z .例如:明文1、2、3分别对应加密文5、8、12,如果接收到密文为7、12、16时,则解密得到的明文是:_.17.如图,汪曾祺纪念馆中的仿古墙独具特色,其中一处是由10块相同的小矩形砖块拼成了一个大矩形,若大矩形的一边长为75cm ,则小矩形砖块的面积为______2cm .18.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 19.如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为 ______cm 220.已知一次函数3y kx k =+- 的图像经过点(2,3),则 k 3+1 的平方根为_________.三、解答题21.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.”其译文是:“5头牛、2只羊,共值19两银子;2头牛、5只羊,共值16两银子.”(1)求1头牛、1只羊共值多少两银子?以下是小慧同学的解答(请你补充完整):解:设1头牛值x 两银子,1只羊值y 两银子,根据题意,可列出方程组:____________________⎧⎨⎩①②①+②,得______________,∴x y +=______________.小慧仔细观察两个方程未知数系数之间的关系,通过适当变形整体求得代数式的值,这种解题思想就是我们通常所说的“整体思想”.(2)运用“整体思想”尝试解决以下问题;对于实数x ,y ,定义新运算;1x y ax by =+-※,其中a ,b 是常数.已知354232==※,※,求11※的值.22.(1)如图1,则∠A 、∠B 、∠C 、∠D之间的数量关系为 .(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD .若∠B =36°,∠D =14°,求∠P 的度数; (3)如图3,CP 、AG 分别平分∠BCE 、∠FAD ,AG 反向延长线交CP 于点P ,请猜想∠P 、∠B 、∠D 之间的数量关系.并说明理由.23.如图,已知一次函数2y x =-的图象与y 轴交于点A ,一次函数4y x b =+的图象与y 轴交于点B ,且与x 轴以及-次函数2y x =-的图象分别交于点C 、D ,点D 的坐标为(2,4)--.(1)关于x 、y 的方程组24y x y x b-=-⎧⎨-=⎩的解为 .(2)求ABD△的面积;(3)在x轴上是否存在点E,使得以点,,C D E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.24.解方程组22224x yxx y+⎧-=⎪⎨⎪+=⎩25.已知:用5辆A型车和1辆B型车载满货物一次可运货200吨;用1辆A型车和5辆B型车载满货物一次可运货232吨,某物流公司现有304吨货物待运,计划A型车m辆,B型车n辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)请问1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨;(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金1000元/次,B型车每辆需租金1200元/次.请选出最省钱的租车方案,并求出最少租车费是多少.26.按要求解方程组.(1)362315x yx y-=⎧⎨+=⎩(代入法)(2)2821x yx y+=⎧⎨-=⎩(加减法)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】以每次运送加固材料为等量关系,列方程组即可.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩. 故选D .【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组.2.D解析:D【分析】根据题意,设DE=x ,EF=y ,然后由边长的数量关系列出方程组,解方程组求出x 、y ,即可得到答案.【详解】解:如图:设DE=x ,EF=y ,根据题意,则32()10y x y x y =⎧⎨++=⎩, 解得:10113011x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴103015010111111AD =++=; 故选:D .【点睛】本题考查了二元一次方程组的应用,解二元一次方程组,解题的关键是熟练掌握题意,正确列出方程组进行解题. 3.D解析:D【分析】方程组消去m 即可得到x 与y 的关系式.【详解】解:223224x y m x y m -=+⎧⎨+=+⎩①②, ①×2﹣②得:3x ﹣6y =2,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题用的是加减消元法.4.C解析:C【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组.【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,∵新建1个地上停车位和1个地下停车位共需0.6万元,∴0.6x y ,又∵新建3个地上停车位和2个地下停车位共需1.3万元,∴32 1.3x y +=,∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩, 故选:C.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键. 5.D解析:D【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值.【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5k y =, 把5k y =代入②得:115k x =, 把115k x =,5k y =代入2310x y +=,得:11231055k k ⨯+⨯=解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.C解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1), 即,9t=3,故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 7.C解析:C【分析】把点P (-1,2)代入正比例函数y=kx ,即可求出k 的值.【详解】把点P(−1,2)代入正比例函数y=kx ,得:2=−k ,解得:k=−2.故选C.【点睛】此题考查待定系数法求正比例函数解析式,解题关键在于把已知点代入解析式. 8.B解析:B【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案.【详解】解:①当a=0时,原方程组为23x yx y-=⎧⎨+=⎩,解得11xy=-⎧⎨=⎩,②把2xy=⎧⎨=⎩代入方程组得到a=1,不符合题意.③当a=﹣1时,原方程组为242x yx y-=⎧⎨+=-⎩,解得2xy=⎧⎨=-⎩,当2xy=⎧⎨=-⎩时,代入方程组可求得a=﹣1,把2xy=⎧⎨=-⎩与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①③.故选:B.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.9.D解析:D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】将41xy=⎧⎨=⎩依次代入,得A、12-4≠16,故该项不符合题意;B、1+2≠5,故该项不符合题意;C、-2+3≠8,故该项不符合题意;D、6=6,故该项符合题意;故选:D.【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.10.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.B解析:B【分析】将点P(-2,1)的坐标代入直线y=-x+b即可解得b的值;【详解】解:∵直线y=-x+b经过点P(-2,1),∴1=-(-2)+b,∴b= -1.故选:B.【点睛】本题考查待定系数法求一次函数解析式,解题关键是根据点的坐标利用待定系数法求出b 的值.12.C解析:C【分析】把两个方程的左右两边分别相减,求出a-b的值是多少即可.【详解】解:559 375 a ba b+⎧⎨+⎩=①=②①-②,可得2(a-b)=4,∴a-b=2.故选:C.【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.二、填空题13.①②④【分析】由题意①直线的交点即为该直线组成方程组时该方程的解;②通过已知条件求解直线的未知数通过判断两直线k的乘积是否为-1即可;③由②知两直线的表达式进而可得点ABD的坐标进一步即可求出△AB解析:①②④【分析】由题意①直线的交点即为该直线组成方程组时,该方程的解;②通过已知条件,求解直线的未知数,通过判断两直线k 的乘积是否为-1,即可; ③由②知两直线的表达式,进而可得点A ,B ,D 的坐标,进一步即可求出△ABD 的面积;④求点C 关于y 轴的对称点,然后连接A ,C 1,与y 轴的交点即为PA +PC 的值最小的点;【详解】①由于直线的交点即为该直线组成方程组时的解;∴ 12y kx b y x m =+⎧⎪⎨=-+⎪⎩ 的解,即为两条直线的交点,为:6585x y ⎧=-⎪⎪⎨⎪=⎪⎩,故①正确; ②将点C 的坐标和点B 的坐标分别代入直线1:l y kx b =+和21:2l y x m =-+; 可得:2k =、4b =、1m =;∴ 直线1:24l y x =+和21:12l y x =-+;又两直线的k 分别为:2和12-; 又 12()12⨯-=-;∴ 12l l ⊥; ∴ △BCD 为直角三角形;故②正确;③由②知,(2,0)A -,(0,4)B ,(0,1)D ;∴ 3BD =,2OA =;∴ △ABD 的面积为:1132322BD OA ⨯⨯=⨯⨯=;故③不正确; ④由题,对点68(,)55C -作关于y 轴的对称点168(,)55C ,又(2,0)A -;∴ 连接A ,C 1与y 轴的交点即为最小值点;设过点A ,C 1的直线为:y kx b =+;将点A ,C 1的坐标代入y kx b =+,可得:12k =,1b =;∴过点A ,C 1的直线为:112y x =+; 又112y x =+与y 轴的交点坐标为:(0,1);∴ 点P 的坐标为:(0,1);故④正确; 故填:①②④;【点睛】本题考查一次函数的性质,关键在理解一次函数交点、垂直和对称问题,需要仔细审题.14.9【分析】根据二元一次方程组的解的定义得到关于ab的二元一次方程组解方程组即可【详解】解:由题意得:解得所以9故答案为:9【点睛】本题考查的是二元一次方程组的解二元一次方程组的解法掌握解二元一次方程解析:9【分析】根据二元一次方程组的解的定义得到关于a、b的二元一次方程组,解方程组即可.【详解】解:由题意得:40 222 ab a-=⎧⎨-=⎩,解得45ab=⎧⎨=⎩,所以,a b+=9.故答案为:9.【点睛】本题考查的是二元一次方程组的解、二元一次方程组的解法,掌握解二元一次方程组的一般步骤是解题的关键.15.