2013-2014学年 高中数学 人教B版选修2-1【配套备课资源】2.2.1精要课件 椭圆的标准方程(二)
- 格式:ppt
- 大小:2.36 MB
- 文档页数:23
椭圆椭圆的标准方程.了解椭圆标准方程的推导..理解椭圆的定义及椭圆的标准方程.(重点).掌握用定义和待定系数法求椭圆的标准方程.(重点、难点)[基础·初探]教材整理椭圆的定义阅读教材前自然段,完成下列问题.平面内与两个定点,的距离的和等于的点的轨迹(或集合)叫做椭圆.这叫做椭圆的焦点,叫做椭圆的焦距.【答案】常数(大于) 两个定点两焦点的距离判断(正确的打“√”,错误的打“×”)()到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.( ) ()在椭圆定义中,将“大于”改为“等于”的常数,其它条件不变,点的轨迹为线段.( )()到两定点(-)和()的距离之和为的点的轨迹为椭圆.( )【答案】()×()√()×教材整理椭圆的标准方程阅读教材第自然段~“思考与讨论”,完成下列问题.椭圆+=的焦点在轴上,焦距为,椭圆+=的焦点在轴上,焦点坐标为.【解析】由>可判断椭圆+=的焦点在轴上,由=-=,可得=,故其焦距为.由>,可判断椭圆+=的焦点在轴上,=-=,故焦点坐标为(,)和(,-).【答案】(,)和(,-)[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问:解惑:疑问:解惑:疑问:解惑:[小组合作型]()两个焦点的坐标分别为(-)和(),且椭圆经过点();()焦点在轴上,且经过两个点()和();()经过点(,-)和点(-,).【自主解答】()由于椭圆的焦点在轴上,∴设它的标准方程为+=(>>).∴=,=,∴=-=-=.故所求椭圆的标准方程为+=.()由于椭圆的焦点在轴上,。
模块检测(时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p:若x2+y2=0(x,y∈R),则x,y全为0;命题q:若a>b,则1a< 1 b.给出下列四个复合命题:①p且q;②p或q;③綈p;④綈q.其中真命题的个数是().A.1 B.2 C.3 D.4解析命题p为真,命题q为假,故p∨q真,綈q真.答案 B2.“α=π6+2kπ(k∈Z)”是“cos 2α=12”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析当α=π6+2kπ(k∈Z)时,cos 2α=cos(4kπ+π3)=cosπ3=12.反之当cos 2α=12时,有2α=2kπ+π3(k∈Z)⇒α=kπ+π6(k∈Z),或2α=2kπ-π3(k∈Z)⇒α=kπ-π6(k∈Z),故应选A.答案 A3.若直线l的方向向量为b,平面α的法向量为n,则可能使l∥α的是().A.b=(1,0,0),n=(-2,0,0)B.b=(1,3,5),n=(1,0,1)C.b=(0,2,1),n=(-1,0,-1)D.b=(1,-1,3),n=(0,3,1)解析若l∥α,则b·n=0.将各选项代入,知D正确.答案 D4.已知A 为椭圆x 216+y 212=1的右顶点,P 为椭圆上的点,若∠POA =π3,则P 点坐标为( ).A .(2,3) B.⎝ ⎛⎭⎪⎫455,±4155 C.⎝ ⎛⎭⎪⎫12,±32D .(4,±83)解析 由y =±3x 及x 216+y 212=1(x >0)得解. 答案 B5.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( ).A .90°B .60°C .30°D .0°解析 ∵|a|=|b|=2,∴(a +b )·(a -b )=a 2-b 2=0.故向量a +b 与a -b 的夹 角是90°. 答案 A6.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( ).A .10B .8C .6D .4解析 由抛物线的定义得|AB |=x 1+x 2+p =6+2=8. 答案 B7.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( ). A.63 B.255 C.155D.105解析 建立如图所示坐标系,得D (0,0,0),B (2,2,0),C 1(0,2,1),B 1(2, 2,1),D 1(0,0,1),则DB →=(2,2,0),DD 1→=(0,0,1),BC 1→=(-2,0,1).设平面BD 1的法向量n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DD 1→=z =0,∴取n =(1,-1,0).设BC 1与平面BD 1所成的角为θ,则sin θ=cos 〈n ,BC 1→〉=|BC 1→·n ||BC 1→|·|n |=25·2=105.答案 D8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ).A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析 y 2=ax 的焦点坐标为(a4,0),过焦点且斜率为2的直线方程为y =2(x -a 4),令x =0得y =-a 2.∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8. 答案 B9.三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( ).A .-2B .2C .-2 3D .2 3解析 AB→·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos 90°-2×2×cos 60°=-2. 答案 A10.两个焦点在x 轴上的椭圆C 1:x 24+y 23=1和C 2:x 29+y 2m =1,C 1比C 2要扁,则m 的取值范围是( ).A.⎝ ⎛⎭⎪⎫274,+∞B.⎝ ⎛⎭⎪⎫332,+∞C.⎝ ⎛⎭⎪⎫274,9D.⎝ ⎛⎭⎪⎫332,9解析 因椭圆越扁其离心率越大, ∴9-m 9<12,化简得m >274.又∵椭圆C 2焦点在x 轴上, ∴m <9.因此274<m <9. 答案 C11.