八年级上册数学第五章知识点复习:二元一次方程组
- 格式:doc
- 大小:13.50 KB
- 文档页数:2
八年级数学二元一次方程组知识点
以下是八年级数学二元一次方程组的主要知识点:
1. 二元一次方程组的定义:由两个未知数的一次方程组成的方程组。
2. 解二元一次方程组的方法:
a. 消元法:通过变换方程组中的某一方程使得两个方程的系数相同,从而使得方程组中某个未知数的系数为零,然后解得另一个未知数,再回代求解另一个未知数。
b. 代入法:将一个方程的一个未知数用另一个未知数表示,然后代入另一个方程,得到包含一个未知数的一次方程,从而解出这个未知数,再代入另一个方程解出另一个未知数。
3. 方程组的解的情况:
a. 有唯一解:方程组有一个解,即两个方程表示的直线在某一点相交。
b. 无解:方程组的两个方程表示的直线平行,不相交。
c. 无穷多解:方程组的两个方程表示的直线重合,有无穷多个解。
4. 方程组解的判断:
a. 可以通过将解代入方程组中验证方程组是否成立,以确定解是否正确。
b. 可以通过画出方程组所表示的直线来观察直线的相交情况,以判断方程组是否有解及解的情况。
5. 方程组应用题:将实际问题转化为方程组,通过解方程组求解实际问题,如两个人同时出发,相遇时互相报告行进的时间等问题。
这些是八年级数学二元一次方程组的主要知识点,希望对你有帮助。
八年级上册---第五章---二元一次方程组-知识点整理(数学教研组)八年级上册 第五章 二元一次方程组 知识点整理一、本章知识点梳理:知识点1:二元一次方程(组)的定义 知识点2:二元一次方程组的解定义知识点3:二元一次方程组的解法 知识点4:一次函数与二元一次方程(组) 知识点5:实际问题与二元一次方程组 二、各知识点分类讲解知识点1:二元一次方程(组)的定义1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数.(2)含有未知数的项的次数都是1.(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m +by n=c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by |a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( )A .3x-y 2=0B .2x +1y =1C .3x -52y=6 D .4xy=3 2、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组 注意:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
例:下列方程组中,是二元一次方程组的是( ) A 、228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)3x y x y +=⎧⎨-=⎩, 其中属于二元一次方程组的个数为( )A .1 B. 2 C . 3 D . 4 2、 若753313=+--m n m y x 是关于x 、y 二元一次方程,则m =_________,n =_________。
二元一次方程组解法—代入法(提高)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x 用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解. 【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.2.(2016春•九台市期末)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用3.(2015春•临清市期末)如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay =-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2. 【巩固练习】 一、选择题 1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入② B .由②得25109nm +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. (2015•张店区一模)若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ). A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a的值是( ).A .3B .2C .7D .6 6.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩ D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.(2015•丹东模拟)若方程组的解为,则点P (a ,b )在第 象限.9.(2016•永州)方程组的解是 .10.若532y xab +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ .12.关于,x y 的二元一次方程组1353x y mx y m+=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m的值为 . 三、解答题13.用代入法解方程组: (1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数: (1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.(2015•沧州一模)若方程组的解是,求(a+b )2﹣(a ﹣b )(a+b ).16.