【分析】先求出直线AB的解析式找出两临界点即可得出答案【详解】解:设AB的解析式为:y=kx+b;将代入可得;解得:当与直线AB平行此时当过时2k-1=3则k=2∴实数k的取值范围是:【点睛】本题考解析:12 3k<<【分析】先求出直线AB的解析式,找出两临界点即可得出答案.【详解】解:设AB的解析式为:y=kx+b;将(1,2)A -,()2,3B 代入可得232k b k b +=⎧⎨-+=⎩; 解得:1373k b ⎧=⎪⎪⎨⎪=⎪⎩当1y kx =-与直线AB 平行,此时13k =, 当1y kx =-过()2,3B 时,2k-1=3,则k=2,∴实数k 的取值范围是:123k << 【点睛】本题考查一次函数图象与系数的关系,有一定难度,关键是找出两临界条件. 16.24【分析】利用接收方接到的密文及加密规则建立关于xyz 的方程组解之即可解答【详解】由题意知:解得:故答案为:324【点睛】本题考查了三元一次方程组的应用同时也考查了实际应用能力等数学基本能力要加强解析:2、4【分析】利用接收方接到的密文及加密规则,建立关于x 、y 、z 的方程组,解之即可解答.【详解】由题意知:272312416x y x y z +=⎧⎪+=⎨⎪=⎩,解得:324x y z =⎧⎪=⎨⎪=⎩,故答案为:3、2、4.【点睛】本题考查了三元一次方程组的应用,同时也考查了实际应用能力等数学基本能力,要加强新的信息与创新题型,是个基础题.17.675【分析】设小矩形的长为xcm 宽为ycm 由图形的条件列出方程组可求解【详解】设小矩形的长为xcm 宽为ycm 由题意可得:解得:∴小矩形砖块的面积为=45×15=675cm2故答案为:675【点睛】解析:675【分析】设小矩形的长为xcm ,宽为ycm ,由图形的条件列出方程组,可求解.【详解】设小矩形的长为xcm ,宽为ycm ,由题意可得:27523x y x y x+=⎧⎨=+⎩, 解得:4515x y =⎧⎨=⎩, ∴小矩形砖块的面积为=45×15=675cm 2,故答案为:675.【点睛】本题考查了二元一次方程组的应用,找到正确的等量关系是本题的关键.18.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x ﹣1)求解【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x 棵,即可列方程:4x+5=5(x ﹣1)求解.【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.19.70【解析】设小长方形的长为xcm 宽为ycm 则解析:70【解析】设小长方形的长为xcm ,宽为ycm.则255{{7706172x y x xy x y y ==⇒⇒=+== 20.【分析】将点(23)代入可得关于k 的方程解方程求出k 的值即可【详解】解:将点(23)代入一次函数可得:3=2k +k−3解得:k=2k3+1的平方根为故答案为【点睛】本题考查了一次函数的性质待定系数法解析:3±【分析】将点(2,3)代入3y kx k =+-可得关于k 的方程,解方程求出k 的值即可.【详解】解:将点(2,3)代入一次函数3y kx k =+-,可得:3=2k +k −3,解得:k =2319k ∴+=∴k 3+1 的平方根为3±.故答案为3±.【点睛】本题考查了一次函数的性质,待定系数法是解题的关键.三、解答题21.(1)见解析;(2)0【分析】(1)将两式相加,再把结果两边同时除以7,可得结果;(2)根据354=※和232=※得到355233a b a b +=⎧⎨+=⎩①②,②×2-①可得:1a b +=,从而可得11※的结果.【详解】解:(1)设1头牛值x 两银子,1只羊值y 两银子,根据题意,可列出方程组: 52192516x y x y +=⎧⎨+=⎩①②, ①+②,得7735x y +=,∴x y +=5,∴1头牛、1只羊共值5两银子;(2)∵1x y ax by =+-※,且354232==※,※,∴35142312a b a b +-=⎧⎨+-=⎩,即355233a b a b +=⎧⎨+=⎩①②, ②×2-①可得:1a b +=,∴11※=1a b +-=0.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,理解整体思想的运用. 22.(1)∠A+∠B =∠C+∠D ;(2)∠P =25°;(3)2∠P =∠B+∠D ,理由见解析【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;(3)根据角平分线的定义可得∠ECP=∠PCB,∠FAG=∠GAD,结合三角形的内角和定理可得∠P+∠GAD=∠B+∠PCB,∠P+(180°﹣∠GAD)=∠D+(180°﹣∠ECP),进而可求解.【详解】解:(1)∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;(2)∵AP、CP分别平分∠BAD、∠BCD,∴∠BAP=∠DAP,∠BCP=∠DCP,由(1)可得:∠BAP+∠B=∠BCP+∠P,∠DAP+∠P=∠DCP+∠D,∴∠B﹣∠P=∠P﹣∠D,即2∠P=∠B+∠D,∵∠B=36°,∠D=14°,∴∠P=25°;(3)2∠P=∠B+∠D.理由:∵CP、AG分别平分∠BCE、∠FAD,∴∠ECP=∠PCB,∠FAG=∠GAD,∵∠PAB=∠FAG,∴∠GAD=∠PAB,∵∠P+∠PAB=∠B+∠PCB,∴∠P+∠GAD=∠B+∠PCB①,∵∠P+∠PAD=∠D+∠PCD,∴∠P+(180°﹣∠GAD)=∠D+(180°﹣∠ECP),P GAD D ECP∴∠-∠=∠-∠②∴①+②得:2∠P=∠B+∠D.【点睛】本题考查的是三角形的内角和定理的应用,角平分线的定义,二元一次方程组的解法,掌握以上知识是解题的关键.23.(1)24xy=-⎧⎨=-⎩;(2)6;(3)存在,(2,0)E-或(18,0)E-【分析】(1)直接结合题意和图象即可得出结论;(2)分别求出A,B的坐标,由12△ABD DS AB x=计算即可;(3)分三种情况讨论:①当点E为直角顶点时,过点D作DE1⊥x轴于E1,即可得出结论;②当点C为直角顶点时,x轴上不存在点E;③当点D为直角顶点时,过点D作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0),利用勾股定理即可得出结论.【详解】(1)由图象可知:关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为24x y =-⎧⎨=-⎩; 故答案为:24x y =-⎧⎨=-⎩; (2)由题意可直接得出()0,2A -,将(2,4)--代入4y x b =+,解得:4b =,∴()0,4B ,6AB =, ∴1162622△ABD D S AB x ==⨯⨯=; (3)如图,①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4),∴E 1(-2,0)②当点C 为直角顶点时,x 轴上不存在点E .③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0).∵C (-1,0),E 1(-2,0),∴CE 2=-1-t ,E 1E 2=-2-t .∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在12Rt DE E ∆中,由勾股定理得:()2222222211242420DE DE E E t t t =+=+--=++. 在1Rt CDE ∆中,由勾股定理得:2221417CD =+=.在2Rt CDE ∆中,由勾股定理得:22222CE DE CD =+.∴(-1-t )2=t 2+4t +20+17解得:t =-18.∴E 2(-18,0).综合上所述:点E 坐标为(-2,0)或(-18,0).【点睛】本题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,勾股定理,一次函数与方程组,利用了数形结合的思想,熟练掌握一次函数的性质是解答本题的关键.24.02x y =⎧⎨=⎩. 【分析】利用整体代入法求解更简便.【详解】解:∵22224x y x x y +⎧-=⎪⎨⎪+=⎩①②,∴把②代入①,得422x -=, 解得x=0,把x=0代入②,得2y=4,解得y=2,∴原方程组的解是02x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,根据方程组的特点,选择整体代入求解是解题的关键. 25.(1)1辆A 型车可运32吨,1辆B 型车可运40吨;(2)共有两种方案:方案一:租A 型车7辆,B 型车2辆;方案二:租A 型车2辆,B 型车6辆;(3)最省钱的租车方案为方案二:租A 型车2辆,B 型车6辆,最少租车费为9200元【分析】(1)设1辆A 型车可运x 吨,1辆B 型车可运y 吨,根据“用5辆A 型车和1辆B 型车载满货物一次可运货200吨;用1辆A 型车和5辆B 型车载满货物一次可运货232吨,”列方程组求解即可;(2)根据“某物流公司现有304吨货物待运,计划A 型车m 辆,B 型车n 辆,”得出3240304m n +=,再根据,m n 都是自然数,即可得出,m n 的值,从而得出方案;(3)由(2)可知两种方案,再将值分别代入两种方案中求出值后再比较即可得出答案.【详解】解:(1)设1辆A 型车可运x 吨,1辆B 型车可运y 吨,根据题意可列方程组:52005232x y x y +=⎧⎨+=⎩, 解得:3240x y =⎧⎨=⎩,答:1辆A 型车可运32吨,1辆B 型车可运40吨.(2)根据题意得:3240304m n += 则3044032n m -=,且,m n 都是自然数. 当27n m ==时,;当62n m ==时,;故一共有两种方案:方案一:租A 型车7辆,B 型车2辆方案二:租A 型车2辆,B 型车6辆.(3)根据题意可知,方案一需租金:71000212009400⨯+⨯=(元) 方案二需租金:21000612009200⨯+⨯=(元)94009200,>∴最省钱的租车方案为方案二:租A 型车2辆,B 型车6辆,最少租车费为9200元.【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键. 26.(1)33x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩ 【分析】(1)将第一个方程变形后代入第二个方程求解即可;(2)将第二个方程乘以2后利用加减法解方程.【详解】(1)362315x y x y -=⎧⎨+=⎩①②, 由①得:y=3x-6③;将③代入②得:2x+3(3x-6)=15,解得x=3,将x=3代入③,得y=9-6=3,∴方程组的解是33x y =⎧⎨=⎩; (2)2821x y x y +=⎧⎨-=⎩①②, 由②⨯2得:4x-2y=2③,①+③得:5x=10,解得x=2,将x=2代入②,得y=3,∴方程组的解是23x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握方程组的解法:代入法和加减法的解法是解题的关键.。
八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。
八年级上册数学第五章一、二元一次方程的概念。
1. 定义。
- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
例如:x + y=5,这里x和y是两个未知数,且x、y的次数都是1,整个方程是整式方程。