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( ).A. 3B .2C. 5D. 6解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,因为y =x 2+1与渐近线相切,故x 2+1±b a x =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a =4,∴c 2a 2=5,∴e = 5. 答案 C12.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是 ( ).A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形解析 双曲线的离心率e 12=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 12e 22=1,即a 2+b 2a 2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知命题p:∀x∈R(x≠0),x+1x≥2,则綈p:________.解析首先将量词符号改变,再将x+1x≥2改为x+1x<2.答案∃x∈R(x≠0),x+1x<214.已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为______________.解析连接虚轴一个端点、一个焦点及原点的三角形,由条件知,这个三角形的两直角边分别是b,c(b是虚半轴长,c是焦半距),且一个内角是30°,即得bc=tan30°,所以c=3b,a=2b,离心率e=ca=32=62.答案6 215.给出下列结论:①若命题p:∃x∈R,tan x=1;命题q:∀x∈R,x2-x+1>0,则命题“p∧綈q”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是a b=-3;③命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.其中正确结论的序号为________(把你认为正确的结论的序号都填上).解析对于①,命题p为真命题,命题q为真命题,所以p∧綈q为假命题,故①正确;对于②,当b=a=0时,有l1⊥l2,故②不正确;易知③正确.所以正确结论的序号为①③.答案①③16.在平面直角坐标系xOy中,椭圆C:x225+y29=1的左、右焦点分别是F1、F2,P为椭圆C上的一点,且PF1⊥PF2,则△PF1F2的面积为______.解析∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2,由椭圆方程知a=5,b=3,∴c=4,∴⎩⎨⎧|PF 1|2+|PF 2|2=4c 2=64|PF 1|+|PF 2|=2a =10, 解得|PF 1||PF 2|=18.∴△PF 1F 2的面积为12|PF 1|·|PF 2|=12×18=9. 答案 9三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知命题p :方程x 22m +y 29-m =1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈(62,2),若命题p 、q 中有且只有一个为真命题,求实数m 的取值范围. 解 若p 真,则有9-m >2m >0, 即0<m <3.若q 真,则有m >0,且e 2=1+b 2a 2=1+m 5∈(32,2),即52<m <5.若p 、q 中有且只有一个为真命题, 则p 、q 一真一假. ①若p 真、q 假,则0<m <3,且m ≥5或m ≤52,即0<m ≤52; ②若p 假、q 真,则m ≥3或m ≤0,且52<m <5, 即3≤m <5.故所求范围为:0<m ≤52或3≤m <5.18.(12分)求以(1,-1)为中点的抛物线 y 2=8x 的弦所在的直线方程. 解 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 12=8x 1, ①y 22=8x 2, ②由⎩⎪⎨⎪⎧x 1+x 22=1,y 1+y 22=-1,得⎩⎨⎧x 1+x 2=2, ③y 1+y 2=-2. ④又∵k AB =y 2-y 1x 2-x 1.⑤由②-①,得(y 2+y 1)(y 2-y 1)=8(x 2-x 1), ∴y 2-y 1x 2-x 1=8y 2+y 1, 将④⑤代入上式可得k AB =-4.故弦所在的直线方程为y +1=-4(x -1),即4x +y -3=0. 19.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A 、B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值. 解 (1)由⎩⎨⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎨⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0. ∴(a 2+1)·-23-a 2+a ·2a3-a2+1=0,∴a =±1,满足(1)所求的取值范围. 故a =±1.20.(12分)如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD . (1)求异面直线BF 与DE 所成的角的大小; (2)证明平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.解 如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0, 1),M (12,1,12).(1)BF→=(-1,0,1),DE →=(0,-1,1), 于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12×2=12.所以异面直线BF 与DE 所成的角的大小为60°. (2)证明 由AM→=(12,1,12),CE →=(-1,0,1),AD→=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(3)设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CE→=0,u ·DE →=0.于是⎩⎨⎧-x +z =0,-y +z =0.