(2016春•万州区校级期中)甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c ,解得,求原方程组中a 、b 、c 的值.【答案与解析】 一、选择题1. 【答案】C ;2.【答案】A .【解析】把x=a ,y=b 代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=.3. 【答案】A ; 【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-.4. 【答案】B ; 【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ; 【解析】由方程组可得,代入方程,即可求得.6. 【答案】D. 二、填空题7. 【答案】151x y =-+; 8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P (2,﹣3)在第四象限. 9.【答案】;【解析】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4, 解得:y=0,将y=0代入①,得:x=2, 故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案. 11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-.三、解答题 13.【解析】 解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①②把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩.14.【解析】 解:(1)无解; (2)唯一一组解; (3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2); 当两个一次方程对应项系数成比例时,方程组有无数组解,如(3); 当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1). 15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。
《第五章4 应用二元一次方程组——增收节支》讲解与例题1.列方程组解答生活中的增收节支问题在生活中,咱们时刻都在与经济打交道,常常面临利润问题、利息问题等.解决这种问题,应熟记一些大体公式:(1)增加率问题: 增加率=增长量计划量×100%. 打算量×(1+增加率)=增加后的量; 打算量×(1-减少率)=减少后的量.(2)经济类问题:利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润商品的进价×100%. 【例1】 某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比总支出多950万元.今年的总产值和总支出各是多少万元?分析:可列下表(去年总产值x 万元,总支出y 万元):总产值 总支出 差 去年x y 500 今年 (1+15%)x (1-10%)y950 题中有两个相等关系:(1)去年的总产值-去年的总支出=500万元;(2)今年的总产值-今年的总支出=950万元.解:设去年的总产值是x 万元,去年的总支出是y 万元,由题意,得⎩⎪⎨⎪⎧x -y =500,1+15%x -1-10%y =950. 解得⎩⎪⎨⎪⎧x =2 000,y =1 500.因此(1+15%)x =2 300,(1-10%)y =1 350.因此今年的总产值是2 300万元,总支出是1 350万元.谈重点 分析表格中数字含义找等量关系先认真审题,找出问题中的已知量和未知量.再借助于表格分析具体问题中蕴涵的数量关系,问题中的相等关系就会清楚地浮现出来.2.列方程组解答行程问题、水路问题、工程问题在咱们的生活中,常常面临行程问题、水路问题、工程问题.解决这种问题,应熟记一些大体公式:(1)行程问题的大体数量关系:路程=速度×时刻.(2)水路问题的大体数量关系:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.(3)工程问题的大体数量关系:工作量=工作效率×工作时刻.【例2-1】 A 市至B 市航线长1 200 km ,一架飞机从A 市顺风向飞往B 市需2小时30分,从B 市逆风向飞往A 市需3小时20分.求飞机的速度与风速.分析:此题中明显的未知数有两个,即:飞机的速度与风速.除此之外,还有两个隐藏的未知数,即:顺风速度与逆风速度.因此咱们能够通过设直接未知数和间接未知数,列出二元一次方程组求解.解:设飞机速度为x km/h ,风速为y km/h ,依照路程=速度×时刻列出方程组:⎩⎪⎨⎪⎧ 212x +y =1 200,313x -y =1 200.解得⎩⎪⎨⎪⎧x =420,y =60. 因此飞机的速度为420 km/h ,风速为60 km/h.【例2-2】 某地为了尽快排除堰塞湖险情,决定在堵塞体表面开挖一条泄流槽,经计算需挖出土石方13.4万立方米,开挖2天后,为了加速施工进度,又增调了大量的人员和设备,天天挖的土石方比原先的2倍还多1万立方米,结果共用5天完成任务,比打算时刻大大提早.依照以上信息,求原打算天天挖土石方多少万立方米?增调人员和设备后天天挖土石方多少万立方米? 分析:抓住关键语句:开挖2天和增调人员后所干的3天里,一共挖出土石方13.4万立方米;天天挖的土石方比原先的2倍还多1万立方米来构建数学模型.解:设原打算天天挖土石方x 万立方米,增调人员和设备后天天挖y 万立方米,依据题意,可列出方程组:⎩⎪⎨⎪⎧y =2x +1,2x +5-2y =13.4. 解得⎩⎪⎨⎪⎧x =1.3,y =3.6.因此原打算天天挖土石方1.3万立方米,增调人员和设备后天天挖3.6万立方米.3.