2. 一般形式。
- 二元一次方程的一般形式为ax+by = c(a、b、c是常数,a≠0,b≠0)。
二、二元一次方程组的概念。
1. 定义。
- 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
例如x + y=3 x - y = 1就是一个二元一次方程组。
2. 解二元一次方程组的基本思想。
- 消元思想,即将二元一次方程组转化为一元一次方程来求解。
三、解二元一次方程组的方法。
1. 代入消元法。
- 步骤:- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来。
例如对于方程组y=x + 1 2x+y=5,由第一个方程y=x + 1,我们可以将y代入第二个方程。
- 将变形后的方程代入另一个方程,消去一个未知数,得到一个一元一次方程。
把y=x + 1代入2x + y=5,得到2x+(x + 1)=5,即3x+1 = 5。
- 解这个一元一次方程,求出未知数的值。
解得x=(4)/(3)。
- 把求得的未知数的值代入变形后的方程,求出另一个未知数的值。
把x = (4)/(3)代入y=x + 1,得y=(4)/(3)+1=(7)/(3)。
2. 加减消元法。
- 步骤:- 当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。
例如对于方程组2x + 3y=8 3x - 3y=3,因为y的系数互为相反数,将两个方程相加,得到(2x+3y)+(3x - 3y)=8 + 3,即5x=11。
- 解这个一元一次方程,求出未知数的值。
解得x=(11)/(5)。
- 把求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值。
《第五章4 应用二元一次方程组——增收节支》讲解与例题1.列方程组解答生活中的增收节支问题在生活中,咱们时刻都在与经济打交道,常常面临利润问题、利息问题等.解决这种问题,应熟记一些大体公式:(1)增加率问题: 增加率=增长量计划量×100%. 打算量×(1+增加率)=增加后的量; 打算量×(1-减少率)=减少后的量.(2)经济类问题:利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润商品的进价×100%. 【例1】 某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比总支出多950万元.今年的总产值和总支出各是多少万元?分析:可列下表(去年总产值x 万元,总支出y 万元):总产值 总支出 差 去年x y 500 今年 (1+15%)x (1-10%)y950 题中有两个相等关系:(1)去年的总产值-去年的总支出=500万元;(2)今年的总产值-今年的总支出=950万元.解:设去年的总产值是x 万元,去年的总支出是y 万元,由题意,得⎩⎪⎨⎪⎧x -y =500,1+15%x -1-10%y =950. 解得⎩⎪⎨⎪⎧x =2 000,y =1 500.因此(1+15%)x =2 300,(1-10%)y =1 350.因此今年的总产值是2 300万元,总支出是1 350万元.谈重点 分析表格中数字含义找等量关系先认真审题,找出问题中的已知量和未知量.再借助于表格分析具体问题中蕴涵的数量关系,问题中的相等关系就会清楚地浮现出来.2.列方程组解答行程问题、水路问题、工程问题在咱们的生活中,常常面临行程问题、水路问题、工程问题.解决这种问题,应熟记一些大体公式:(1)行程问题的大体数量关系:路程=速度×时刻.(2)水路问题的大体数量关系:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.(3)工程问题的大体数量关系:工作量=工作效率×工作时刻.【例2-1】 A 市至B 市航线长1 200 km ,一架飞机从A 市顺风向飞往B 市需2小时30分,从B 市逆风向飞往A 市需3小时20分.求飞机的速度与风速.分析:此题中明显的未知数有两个,即:飞机的速度与风速.除此之外,还有两个隐藏的未知数,即:顺风速度与逆风速度.因此咱们能够通过设直接未知数和间接未知数,列出二元一次方程组求解.解:设飞机速度为x km/h ,风速为y km/h ,依照路程=速度×时刻列出方程组:⎩⎪⎨⎪⎧ 212x +y =1 200,313x -y =1 200.解得⎩⎪⎨⎪⎧x =420,y =60. 因此飞机的速度为420 km/h ,风速为60 km/h.【例2-2】 某地为了尽快排除堰塞湖险情,决定在堵塞体表面开挖一条泄流槽,经计算需挖出土石方13.4万立方米,开挖2天后,为了加速施工进度,又增调了大量的人员和设备,天天挖的土石方比原先的2倍还多1万立方米,结果共用5天完成任务,比打算时刻大大提早.依照以上信息,求原打算天天挖土石方多少万立方米?增调人员和设备后天天挖土石方多少万立方米? 分析:抓住关键语句:开挖2天和增调人员后所干的3天里,一共挖出土石方13.4万立方米;天天挖的土石方比原先的2倍还多1万立方米来构建数学模型.解:设原打算天天挖土石方x 万立方米,增调人员和设备后天天挖y 万立方米,依据题意,可列出方程组:⎩⎪⎨⎪⎧y =2x +1,2x +5-2y =13.4. 解得⎩⎪⎨⎪⎧x =1.3,y =3.6.因此原打算天天挖土石方1.3万立方米,增调人员和设备后天天挖3.6万立方米.3.配套问题中的相等关系 在实际问题中,大伙儿常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这种问题的方式是抓住配套关系,设出未知数,依照配套关系列出方程组,通过解方程组解决问题.产品配套是工厂生产中大体原那么之一,如何分派生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系.常见的题型有:(1)配套与人员分派问题.(2)配套与物质分派问题.析规律 配套问题配套问题的背景尽管不同,但解决问题的方式是一样的,需要抓住配套问题的关键语句进行配套.【例3】 某车间22名工人一辈子产螺钉和螺母,每人天天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母,为了使天天生产的产品恰好配套,应该分派多少名工人一辈子产螺钉,多少名工人一辈子产螺母?分析:此题的配套关系是:一个螺钉配两个螺母,即螺钉数∶螺母数=1∶2.解:设分派x 名工人一辈子产螺钉,y 名工人一辈子产螺母,那么一天生产的螺钉数为1 200x 个,生产的螺母数为2 000y 个. 依照题意,得 ⎩⎪⎨⎪⎧x +y =22,2×1 200x =2 000y . 整理得⎩⎪⎨⎪⎧x +y =22,6x =5y ,解得⎩⎪⎨⎪⎧x =10,y =12. 因此为了使天天生产的产品恰好配套,应安排10名工人一辈子产螺钉,12名工人一辈子产螺母.4.注意及时幸免一些常见的错误 二元一次方程组是反映现实世界数量之间相等关系的数学模型之一,其应用即能够将实际问题转化为数学模型,列出二元一次方程组,最终求得符合实际的解.而在具体求解时,很多同窗由于审题不清等问题,总会显现如此那样的错误,这就要求咱们认真地审题,及时地找出题目中的等量关系.若是两车相向而行,那么其相对速度为速度之和,若是两车同向而行,那么其相对速度为速度之差,这一点很多同窗是可不能明白得错的,问题是在相对移动的进程中,移动的距离应为两车的长度之和,很多同窗往往忽略这一点而造成错解.【例4】 一列快车长168 m ,一列慢车长184 m ,若是两车相向而行,从相碰到离开需4 s ,若是同向而行,从快车追及慢车到离开需16 s ,求两车的速度.分析:两车相向而行,其相对速度为两车的速度之和,两车同向而行,其相对速度为两车的速度之差,如此设快车速度为x m/s ,慢车速度为y m/s ,即可利用方程组求解.解:设快车速度为x m/s ,慢车速度为y m/s. 由题意,得⎩⎪⎨⎪⎧ 4x +y =168+184,16x -y =168+184, 即⎩⎪⎨⎪⎧4x +4y =352,16x -16y =352, 也即⎩⎪⎨⎪⎧x +y =88,x -y =22. 解得⎩⎪⎨⎪⎧ x =55,y =33.因此快车的速度为55 m/s ,慢车的速度为33 m/s.。
一、选择题1.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?( ) A .2300千米B .2400千米C .2500千米D .2600千米2.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫⎪⎝⎭B .1731,33⎛⎫⎪⎝⎭ C .()2,8 D .()4,123.在长方形ABCD 中,放入6个形状大小完全相同的小长方形,所标尺寸如 图所示,则小长方形的宽AE 的长度为( ) cm .A .1B .1.6C .2D .2.54.某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是( ) A .200元B .480元C .600元D .800元5.若2(23)3x y z -+=,2(23)203x y z ++=,则23xy yz +的值是( ) A .50B .100C .103D .2026.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .127.已知关于x ,y 的方程组22331x y kx y k +=⎧⎨+=-⎩,以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③不论k 取什么实数,3x y+的值始终不变;④当1y x ->-时,1k >.其中正确的是( ) A .①②③B .①②④C .①③④D .②③④8.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩9.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12a D .﹣12a 10.已知关于x ,y 的方程组232x y ax y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③ C .②③ D .①②③11.如果一次函数的图象与直线32y x =平行且与直线y =x -2在x 轴上相交,则此函数解析式为( )A .332y x =- B .332y x =-- C .332y x =+ D .332y x =-+12.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种B .5种C .6种D .7种二、填空题13.如图,在平面直角坐标系xOy 中,每个小正方形的边长都为1,ABC 的顶点均在格点上.请按要求完成下列各问题:(1)ABC 的周长等于 (结果保留根号) (2)点1C 与点C 关于 y 轴对称的,则点1C 的坐标为 .(3)在 x 轴上找到一点P ,若使PA PB +最小,此时点P 坐标为 ;若使PA PB -最大,此时P 点坐标为 .14.已知关于x 、y 的二元一次方程2(1)(2)320m n m n a x a y a -++-+++-=,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,则m =______,n =______;这些方程的公共解是______.15.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.16.