令x =1,可得u =(1,1,1).又由题设,平面ACD 的一个法向量为v =(0,0,1). 所以,cos 〈u ,v 〉=u·v |u|·|v |=0+0+13×1=33. 因为二面角A -CD -E 为锐角,所以其余弦值为33.21.(12分)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M (355,455),F (5,0),且P 为L 上动点,求||MP |-|FP ||的最大 值及此时点P 的坐标.解 (1)设圆C 的圆心坐标为(x ,y ),半径为r . 圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2, 圆(x -5)2+y 2=4的圆心为F (5,0),半径为2. 由题意得⎩⎨⎧|CF 1|=r +2,|CF |=r -2或⎩⎨⎧|CF 1|=r -2,|CF |=r +2,∴||CF 1|-|CF ||=4. ∵|F 1F |=25>4,∴圆C 的圆心轨迹是以F 1(-5,0),F (5,0)为焦点的双曲线,其方程为 x 24-y 2=1.(2)由图知,||MP |-|FP ||≤|MF |,∴当M ,P ,F 三点共线,且点P 在MF 延长线上时,|MP |-|FP |取得最大值 |MF |,且|MF |=(355-5)2+(455-0)2=2.直线MF 的方程为y =-2x +25,与双曲线方程联立得 ⎩⎪⎨⎪⎧y =-2x +25,x 24-y 2=1,整理得15x 2-325x +84=0. 解得x 1=14515(舍去),x 2=655. 此时y =-255.∴当||MP |-|FP ||取得最大值2时,点P 的坐标为(655,-255).22.(12分)椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点F 1,F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,|PF 1|=43,|PF 2|=143. (1)求椭圆C 的方程;(2)若直线l 过圆x 2+y 2+4x -2y =0的圆心M 交椭圆于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.解 (1)因为点P 在椭圆C 上,所以2a =|PF 1|+|PF 2|=6,a =3. 在Rt △PF 1F 2中,|F 1F 2|=|PF 2|2-|PF 1|2=25, 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4, 所以椭圆C 的方程为x 29+y 24=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).因圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为y =k (x +2)+1,代入椭圆C 的方程得(4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0. 因为A ,B 关于点M 对称.所以x 1+x 22=-18k 2+9k 4+9k 2=-2.解得k =89. 所以直线l 的方程为y =89(x +2)+1, 即8x -9y +25=0(经检验,符合题意).。
1.1.1 《函数的平均变化率》教案教学目的:理解函数的平均变化率,为进一步学习导数的概念做好准备.重点难点:数学符号语言的理解.学科素养:用所学探索未知,通过数学定义的教学,体会数学研究的手段方法.一、引入与新课:【提出问题】问题1:春游爬山的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁。
怎样用数学反映山坡的平缓与陡峭程度?【抽象概括】假设图一是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示.自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.我们先假定一小段山路是直的(曲化直)。
设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1)(如图二).问题2:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量分别是多少? 提示:自变量x 的改变量为x 1-x 0,记作Δx =x 1-x 0,函数值y 的改变量为y 1-y 0,记作Δy =y 1-y 0. 问题3:根据Δx 与Δy 的大小能否判断山坡陡峭程度?提示:图三可知,Δy 相同,Δx 不同,山坡AB 与BC 陡峭程度不同;图四可知,Δy 不同,Δx 相同,山坡AB 与BC 陡峭程度也不同。
所以根据Δx 与Δy 的大小不能判断山坡陡峭程度图一 图二图三图四问题4:观察图三和图四,可以用怎样的数量刻画弯曲山路的陡峭程度呢?提示:观察图三和图四可知,两边山坡的倾斜的角度可以刻画山路的陡峭程度。
联想到直线的倾斜角的定义,可知1010tan y y y k x x xθ-∆===-∆可近似地刻画. 【解决问题】显然,“线段”所在直线的斜率的绝对值越大,山坡越陡.这就是说,竖直位移与水平位移之比Δy Δx的绝对值越大,山坡越陡,反之,山坡越缓.现在摆在我们面前的问题是:山路是弯曲的,怎样用数量刻画弯曲山路的陡峭程度?一个很自然的想法是将弯曲山路分成许多小段(分割),每一小段山坡可视为平直的。