配套问题中的相等关系 在实际问题中,大伙儿常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这种问题的方式是抓住配套关系,设出未知数,依照配套关系列出方程组,通过解方程组解决问题.产品配套是工厂生产中大体原那么之一,如何分派生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系.常见的题型有:(1)配套与人员分派问题.(2)配套与物质分派问题.析规律 配套问题配套问题的背景尽管不同,但解决问题的方式是一样的,需要抓住配套问题的关键语句进行配套.【例3】 某车间22名工人一辈子产螺钉和螺母,每人天天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母,为了使天天生产的产品恰好配套,应该分派多少名工人一辈子产螺钉,多少名工人一辈子产螺母?分析:此题的配套关系是:一个螺钉配两个螺母,即螺钉数∶螺母数=1∶2.解:设分派x 名工人一辈子产螺钉,y 名工人一辈子产螺母,那么一天生产的螺钉数为1 200x 个,生产的螺母数为2 000y 个. 依照题意,得 ⎩⎪⎨⎪⎧x +y =22,2×1 200x =2 000y . 整理得⎩⎪⎨⎪⎧x +y =22,6x =5y ,解得⎩⎪⎨⎪⎧x =10,y =12. 因此为了使天天生产的产品恰好配套,应安排10名工人一辈子产螺钉,12名工人一辈子产螺母.4.注意及时幸免一些常见的错误 二元一次方程组是反映现实世界数量之间相等关系的数学模型之一,其应用即能够将实际问题转化为数学模型,列出二元一次方程组,最终求得符合实际的解.而在具体求解时,很多同窗由于审题不清等问题,总会显现如此那样的错误,这就要求咱们认真地审题,及时地找出题目中的等量关系.若是两车相向而行,那么其相对速度为速度之和,若是两车同向而行,那么其相对速度为速度之差,这一点很多同窗是可不能明白得错的,问题是在相对移动的进程中,移动的距离应为两车的长度之和,很多同窗往往忽略这一点而造成错解.【例4】 一列快车长168 m ,一列慢车长184 m ,若是两车相向而行,从相碰到离开需4 s ,若是同向而行,从快车追及慢车到离开需16 s ,求两车的速度.分析:两车相向而行,其相对速度为两车的速度之和,两车同向而行,其相对速度为两车的速度之差,如此设快车速度为x m/s ,慢车速度为y m/s ,即可利用方程组求解.解:设快车速度为x m/s ,慢车速度为y m/s. 由题意,得⎩⎪⎨⎪⎧ 4x +y =168+184,16x -y =168+184, 即⎩⎪⎨⎪⎧4x +4y =352,16x -16y =352, 也即⎩⎪⎨⎪⎧x +y =88,x -y =22. 解得⎩⎪⎨⎪⎧ x =55,y =33.因此快车的速度为55 m/s ,慢车的速度为33 m/s.。
八年级数学上册第五章知识点归纳在我们上学期间,大家都没少背知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
掌握知识点是我们提高成绩的关键!以下是小编精心整理的八年级数学上册第五章知识点归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级数学上册第五章知识点归纳1 1、二元一次方程①二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法加减(消元)法④一次函数与二元一次方程(组)的关系:一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数和的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
八年级数学上册第五章知识点归纳21、实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:开方开不尽的数,如√7 ,3 √2等;有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;有特定结构的数,如0.1010010001…等;某些三角函数值,如sin60°等2、实数的倒数、相反数和绝对值①相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
借物喻人蚂蚁作文八篇导读:可敬的蚂蚁我喜欢蚂蚁,不仅喜欢它们的勤劳.团结的性格;最令我敬佩的,是它们在有挣扎求全的精神。
记的有一天,我发先两三只蚂蚁在出房的墙壁上匆匆爬行着。
我一时高兴起,用双手截水,泼在墙上,水流向它们,它们受了惊,四处逃跑。
我在用水泼去,它们被水冲的更远了,还被豆大的水粘着。
这几只可怜的蚂蚁拼命爬了好久才爬出包围着它们的水。
我又泼一些水上去,我想这回它们爬不出来了吧?这几只蚂蚁拼命爬了好久,还是寸步难移。
过了一会儿它们大概是精疲力尽了,就停下来歇息一会儿,又重新挣扎着爬起来。
如此连续几次终余到了没水的地方。
我看着这些脱险的小蚂蚁,看到它们那种不畏困难的精神,我不由想到那些在小挫折面前就底头,甘心失败的人,只觉那些蚂蚁比人还坚强许多。
团结的蚂蚁星期天下午,我在家里无所事事。
我来到院子里,忽然,我的眼睛一亮,地上有一群蚂蚁。
于是,我蹲在地下,好好观察了这群蚂蚁。
只见蚂蚁排着整齐的队伍向前走去,原来它们在运我掉在地上的面包屑。
我拿起一杯水,“哗”的一声把水倒在了几只蚂蚁的身上,沾水的那几只蚂蚁艰难地向前移动,可是没走几步就倒在地上。
正在这时候,几只蚂蚁站在一片树叶上,划着“桨”慢慢地向那两只蚂蚁靠近。
终于,它们把那两只蚂蚁救上了“船”,它们又划着“桨”,慢慢地靠近岸边。
我以为它们要休息好一阵子才能走,可是没想到它们只休息了一二分钟,就继续朝前走去。
我想在做一个实验来证明蚂蚁团结力量大。
我左思右想,终于想出了一个好主意。
我找了一个小石子,拿在手里,悄悄地跟着蚂蚁走,来到蚂蚁的洞口,那是一个米粒大小的洞口。
我把小石子堵在洞口上。