已知关于,x y 的方程组2326322x y k x y k +=+⎧⎨+=+⎩.(1)用k 表示x y +的值为____. (2)若7x y +=,则k 的值为____.17.当2x =-时,代数式2ax bx c ++的值是5;当1x =-时,代数式2ax bx c ++的值是0;当1x =时,代数式2ax bx c ++的值是4-;则当2x =时,代数式2ax bx c ++的值是_____.18.若关于,x y 的方程组275x y kx y k +=+⎧⎨-=⎩的解互为相反数,则k =_____.19.已知()2254270x y x y +++--=,则42x y -=________.20.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知约定的加密规律为:明文x 、y 、z 分别对应加密文2x y +、23x y +、4z .例如:明文1、2、3分别对应加密文5、8、12,如果接收到密文为7、12、16时,则解密得到的明文是:_.三、解答题21.(1) ()03122731π 3.14+-+-+-(2)解方程组:27?320? x y x y -=⎧⎨+=⎩22.(1)计算:(6﹣215)×3﹣612; (2)解方程组:321237x y x y -=⎧⎨+=-⎩.23.A ,B ,C 三个村庄依次在一条笔直的公路旁,甲从A 村庄出发沿着这条公路匀速去B 村庄,乙从C 村庄出发沿着这条公路匀速去A 村庄,当其中一人到达目的地时,另一人也随之停止运动.甲、乙与B 村庄的距离y ,y 2,与甲的行驶时间t 之间的函数关系如图所示.请根据所给图象解答下列问题:(1)填空:A ,B 两村庄之间的距离为____km ,乙比甲晚出发____h ;乙的速度为____km/h ,甲的速度为____km/h ;(2)求乙从C 村庄到B 村庄的行驶过程中,与B 村庄的距离y 2与甲行驶的时间t 之间的函数关系式;(3)请直接写出当t 为何值时,甲与乙相遇.24.随着新冠肺炎疫情的持续,某学校计划购进一批防疫物品,经过市场调查得知:某品牌洗手液和消毒水原来的单价和为50元.因政府市场调控,洗手液降价10%,消毒水降价20%,调价后,两种物品的单价和比原来降低了16%.请你用二元一次方程组的知识计算该学校购买 200 瓶洗手液和 300 瓶消毒水共需要多少钱.25.小颖家离学校1880m ,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16min ,已知小颖在上坡路上的平均速度是4.8km/h ,在下坡路上的平均速度是12km/h .小颍上坡、下坡各用了多长时间? 26.解方程组:(1)3326x y x y +=-⎧⎨+=⎩(2)0.310.20.519x y x y -=⎧⎨-=⎩【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设每个新轮胎报废时的总磨损量为k ,一对新轮胎交换位置前走了x km ,交换位置后走了y km ,根据交换前磨损总量和交换后的磨损总量相等,可列出方程组,解方程组即可. 【详解】解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为3000k ,安装在后轮的轮胎每行驶1km 的磨损量为2000k , 又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有3000200030002000kxky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相加,得()()230002000k x y k x y k +++=, 则x +y =2400,∴安装在自行车上的这对轮胎最多可行驶2400千米. 故选:B .【点睛】本题考查了应用类问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.2.A解析:A【分析】由直线y1=2x+4求得OB=4,根据解析式面积求得D(5,4),代入y2=-x+b求得解析式,然后联立解析式,解方程组即可求得.【详解】∵直线y1=2x+4分别与x轴,y轴交于A,B两点,∴B(0,4),∴OB=4,∵矩形OCDB的面积为20,∴OB•OC=20,∴OC=5,∴D(5,4),∵D在直线y2=﹣x+b上,∴4=﹣5+b,∴b=9,∴直线y2=﹣x+9,解924y xy x=-+⎧⎨=+⎩,得53223xy⎧=⎪⎪⎨⎪=⎪⎩,∴P(53,223),故选:A.【点睛】本题考查了两条直线平行或相交问题,主要考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.3.C解析:C【分析】设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=6+2y,联立构造方程组求解即可.【详解】设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=6+2y即x-y=6,根据题意,得3146x y x y +=⎧⎨-=⎩, 解得62x y =⎧⎨=⎩,即AE=2, 故选C . 【点睛】本题考查了二元一次方程组的应用,合理引进未知数,列出正确的方程组是解题的关键.4.D解析:D 【分析】设调价前上衣的单价是x 元,裤子的单价是y 元,根据“调价前每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 【详解】解:设调价前上衣的单价是x 元,裤子的单价是y 元, 依题意,得:()()()100015%110%100012%x y x y +=⎧⎨++-=⨯+⎩, 解得:800200x y =⎧⎨=⎩.故选:D . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A 【分析】先开平方,然后组成方程组,解方程组求出y 与(2x+3z ),整体代入求值计算即可. 【详解】解:∵2(23)3x y z -+=,2(23)203x y z ++=,∴23x y z -+=,23x y z ++=∴2323x y z x y z ⎧-+=⎪⎨++=⎪⎩2323x y z x y z ⎧-+=⎪⎨++=⎪⎩,2323x y z x y z ⎧-+=⎪⎨++=⎪⎩,2323x y z x y z ⎧-+=⎪⎨++=⎪⎩, ∴,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,解得2322x z y ⎧⎪+=⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩,()2322x z y ⎧+=-⎪⎪⎨⎪=-⎪⎩, ()(20332033232350224+xy yz=y x z -++===,()(2032033232350224+xy yz=y x z ---++===,()(20332033232350224-xy yz=y x z -++===,()(2032033232350224+xy yz=y x z ---++===.故选择:A . 【点睛】本题考查开平方,解方程组,因式分解,整体代入求代数式的值,掌握开平方,解方程组,因式分解,整体代入求代数式的值.6.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.7.A解析:A 【分析】直接利用二元一次一次方程组的解法表示出方程组的解进而分别分析得出答案. 【详解】解:①当0k =时,原方程组可整理得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 把21x y =-⎧⎨=⎩代入2x y -得: 2224x y -=--=-,即①正确,②解方程组22331x y kx y k +=⎧⎨+=-⎩得:321x k y k =-⎧⎨=-⎩, 若0x y +=,则(32)(1)0k k -+-=, 解得:12k =, 即存在实数k ,使得0x y +=,即②正确,③解方程组22331x y kx y k +=⎧⎨+=-⎩得:321x k y k =-⎧⎨=-⎩, 3323(1)1x y k k ∴+=-+-=,∴不论取什么实数,3x y +的值始终不变,故③正确;④解方程组22331x y kx y k +=⎧⎨+=-⎩得:321x k y k=-⎧⎨=-⎩, 当1y x ->-时,1321k k --+>-,1k ∴<,故④错误, 故选:A . 【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的技能和二元一次方程的解得定义.8.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明9.A解析:A 【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差. 【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.10.B解析:B【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案.【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩, ②把20x y =⎧⎨=⎩代入方程组得到a =1,不符合题意. ③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩, 当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③.故选:B .【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键. 11.A解析:A【分析】设所求的直线的解析式为y kx b =+,先由所求的直线与32y x =平行求出k 的值,再由直线y kx b =+与直线y =x -2在x 轴上相交求出b 的值,进而可得答案.【详解】解:设所求的直线的解析式为y kx b =+,∵直线y kx b =+与直线32y x =平行,∴32k , ∵直线y =x -2与x 轴的交点坐标为(2,0),直线32y x b =+与直线y =x -2在x 轴上相交,∴3202b ⨯+=,解得:b =﹣3; ∴此函数的解析式为332y x =-. 故选:A .【点睛】 本题考查了直线与坐标轴的交点以及利用待定系数法求一次函数的解析式,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题的关键.12.C解析:C【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C .【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题13.(1);(2)(-51);(3)()(-10)【分析】(1)由图可求A (34)B(12)C (51)坐标利用勾股定理求ABBCAC 距离再求的周长=AB+AC+BC 即可;(2)点与点关于y 轴对称横坐标互解析:(1) 2)(-5,1);(3)(5,03-),(-1,0).