选修2-2 2.1.1一、选择题1.已知数列{a n}中,a1=1,当n≥2时,a n=2a n-1+1,依次计算a2,a3,a4后,猜想a n的一个表达式是()A.n2-1 B.(n-1)2+1C.2n-1 D.2n-1+1[答案] C[解析]a2=2a1+1=2×1+1=3,a3=2a2+1=2×3+1=7,a4=2a3+1=2×7+1=15,利用归纳推理,猜想a n=2n-1,故选C.2.(2010·山东卷文,10)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=() A.f(x) B.-f(x)C.g(x) D.-g(x)[答案] D[解析]本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,∴g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理能力的考查.3.我们把4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如下图),则第n-1个正方形数是()A.n(n-1)B.n(n+1)C.n2D.(n+1)2[答案] C[解析]第n-1个正方形数的数目点子可排成n行n列,即每边n个点子的正方形,∴点数为n2.故选C.4.根据给出的数塔猜测123456×9+7等于()1+9×2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111…A .1111110B .1111111C .1111112D .1111113 [答案] B5.类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边的一半;(3)三内角平分线交于一点.可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14; (3)四面体的六个二面角的平分面交于一点.其中类比推理方法正确的有( )A .(1)B .(1)(2)C .(1)(2)(3)D .都不对 [答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.故选C.6.图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A .白色B .黑色C .白色可能性大D .黑色可能性大[答案] A[解析] 由图知:三白二黑周而复始相继排列,∵36÷5=7余1,∴第36颗珠子的颜色是白色.7.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,则猜想a n =( )A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1 D .2sin θ2n [答案] B [解析] ∵a 1=2cos θ,a 2=2+2cos θ=21+cos θ2=2cos θ2,a 3=2+2a 2=21+cos θ22=2cos θ4……,猜想a n =2cos θ2n -1.故选B. 8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A .①B .①②C .①②③D .③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.故选C.9.把3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第六个三角形数是( )A .27B .28C .29D .30[答案] B[解析] 观察归纳可知第n -1个三角形数共有点数:1+2+3+4+…+n =n (n +1)2个,∴第六个三角形数为7×(7+1)2=28.故选B. 10.已知f (x )是R 上的偶函数,对任意的x ∈R 都有f (x +6)=f (x )+f (3)成立,若f (1)=2,则f(2005)等于()A.2005 B.2C.1 D.0[答案] B[解析]f(3)=f(-3)+f(3)=2f(3),所以f(3)=0.所以f(x+6)=f(x)+f(3)=f(x),即f(x)的最小正周期为6.所以f(2005)=f(1+334×6)=f(1)=2.故选B.二、填空题11.在平面上,若两个正三角形的边长比为12,则它们的面积比为1 4.类似地,在空间中,若两个正四面体的棱长比为12,则它们的体积比为________.[答案]18[解析]V1V2=13S1h113S2h2=S1S2·h1h2=14×12=18.12.观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,…由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=________.[答案]24n-1+(-1)n22n-1[解析]由归纳推理,观察等式右边23-2,27+23,211-25,215+27,…,可以看到右边第一项的指数3,7,11,15,…成等差数列,公差为4,首项为3,通项为4n-1;第二项的指数1,3,5,7,…,通项为2n-1.故得结论24n-1+(-1)n22n-1.13.将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.[答案] n 2-n +62[解析] 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行从左到右的第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 14.(2010·湖南理,15)若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.[答案] 2 n 2[解析] 因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3.所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16.猜想((a n )*)*=n 2.三、解答题15.在△ABC 中,不等式1A +1B +1C ≥9π成立, 在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立, 在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?[解析] 根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n 2(n -2)π(n ≥3且n ∈N *).∴在n 边形A 1A 2…A n 中:1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3且n ∈N *). 16.在数列{a n }中,a 1=1,a n +1=2a n 2+a n,n ∈N +,猜想数列的通项公式并证明. [解析] {a n }中a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式a n =2n +1(n ∈N +). 