想看看蚂蚁会怎么做?蚂蚁们都把面包屑放在地上,围住小石子,慢慢地把石子抬起来,我仿佛听见蚂蚁在说:“一二,一二,加油呀!”不大一会儿就把石子抬过去了。
它们又把食物背在背上,排着队有秩序的进了洞。
我想:我们人类,为什么连一只小小的蚂蚁都不如呢?如果我们的同学之间,也能像蚂蚁一样团结友爱,遇到困难共同想办法克服,那么,我们的生活会更快乐!勇敢的蚂蚁在动物界里,蚂蚁虽然很小,可是它却可以打败比它们强大几十倍甚至上百倍的动物,这是为什么呢?以前连我自己都不相信,自从我亲身经历过的这件事,让我知道了蚂蚁的厉害。
北师大版八年级数学(上)实际问题与二元一次方程组题型归纳类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。
八年级数学二元一次方程组知识点总结二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。
两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。
下面是整理的八年级数学二元一次方程组知识点,仅供参考希望能够帮助到大家。
八年级数学二元一次方程组知识点1、认识二元一次方程组①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解2、求解二元一次方程组①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法3、应用二元一次方程组①鸡兔同笼4、应用二元一次方程组①增减收支5、应用二元一次方程组①里程碑上的数6、二元一次方程组与一次函数①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标7、用二元一次方程组确定一次函数表达式①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。
8、三元一次方程组①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.初中生数学学习方法分享1数学学习技巧在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。
必备的初二上册数学第五章知识点:二元一次方程组成绩的提高是同学们提高总体学习成绩的重要途径,大伙儿一定要在平常的练习中不断积存,小编为大伙儿预备了必备的初二上册数学第五章知识点:二元一次方程组,期望同学们不断取得进步!1.判定一个方程是不是二元一次方程,一样要将方程化为一样形式后再依照定义判定。
2.二元一次方程的解:一个二元一次方程有许多个解,而每一个解差不多上一对数值。
求二元一次方程的解的方法:若方程中的未知数为x,y,可任取x的一些值,相应的可算出y的值,如此,就会得到满足需要的数对。
3.二元一次方程组:两个二元一次方程合在一起,就组成了一个二元一次方程组。
作为二元一次方程组的两个方程,不一定都含有两个未知数,能够其中一个是一元一次方程,另一个是二元一次方程。
4.二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
检验一对数值是不是二元一次方程组的解的方法是,将两个未知数分别代入方程组中的两个方程,假如都能满足这两个方程,那么它确实是方程组的解。
5.运用代入法解方程组应注意的事项:(1)不能将变形后的方程再代入变形前的那个方程。
(2)运用代入法要使解方程组过程简单化,即选取系数较小的方程变形。
(3)要判定求得的结果是否正确。
6.对二元一次方程组的解的明白得:(1)方程组的解是指方程组里各个方程的公共解。
(2)“公共解”的意思,实际上包含以下两个方面的含义:①因为任何一个二元一次方程都有许多个解,因此方程组的解必须是方程组里某一个方程的一个解。
②而那个解必须同时满足方程组里其中任何一个方程,因此二元一次方程组的解一定同时满足那个方程组里两个方程的任何一个方程。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。
”因此看,宋元时期小学教师被称为“老师”有案可稽。
必备的八年级上册数学第五章知识点复习:二元
一次方程组
尽快地掌握科学知识,迅速提高学习能力,由为您提供的必备的八年级上册数学第五章知识点复习:二元一次方程组,希望给您带来启发!
1.判断一个方程是不是二元一次方程,一般要将方程化为一般形式后再根据定义判断。
2.二元一次方程的解:一个二元一次方程有无数个解,而每一个解都是一对数值。
求二元一次方程的解的方法:若方程中的未知数为x,y,可任取x的一些值,相应的可算出y的值,这样,就会得到满足需要的数对。
3.二元一次方程组:两个二元一次方程合在一起,就组成了一个二元一次方程组。
作为二元一次方程组的两个方程,不一定都含有两个未知数,可以其中一个是一元一次方程,另一个是二元一次方程。
4.二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
检验一对数值是不是二元一次方程组的解的方法是,将两个未知数分别代入方程组中的两个方程,如果都能满足这两个方程,那么它就是方程组的解。
5.运用代入法解方程组应注意的事项:
(1)不能将变形后的方程再代入变形前的那个方程。
(2)运用代入法要使解方程组过程简单化,即选取系数较小的方程变形。
(3)要判断求得的结果是否正确。
6.对二元一次方程组的解的理解:
(1)方程组的解是指方程组里各个方程的公共解。
(2)“公共解”的意思,实际上包含以下两个方面的含义:
①因为任何一个二元一次方程都有无数个解,所以方程组的解必须是方程组里某一个方程的一个解。
②而这个解必须同时满足方程组里其中任何一个方程,因此二元一次方程组的解一定同时满足这个方程组里两个方程的任何一个方程。
以上就是为大家整理的必备的八年级上册数学第五章知识点复习:二元一次方程组,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。