【分析】(1)由图可求A (3,4),B (1,2),C (5,1)坐标,利用勾股定理求AB 、BC 、AC 距离,再求ABC 的周长=AB+AC+BC 即可;(2)点1C 与点C 关于 y 轴对称,横坐标互为相反数可求点1C 的坐标;(3)作点B 关于x 轴对称点B′,连结AB′交x 轴于P ,利用两点间距离AP+BP=AP+B′P≥AB′,求出B′(1,-2),设AB′解析式为:y kx b =+,将A 、B′坐标代入解析式得:342k b k b +=⎧⎨+=-⎩,求出AB′解析式为:35y x =-,求x 轴交点坐标,延长AB 交x 轴于点P ,PA PB AB -≤,设AB 的解析式为11y k x b =+,把A 、B 两点坐标代入解析式得1111342k b k b +=⎧⎨+=⎩,解方程求出AB 的解析式为1y x =+,求出x 轴交点即可. 【详解】解:(1)有图可知A (3,4),B (1,2),C (5,1),由勾股定理======ABC 的周长=AB+AC+BC=故答案为:;(2)点1C 与点C 关于 y 轴对称的,则点1C 的坐标为(-5,1),故答案为:(-5,1);(3)作点B 关于x 轴对称点B′,连结AB′交x 轴于P ,利用两点间距离AP+BP=AP+B′P≥AB′,B′(1,-2),设AB′解析式为:y kx b =+,将A 、B′坐标代入解析式得:342k b k b +=⎧⎨+=-⎩, 解得35k b =⎧⎨=-⎩, AB′解析式为:35y x =-,当y=0,350x -=,53x =, 点P 坐标为(5,03),延长AB 交x 轴于点P ,PA PB AB -≤,设AB 的解析式为11y k x b =+,把A 、B 两点坐标代入解析式得1111342k b k b +=⎧⎨+=⎩, 解得:1111k b =⎧⎨=⎩, AB 的解析式为1y x =+,当y=0时,10x +=,1x =-,点P 坐标为(-1,0),故答案为:(5,03),(-1,0).【点睛】本题考查两点距离公式,三角形周长,关于y 轴对称点的坐标,线段和与差最小与最大问题,一次函数解析式,掌握两点距离公式,三角形周长,关于y 轴对称点的坐标,线段和最小与线段差最大,关键作点B 关于x 轴对称,求AB′或AB 解析式与x 轴的交点. 14.1【分析】将已知方程按a 整理得(x+y-2)a=x-2y-3要使这些方程有一个公共解说明这个解与a 的取值无关即这个关于a 的方程有无穷多个解所以只须x+y-2=0且x-2y-3=0联立以上两方程即可求解析:1 7313x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】将已知方程按a 整理得(x +y -2)a =x -2y -3,要使这些方程有一个公共解,说明这个解与a 的取值无关,即这个关于a 的方程有无穷多个解,所以只须x +y -2=0且x -2y -3=0.联立以上两方程即可求出结果.【详解】解:由题意可得:2=11m n m n -+⎧⎨+=⎩,解得:01m n =⎧⎨=⎩, ∵当a 每取一个值时,就有一个方程,而这些方程有一个公共解,∴(a -1)x +(a +2)y +3-2a =0,整理得:(x +y -2)a =x -2y -3,则20230x y x y +-=⎧⎨--=⎩, 解得:7313x y ⎧=⎪⎪⎨⎪=-⎪⎩, 故答案为:0,1,7313x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了关于x 的方程ax =b 有无穷解的条件:a =b =0,此知识点超出初中教材范围,属于竞赛题型.同时考查了二元一次方程组的解法.本题关键在于将已知方程按a 整理以后,能够分析得出这个方程的解与a 的取值无关,即这个关于a 的方程有无穷多个解,从而转化为求解关于x 、y 的二元一次方程组.15.【分析】先把点的纵坐标为40代入得出x =2则两个一次函数的交点P 的坐标为(240);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解解析:240x y =⎧⎨=⎩【分析】先把点P 的纵坐标为40代入20y x =,得出x =2,则两个一次函数的交点P 的坐标为(2,40);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解;【详解】解:把y =40代入20y x =,得出x =2,函数20y x =和40y ax =-的图象交于点P (2,40),即x =2,y =40同时满足两个一次函数的解析式.所以关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是240x y =⎧⎨=⎩.故答案为:240x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.【分析】(1)将方程组中①+②可求解;(2)根据(1)中的结论利用整体代入思想将代入然后解一元一次方程求解【详解】解:(1)由①+②可得:∴故答案为:(2)将代入中解得:故答案为:9【点睛】本题考查 解析:385k + 【分析】(1)将方程组中①+②可求解;(2)根据(1)中的结论利用整体代入思想将7x y +=代入,然后解一元一次方程求解.【详解】解:(1)2326322x y k x y k +=+⎧⎨+=+⎩①②, 由①+②可得:5538x y k +=+ ∴385k x y ++=故答案为:385k + (2)将7x y +=代入385k x y ++=中, 38=75k +,解得:9k = 故答案为:9.【点睛】本题考查加减法解二元一次方程组及解一元一次方程,掌握解方程的步骤正确计算是解题关键.17.【分析】根据题意列三元一次方程组解得abc 进而求得代数式的值【详解】解:根据题意可知:当时当时当时联立得:解得:当时故填:-3【点睛】本题考查代数式求值解题的关键是熟练运用三元一次方程组的解法本题属 解析:3-【分析】根据题意列三元一次方程组42504a b c a b c a b c -+=⎧⎪-+=⎨⎪++=-⎩,解得a 、b 、c ,进而求得代数式的值.【详解】解:根据题意可知:当2x =-时,425a b c -+=,当1x =-时,0a b c -+=,当1x =时,4a b c ++=-,联立,得:42504a b c a b c a b c -+=⎧⎪-+=⎨⎪++=-⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩,当2x =时,423a b c ++=-,故填:-3.【点睛】本题考查代数式求值,解题的关键是熟练运用三元一次方程组的解法,本题属于基础题型.18.【分析】由方程组的解互为相反数得到代入方程组计算即可求出的值【详解】由题意得:代入方程组得由①得:③③代入②得:解得:故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都解析:6-【分析】由方程组的解互为相反数,得到y x =-,代入方程组计算即可求出k 的值.【详解】由题意得:y x =-,代入方程组得275x x k x x k -=+⎧⎨+=⎩①②, 由①得:7x k =--③,③代入②得:426k k --=,解得:6k =-,故答案为:6-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.4【分析】由非负数平方和为0每数必为0的规律可以算出x和y的值然后代入4x-2y即可得到答案【详解】解:由题意得:解之得:所以故答案为4【点睛】本题考查非负数平方与二元一次方程组的综合应用熟练掌握非解析:4【分析】由非负数平方和为0,每数必为0的规律可以算出x和y的值,然后代入4x-2y即可得到答案.【详解】解:由题意得:2540270x yx y++=⎧⎨--=⎩,解之得:32xy=⎧⎨=-⎩4===.故答案为4.【点睛】本题考查非负数平方与二元一次方程组的综合应用,熟练掌握非负数平方和为0,每数必为0的规律是解题关键.20.24【分析】利用接收方接到的密文及加密规则建立关于xyz的方程组解之即可解答【详解】由题意知:解得:故答案为:324【点睛】本题考查了三元一次方程组的应用同时也考查了实际应用能力等数学基本能力要加强解析:2、4【分析】利用接收方接到的密文及加密规则,建立关于x、y、z的方程组,解之即可解答.【详解】由题意知:272312416x yx yz+=⎧⎪+=⎨⎪=⎩,解得:324xyz=⎧⎪=⎨⎪=⎩,故答案为:3、2、4.【点睛】本题考查了三元一次方程组的应用,同时也考查了实际应用能力等数学基本能力,要加强新的信息与创新题型,是个基础题.三、解答题21.(1)-3;(2)23xy=⎧⎨=-⎩【分析】(1)先计算算术平方根、立方根、绝对值、零指数幂,再计算加减可得;(2)利用加减消元法求解可得.【详解】解:(1()0 1π 3.14 +-;(2)27 320x yx y-=⎧⎨+=⎩①②①×2得:4x-2y=14 ③②+③得:7x=14,解得x=2,将x=2代入①中可得y=-3∴方程组的解为23 xy=⎧⎨=-⎩【点睛】本题考查的是解二元一次方程组及实数的运用,熟知实数的运算和解二元一次方程组的基本步骤是解答此题的关键.22.(1)-2)11132313xy⎧=-⎪⎪⎨⎪=-⎪⎩【分析】(1)二次根式的混合运算,注意先算乘除,后算加减;(2)利用加减消元法解二元一次方程组求解.【详解】解:(1﹣==﹣(2)321? 237?x yx y-=⎧⎨+=-⎩①②①×3得:9x﹣6y=3③,②×2得:4x+6y=﹣14④,③+④得:x =﹣1113, 把x =﹣1113代入①得:y =﹣2313, ∴方程组的解为:11132313x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查解二元一次方程组和二次根式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)240,1,80,60;(2)()22000178028012t y t t ⎧≤<⎪=⎨⎛⎫-+≤≤ ⎪⎪⎝⎭⎩;(3)267t = 【分析】(1)根据函数图象直接得到A ,B 两村庄之间的距离为240km ,乙比甲晚出发1h ,根据7200(1)2÷-=80km/h ,求出乙的速度;根据甲行驶的路程及时间求出甲的速度为2404÷=60km/h ;(2)由图象可分0≤t <1与712t ≤≤两种情况,结合图象和待定系数法求解即可; (3)由题意得,甲从A 村庄到B 村庄的行驶过程中的函数解析式为y=240-60t ,设乙从B 村庄到A 村庄行驶过程中的函数解析式为y 2=mt+n ,将点(72,0),(4,40)代入求出y 2=80t-280,根据y=y 2得到240-60t=80t-280,求出t 即可.【详解】解:(1)根据函数图象得,A ,B 两村庄之间的距离为240km ,乙比甲晚出发1h , 乙的速度为7200(1)2÷-=80km/h ,甲的速度为2404÷=60km/h ,故答案为:240,1,80,60;(2)当0≤t <1时,y 2=200; 当712t ≤≤时,设2y 与t 之间的函数关系式为:2y kt b =+. 由(1)知,乙的速度为80km/h ,∴80k =-.将(1,200)代入280y t b =-+,得280b =,∴乙从C 村庄到B 村庄的行驶过程中,与B 村庄的距离2y 与甲行驶的时间t 之间的函数关系式为()22000178028012t y t t ⎧≤<⎪=⎨⎛⎫-+≤≤ ⎪⎪⎝⎭⎩. (3)由题意得,甲从A 村庄到B 村庄的行驶过程中的函数解析式为y=240-60t , 设乙从B 村庄到A 村庄行驶过程中的函数解析式为y 2=mt+n ,∵乙的行驶速度为80km/h , ∴780(4)402⨯-=,∴y 2=mt+n 过点(72,0),(4,40), ∴702440t n t n ⎧+=⎪⎨⎪+=⎩,解得80280t n =⎧⎨=-⎩, ∴y 2=80t-280,当y=y 2时,240-60t=80t-280, 解得267t =. 当267t =时,甲与乙相遇. 【点睛】此题考查一次函数的实际应用,待定系数法求函数解析式,一次函数图象交点,解题的关键是正确理解函数图象,掌握路程、时间、速度的关系.24.学校购买 200 瓶洗手液和 300 瓶消毒水共需要10800元.【分析】解:设洗手液和消毒水原来的单价分别为x 元,y 元, 根据题意,列出关于x ,y 的二元一次方程组,进而即可求解.【详解】解:设洗手液和消毒水原来的单价分别为x 元,y 元,由题意得:50(110%)(120%)50(116%)x y x y +=⎧⎨-+-=⨯-⎩,即500.90.842x y x y +=⎧⎨+=⎩, 解得2030x y =⎧⎨=⎩, ∴调价后洗手液的单价为0.12098⨯=(元),消毒水的单价为300.824⨯=(元), 200183002410800⨯+⨯=(元).答:学校购买 200 瓶洗手液和 300 瓶消毒水共需要10800元.【点睛】本题主要考查二元一次方程组的实际应用。
一、选择题1.已知方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,则关于x ,y 的方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解是( ) A .16x y =⎧⎨=-⎩B .14x y =⎧⎨=⎩C .46x y =⎧⎨=-⎩D .44x y =⎧⎨=-⎩2.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .123.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .14.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种6.已知关于,x y 的方程组2106x y nx my +=⎧⎨+=⎩和10312mx y nx y -=⎧⎨-=⎩有公共解,则m n -的值为( )A .1B .1-C .2D .2-7.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( )A .1B .2C .3D .48.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分9.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:510.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .4 11.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=412.已知a b c 、、是ABC 的三边长,其中a b 、是二元一次方程组10216a b a b +=⎧⎨+=⎩的解,那么c 的值可能是下面四个数中的( ) A .2B .6C .10D .18二、填空题13.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.14.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.15.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 16.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.17.写出一个解为21x y =⎧⎨=⎩的二元一次方程组______. 18.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3,km 平路每小时走4,km 下坡每小时走5,km 那么从甲地到乙地需48,min 从乙地到甲地需要36,min 则甲地到乙地的全程是__________________.km19.如图,汪曾祺纪念馆中的仿古墙独具特色,其中一处是由10块相同的小矩形砖块拼成了一个大矩形,若大矩形的一边长为75cm ,则小矩形砖块的面积为______2cm .20.如图,已知点A 坐标为(6,0),直线()0y x b b =+>与y 轴交于点B ,与x 轴交于点C ,连接AB ,43AB =,则OC 的长为______.三、解答题21.解方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩22.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000个,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m %,3%5m ,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m 的值.23.某公司决定从甲、乙、丙三个工厂共购买100件同种产品A ,计划从丙厂购买的产品数量是从甲厂购买的产品数量的2倍;从丙厂购买的产品数量的12与从甲厂购买的产品数量之和,刚好等于从乙厂购买的产品数量.(1)设从甲厂购买x 件产品A ,从乙厂购买y 件产品A ,请用列方程组的方法求出该公司从三个工厂各应购买多少件产品A ;(2)已知这三个工厂生产的产品A 的优品率分别为甲:80%;乙:85%;丙:90%,求快乐公司所购买的100件产品A 的优品率;(3)在第(2)题的基础上,你认为该公司在购买总数100件不变的情况下,能否通过改变计划,调整从三个工厂购买产品A 的数量,使购买产品A 的优品率上升2%?若能,请求出所有可能的购买方案;若不能,请说明理由(各厂购买的优品件数是整数). 24.某包装生产企业承接了一批礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是200cm ×40cm 的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示,(单位:cm ).(1)列出方程(组),求出图甲中a 与b 的值.(2)在试生产阶段,若将25张标准板材用裁法一裁剪,将5张标准板材用裁法二裁剪,再将得到的A 型与B 型板材分别做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?25.解方程(组)(1)()()4213311x x ---= (2)148x y x y +=⎧⎨+=-⎩①②26.为了保护学生的视力,课桌的高度cm y 与椅子的高度cm x (不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套符合条件课桌椅的高度:(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩变形为111222a x b y c a x b y c +=⎧⎨+=⎩类似的形式,解方程组即可.【详解】解:方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩可化为:1112222(1)2(1)a x b y c a x b y c -+=⎧⎨-+=⎩,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,∴方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解满足()2215x y =⎧⎨-+=⎩,即解为:16x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的解,解二元一次方程组,正确的解出方程组的解是解题的关键.2.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.3.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.4.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明5.A解析:A 【解析】 试题设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.6.A解析:A 【分析】联立不含m 与n 的两个方程组成方程组,求出x 与y 的值,进而求出m 与n 的值,代入m-n ,计算即可. 【详解】 解:联立得:210312x y x y +=⎧⎨-=⎩①②,①×3+②得:7x=42, 解得:x=6,把x=6代入②得:y=-2,把62x y =⎧⎨=-⎩ 代入得:6266210n m m n -=⎧⎨+=⎩, 解得:m=3,n=2, 则m-n=3-2=1. 故选A . 【点睛】本题考查了二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.利用两个方程组有公共解得出x ,y 的值是解题关键.7.A解析:A 【分析】分类讨论x 与y 的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断. 【详解】解:根据x 、y 的正负分4种情况讨论: ①当x >0,y >0时,方程组变形得:2824x y x y +=⎧⎨+=⎩,无解;②当x >0,y <0时,方程组变形得:2824x y x y +=⎧⎨-=⎩,解得x =3,y =2>0, 则方程组无解;③当x <0,y >0时,方程组变形得:2824x y x y -+=⎧⎨+=⎩,此时方程组的解为16x y =-⎧⎨=⎩;④当x <0,y <0时,方程组变形得:2824x y x y -+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1. 故选:A . 【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.8.A解析:A 【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案. 【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩,32332519x y ∴+=⨯+⨯=分即小颖得分为19分, 故选A .本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.9.B解析:B 【分析】 由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可. 【详解】 ∵4520430x y z x y z -+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z , ∴x :y :z=x :2x :3x=1:2:3, 故选B . 【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.10.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.11.D解析:D 【分析】根据二元一次方程的概念可得关于m 、n 的方程组,解方程组求得m 、n 即可. 【详解】 由题意得3211m n n m -=⎧⎨-=⎩,解得34m n =⎧⎨=⎩,【点睛】本题考查了二元一次方程的概念,解二元一次方程组,熟练掌握相关知识是解题的关键.12.B解析:B 【分析】先解二元一次方程组求出a,b 的值,然后再根据三角形三边之间的关系确定c 的值. 【详解】解:由题意可知:10(1)216(2)a b a b +=⎧⎨+=⎩,(2)-(1)式得:a =6,代回(1)中,解得b =4,根据三角形两边之和大于第三边,两边之差小于第三边可知, 6-4<c<6+4,即:2<c<10, 故选:B . 【点睛】本题考查了二元一次方程组的解法及三角形三边之间的关系,熟练掌握二元一次方程组的解法是解决本题的关键.二、填空题13.【分析】先把点的纵坐标为40代入得出x =2则两个一次函数的交点P 的坐标为(240);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解解析:240x y =⎧⎨=⎩【分析】先把点P 的纵坐标为40代入20y x =,得出x =2,则两个一次函数的交点P 的坐标为(2,40);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解; 【详解】解:把y =40代入20y x =, 得出x =2,函数20y x =和40y ax =-的图象交于点P (2,40), 即x =2,y =40同时满足两个一次函数的解析式.所以关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是240x y =⎧⎨=⎩.故答案为:240x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是 解析:63【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可.【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=,长方形的宽是:257+=,面积是:7963⨯=.故答案是:63.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 15.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x my n=-=⎧⎨=--=⎩,∴52mn=⎧⎨=-⎩.故答案是52 mn=⎧⎨=-⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.16.【分析】从给出图象中得到二元一次方程的两组解进而确定具体的二元一次方程为x+2y=2再代入x=3即可求出y的值【详解】解:从图象可以得到和是二元一次方程ax+by=c的两组解∴2a=cb=c∴x+2解析:1 2 -【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x+2y=2,再代入x=3即可求出y的值.【详解】解:从图象可以得到,2xy=⎧⎨=⎩和1xy=⎧⎨=⎩是二元一次方程ax+by=c的两组解,∴2a=c,b=c,∴x+2y=2,当x=3时,y=12 -,故答案为12 -.【点睛】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.17.答案不唯一【分析】以2与1列出两个算式为2+1=32-1=1即可列出所求的二元一次方程组【详解】解:根据题意列得:故答案为:【点睛】本题考查二元一次方程组的解属于开方型试题此题答案不唯一只要满足题意解析:答案不唯一、31 x yx y+=⎧⎨-=⎩【分析】以2与1列出两个算式为2+1=3,2-1=1,即可列出所求的二元一次方程组.【详解】解:根据题意列得:31 x yx y+=⎧⎨-=⎩故答案为:31x y x y +=⎧⎨-=⎩. 【点睛】本题考查二元一次方程组的解,属于开方型试题,此题答案不唯一,只要满足题意即可. 18.7【分析】设从甲地到乙地坡路长平路长根据从甲地到乙地需从乙地到甲地需即可得出关于的二元一次方程组解之即可得出的值再将其代入中即可求出结论【详解】设从甲地到乙地坡路长平路长依题意得:解得:∴(km)故 解析:7【分析】设从甲地到乙地坡路长xkm ,平路长ykm ,根据“从甲地到乙地需48,min ,从乙地到甲地需36,min ”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入()x y +中即可求出结论.【详解】设从甲地到乙地坡路长xkm ,平路长ykm , 依题意,得:483460365460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6532x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴3 1.2 1.5 2.7265x y +=+=+=(km). 故答案为:2.7.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.675【分析】设小矩形的长为xcm 宽为ycm 由图形的条件列出方程组可求解【详解】设小矩形的长为xcm 宽为ycm 由题意可得:解得:∴小矩形砖块的面积为=45×15=675cm2故答案为:675【点睛】解析:675【分析】设小矩形的长为xcm ,宽为ycm ,由图形的条件列出方程组,可求解.【详解】设小矩形的长为xcm ,宽为ycm ,由题意可得:275 23x yx y x+=⎧⎨=+⎩,解得:4515 xy=⎧⎨=⎩,∴小矩形砖块的面积为=45×15=675cm2,故答案为:675.【点睛】本题考查了二元一次方程组的应用,找到正确的等量关系是本题的关键.20.【分析】根据勾股定理求得OB即可求得b的值得到直线解析式令y=0求得x的值即可求得OC的值【详解】解:∵点A坐标为(60)∴OA=6∵AB=4∴OB=∴b=OB=2∴直线的解析式为y=x+2令y=0解析:【分析】根据勾股定理求得OB,即可求得b的值,得到直线解析式,令y=0,求得x的值,即可求得OC的值.【详解】解:∵点A坐标为(6,0),∴OA=6,∵∴=∴∴直线的解析式为令y=0,则∴C(0),∴故答案为【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.532 xyz=⎧⎪=⎨⎪=⎩【分析】将①式代入其它两式可抵消掉y ,将方程组变为二元一次方程组,利用加减消元法求解即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③ 将①代入②后整理得:4318y z +=④,将①代入③后整理得:5y z +=⑤,④-3×⑤得3y =,代入⑤可得2z =,代入①得2x =,故该方程组的解为:532x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查解三元一次方程组.掌握消元思想是解题关键.22.(1)照明灯45万个,投射灯5万个;(2)m =20.【分析】(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,依题意,得:5091201005x y x y +=⎧⎨+=⎩, 解得:455x y =⎧⎨=⎩. 答:该城市灯光秀使用照明灯45万个,投射灯5万个. (2)依题意,得:9(1﹣m %)×1000+120(135-m %)×50×(1+20%)=13536,解得:m =20.答:m 的值为20.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准题目中等量关系列出方程是解题关键.23.(1)从甲、乙、丙购买的数量分别为20、40、40;(2)86%;(3)能,方案见解析【分析】(1)根据题意所述的两个等量关系列出方程组,解出即可得出答案;(2)先求出优品数量,然后除以100即可得出优品率;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,根据优品的数量不变,可得出方程,解出即可.【详解】解:(1)由题意得:2100122x x yx x y++=⎧⎪⎨+⨯=⎪⎩,解得:2040 xy=⎧⎨=⎩,所以从甲、乙、丙购买的数量分别为20、40、40;(2)优品率为(80%×20+85%×40+90%×40)÷100=86%;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,80%x+85%y+90%(100-x-y)=100(86%+2%),化简得:2x+y=40因为各厂购买的优品件数是整数,所以45x,1720y要是整数,所以当y=0时,x=20符合;则从甲购20件,乙购0件,丙购80件;当y=20时,x=10符合;则从甲购10件,乙购20件,丙购70件;当y=40时,x=0符合;则从甲购0件,乙购40件,丙购60件.【点睛】本题考查了二元一次方程组的应用,解答此类应用性题目,一定要仔细审题,找到等量关系,然后运用方程思想进行解答.24.(1)a=50,b=40;(2)可以做竖式无盖礼品盒8个,横式无盖礼品盒16个.【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)设可以做竖式无盖礼品盒x个,横式无盖礼品盒y个,根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,然后根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200 a ba b++=⎧⎨++=⎩,解得:5040ab=⎧⎨=⎩,答:图甲中a与b的值分别为:50、40;(2)设可以做竖式无盖礼品盒x个,横式无盖礼品盒y个,依题意得:43325+5225+35x yx y+=⨯⎧⎨+=⨯⎩,解得:816 xy=⎧⎨=⎩.答:可以做竖式无盖礼品盒8个,横式无盖礼品盒16个.【点睛】本题考查的知识点是二元一次方程组的应用,掌握二元一次方程组解应用题的方法与步骤,关键是数形结合构造出关于a 、b 的二元一次方程组,以及竖式与横式两种无盖礼品盒数量的方程组.25.(1)2x =-;(2)34x y =-⎧⎨=⎩【分析】(1)先去括号,再移项、合并同类项,最后将系数化为1,即可求出其解;(2)将两个方程直接相减,可消去未知数y ,求出x 的值,再求出y 的值即可.【详解】解:(1)()()4213311x x ---=去括号得,84931x x --+=,移项合并得,2x -=,系数化为1得,2x =-.(2)148x y x y +=⎧⎨+=-⎩①② ②-①得:39x =-解得:3x =-把3x =-代入①得:4y =.所以34x y =-⎧⎨=⎩. 【点睛】本题考查一元一次方程及二元一次方程组的解法,属于基础题型,比较简单.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项.解二元一次方程组的基本思想是消元,即化二元为一元,基本解法是代入法和加减法.26.(1) 1.611y x =+;(2)是,理由见解析【分析】(1)根据题意和表格中的数据可以计算出y 与x 的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,把40x =,75y =和37x =,70.2y =代入y kx b =+中,得40753770.2k b k b +=⎧⎨+=⎩,解得 1.611k b =⎧⎨=⎩所以 1.611y x =+ (2)把42x =代入 1.611y x =+ 得 1.6421178.2y =⨯+= 答:是配套的.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式.。
第五章二元一次方程组一.认识二元一次方程组1.二元一次方程组的概念含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
注意:(1)二元一次方程必须具备的特征:①整式方程②两个未知数的系数都不为0,次数都为1 (2)二元一次方程不一定都是由两个二元一次方程组成的,可以出现一元一次方程【例1】下列方程组中,不是二元一次方程组的是2.二元一次方程(组)的解二元一次方程的解集:适合一个二元一次方程的每一对未知数的值二元一次方程组及其解:两个二元一次方程的公共解【例2】已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.变式训练1.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个B.2个C.3个D.4个2.已知x ay b=⎧⎨=⎩是方程组||223xx y=⎧⎨+=⎩的解,则a+b的值等于()A.1 B.5 C.1或5 D.0 二、二元一次方程组的解法解方程的基本思路:把二元方程转化为一元方程1.代入消元法【例3】解下列方程组变式训练2.加减消元法【例3】解下列方程组三、二元一次方程组巩固强化变式训练:1.已知2a y+3b3x与-3a2x b8-2y是同类项,由此可列出方程组3.4.某年级共有学生246人,其中男生人数y比女生人数x的2倍少2人,下面所列方程组正确的是()5.如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g变式训练:1.在解方程组278ax bycx y-=⎧⎨+=⎩时,一同学把c看错而得到22xy=-⎧⎨=⎩,正确的解应是32xy=⎧⎨=⎩,那么a,b,c的值是()A.不能确定B.a=4,b=5,c=-2 C.a,b不能确定,c=-2 D.a=4,b=7,c=2 【例7】变式训练:1.2.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k_____.变式训练:1.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.【例9】变式训练:1.三个方程x+y=5, x-y=3, 10x-my=7有公共解,则m=变式训练:变式训练:1.方程4x+3y=20的所有非负整数解为2.求方程2x+5y=10的自然数解,写出过程四、二元一次方程组的应用1.鸡兔同笼【例12】某电视台在黄金时段的2min广告时间内,计划插播长度为15s和30s的两种广告。
15s的广告每播一次收费0.6万元,30s的广告每播一次收费1万元。
若要求每种广告播放不少于2次。
问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放受益较大?变式训练:若已知甲班人数稍多一些,两班各有多少人?2.树上地上各有一些鸽子,树上的鸽子对地上的鸽子说:“若你们飞上来一只,你们的数目就是鸽群的三分之一,若我们飞下去一只,我们和你们的数目恰好相等。
”问究竟有多少只鸽子在树上,多少只鸽子在地上?3.戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船。
一女生说:“我看到船上红、白两种帽子一样多。
”一男生说:“我看到的红帽子是白帽子的2倍。
”则船上有男女生各多少人?【例13】一排宿舍,若每间住1人,则有10人无处住;若每间住3人,则有10间无人住。
问有多少间宿舍多少个人?变式训练:1某中学八年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么可以空出一辆车。
共有几辆车,多少个学生?2.把一摞笔记本分给一些同学,每人5本多6本,每人6本少5本.问学生和笔记本各有多少?2.增收节支(1)利润问题【例14】体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利260元(1)购进篮球和排球各多少个?变式训练:1、一件商品如果按定价打九折出售可以盈利20%,如果打八折出售可以盈利10元,此商品的定价是多少元?2、某同学在甲、乙两家超市发现他看中的随身听的单价相同,书包的单价也相同。
随身听和书包的单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包的单价各是多少元?(2)现在恰好赶上促销活动,甲超市所有商品打八折,乙超市全场购物满100元返30元购物券(不足100元不返现,购物券全场通用)。
请你帮他计算一下在哪家购买更省钱?3、甲乙两件服装的成本共500元,商店老板将甲服装按利润率为50%定价,乙服装按利润率为40%定价。
在实际出售时,应顾客要求,两件服装都按9折出售,这样两件服装共获利157元。
求甲乙两种服装的成本各是多少元?4、某商场以一定的进价购进一批服装,并以一定的单价售出,平均每天卖出10件,30天共获利15000元,现在为了尽快回笼资金,商场决定将每件衣服降价20%出售,结果平均每天比降价前多卖10件,这样30天可以获利12000元。
问这批服装每件的进价和降价前出售的单价各是多少?(2)百分比浓度问题【例15】有两块合金,第一块合金含金270克,含铜30克;第二块合金含金400克,含铜100克。
要配制成含金82.5%的合金400克,应取第一块和第二块合金各多少克?变式训练:1、已知有含盐20%与含盐5%的盐水,若配制成含盐14%的盐水200kg,需要两种盐水各多少?2.某商店准备用两种价格分别为36元/千克和20元/千克的糖果混合成杂拌糖果出售,混合后糖果的价格是28元/千克,现在要配制这种杂拌糖果100千克,需要两种糖果各多少千克?(3)行程问题:(一)相遇问题(路程和等于总路程)(二)追及问题:①两人同地不同时同向而行,直至追上,两人所走路程相等(时间不等)②两人同时不同地同向而行,直至追上,两人所走路程差等于已知两地间的距离(时间相等)③两人不同时不同地同向而行,直至追上,两人所走路程差等于已知两地间的距离(时间不相等)(三)水路行船(航空问题类似):顺水速度=静水船速+水流速度逆水速度=静水船速-水流速度【例16】一条船在河中顺水航速是逆水航速的3倍,这条船在静水中的速度与河水的流速之比为()A.3:1B.2:1C.1:1D.5:2变式训练:1、甲乙两地相距320千米,一艘轮船在其间航行,顺流用20小时,逆流用40小时。
求船在静水中的速度和水流速度。
2、育才中学新建塑胶跑道一圈长400米,甲乙两名运动员从同一点同时出发,相背而跑,40s相遇一次,同向而跑,200s相遇一次。
求甲乙二人的速度。
3.已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用时1min,整列火车完全在桥上的时间为40s,求火车的速度和长度。
4.学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30 km/h的速度爬坡,共用了6.5h;原路返回时,汽车以40 km/h的速度下坡,又以50 km/h的速度走平路,共用了6h。
问平路和坡路各有多远?3.里程碑上的数(1)数字问题【例17】小明的爸爸骑摩托车带着小明在公路上匀速行驶,小明12:00看到里程碑上的数是一个两位数,数字之和是6;13:00时小明看到里程碑上的两位数十位数字与个位数字刚好与12:00时颠倒了;14:30看到的数比12:00看到的两位数中间多了个0。
求小明12:00看到的里程碑上的两位数。
变式训练:1、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数,已知前面的五位数比后面的五位数大225,求这个三位数和两位数。
2、如果一个两位数除以这个两位数交换数字位置后的数,那么所得的商是4,余数是3;如果这个两位数除以个位与十位数字之和,那么所得的商是8,余数是7。
求这个两位数。
3、有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位和个位组成的两位数小3。
求原来的三位数(2)年龄问题(①年龄一年增长一岁,人人平等;②两人的年龄差不变)【例18】兄弟两人,弟弟5年后的年龄是哥哥五年前的年龄,3年后兄弟两人的年龄之和是他们年龄之差的3倍。
则兄弟两人今年的年龄分别是多少?(3)配套问题【例19】某工厂有工人60名,生产某种由一个螺栓套两个螺母的配套产品,每人平均每天生产螺栓14个或螺母20个。
应如何安排这些工人,才能使每天生产的螺栓和螺母刚好配套?变式训练:现有190张铁皮,每张铁皮可制作8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子。
那么用多少张铁皮制作盒身,多少张铁皮制作盒底,可以正好制成一批完整的盒子?小测验:1、如果一个两位数的十位数字与个位数字之和是6,那么这样的两位数有个。
2、把面值1元的纸币换成面值为5角或1角的硬币,则换法有种。
3、中央电视台“开心辞典”栏目中,有一期的题目如下图所示,两个天平都平衡,则3个球体的质量等于个正方体的质量。
4、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成。
按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在规定期限内职能完成订货的80%;现在服装厂改进了人员组成结构和生产流程,每天可生产这种服装200套,这样不仅比规定时间少用一天,而且比订货量多生产25套,求定做的工作服是几套?要求的期限是几天?5.如图,一列快车长70米,一列慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车所用时间为20s,若两车相向而行,则两车从相遇到离开的时间为4s。
求两车的速度。
根据题意填空:(1)若同向而行,经过20s快车行驶路程比慢车多m,可列方程(2)若相向而行,两车4s共行驶m,可列方程(3)由以上可得方程组五. 二元一次方程与一次函数1、二者的关系二元一次方程与函数的关系:二者可以互相转化【例20】以方程3x+y=5的解为坐标的所有点组成的图像与一次函数 的图像相同。
【例21】如图所示,两条直线l 和l 的交点坐标可以看作下列哪个方程组的解( )变式训练:3.以一个二元一次方程组中的两个方程作为一次函数画图像,所得的两条直线( )A.有一个交点B.有无数个交点C.没有交点D.以上都有可能4. 一次函数y=kx+b 的图像如图1所示,则方程kx+b=0的解为( )A.x=2B.x=-1C.y=2D.y=-15.若一次函数y=x+3和一次函数y=-x+b 的交点坐标为(m,8),则m= ,b= 。
6.已知直线y 1=2x-1和一次函数y 2=-x-1的图像如图2所示,根据图像填空:(1)当x 时,y 1>y 2;当x 时,y 1=y 2;当x 时,y 1<y 2;7.如图3,函数y=3x-2和一次函数y=-4x+3的图像交于点A,且两图像分别与y轴交于点B和点C,试求△ABC 的面积2、用二元一次方程组确定一次函数表达式【例21】某航空公司规定,旅客乘机所携带的行李的质量x(kg)与其运费y(元)由如图所示的一次函数图像确定,那么旅客可携带的免费行李的最大质量为()A.20kgB. 25kgC.28kgD.30kg变式训练:1.若一次函数y=kx+b的图像经过点(3,0),且当x<3时,y>0,试写出满足上述条件的一个一次函数关系式2.已知y+2和x成正比例,且当x=-1时,y=2,写出 y与x之间的函数表达式3.。