证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12, 即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =1+(n -1)12=n 2+12,即通项公式为a n =2n +1(n ∈N +). 17.如图,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF cos ∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.[解析] (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN .∴BB 1⊥MN .又CC 1∥BB 1,∴CC 1⊥MN .(2)在斜三棱柱ABC -A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2SBCC 1B 1·SACC 1A 1cos α.其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角.∵CC 1⊥平面PMN ,∴上述的二面角的平面角为∠MNP .在△PMN 中,PM 2=PN 2+MN 2-2PN ·MN cos ∠MNP⇒PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP , 由于S BCC 1B 1=PN ·CC 1,S ACC 1A 1=MN ·CC 1,S ABB 1A 1=PM ·BB 1=PM ·CC 1,∴有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2S BCC 1B 1·S ACC 1A 1·cos α.18.若a 1、a 2∈R +,则有不等式a 21+a 222≥⎝⎛⎭⎫a 1+a 222成立,此不等式能推广吗?请你至少写出两个不同类型的推广.[解析] 本题可以从a 1,a 2的个数以及指数上进行推广.第一类型:a 21+a 22+a 233≥(a 1+a 2+a 33)2, a 21+a 22+a 23+a 244≥(a 1+a 2+a 3+a 44)2,…, a 21+a 22+…+a 2n n ≥(a 1+a 2+…+a n n)2; 第二类型:a 31+a 322≥(a 1+a 22)3, a 41+a 422≥(a 1+a 22)4, …,a n 1+a n 22≥(a 1+a 22)n ; 第三类型:a 31+a 32+a 333≥(a 1+a 2+a 33)3,…, a m 1+a m 2+…+a m n n ≥(a 1+a 2+…+a n n)m .上述a1、a2、…、a n∈R+,m、n∈N*.。
【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。
条件概率教学设计课标分析《条件概率》是人教B 版普通高中课程标准实验教科书《数学》选修2-3 第二章随机变量及其分布中,二项分布及其应用的第一课时的内容,主要包括:(1)条件概率的概念;(2)条件概率的性质;(3)条件概率公式的简单应用。
《条件概率》的内容,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过对有无“第一名同学没有中奖”条件,最后一名同学中奖的概率的比较,引出条件概率的概念,给出了条件概率的两个性质,并通过条件概率公式的简单应用加深对条件概率概念本质特征的理解掌握。
为相互独立事件和二项分布的内容教学,起“引流开山”之作用,即为定义相互独立事件和研究二项分布做好了知识铺垫。
正因本节是数学新概念引入建立,其教学便化身为本章的难点,对其进行合理的教学处理尤显重要。
本节教学重点和难点都是对条件概率的概念理解,应用公式对条件概率的计算是围绕这一中心的;在条件概率概念的引入中,应抓住“条件概率的本质是样本空间范围的缩小下的概率”这一转化关键。
教学关键是实际案例对比,甚者要辅以图示直观说明解释和反例验证等教学方式对条件概率的概念进行多角度分析研究,才能突破本节教学重点和教材分析《条件概率》第一课时是高中数学选修2-3第二章第二节的内容本节课是在必修三学习了概率的定义,概率的关系与运算,概率的基本性质,古典概型特点及其运算的基础上,学习如何计算已知某一事件发生的条件下,另一事件发生的概率,它仍属于概率的范畴。
它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模条件概率是比较难理解的概念。
教科书利用大家比较熟悉的抽奖为实例,以无放回抽取奖券的方式,通过比较抽奖前和在已知第一名同学没有中奖的条件下,最后一名同学中奖的概率从而引入条件概率的概念,给出条件概率的两种计算方法。
1.2充分条件与必要条件(第2课时)一、教学目标(一)学习目标1.正确理解充要条件的定义,了解充分不必要条件,必要不充分条件,既不充分也不必要条件的定义;2.能正确判断充要条件,充分不必要,必要不充分条件,既不充分也不必要条件的定义;3.能认识对条件的判定其实就是判断命题的真假.(二)学习重点1.充分性和必要性的判断;2.运用充分性和必要性解题.(三)学习难点充分性和必要性的判断.二、教学设计(一)课前设计1.预习任务(1)如果p q q p ⇒⇒且,则p 叫做q 的_________条件;(2)如果p q q p ⇒⇒/且,则p 叫做q 的_________条件;(3)如果p q q p ⇒⇒/且,则p 叫做q 的_________条件;(4)如果p q q p ⇒⇒//且,则p 叫做q 的_________条件.【答案】充要;充分不必要 必要不充分 既不充分也不必要预习自测1.,A B 是ABC ∆的两个内角,:sin sin cos cos p A B A B <;:q ABC ∆是钝角三角形.则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【知识点】充分条件、必要条件,三角函数.【解题过程】因为sin sin cos cos A B A B <,所以cos()0A B +>.即cos 0C <,所以角C 为钝角,充分性成立;而ABC ∆为钝角三角形,角C 不一定为钝角,必要性不成立.【思路点拨】三角形ABC ∆中,cos()cosC A B +=-.【答案】A2.命题:2p a =,命题:q 直线310ax y +-=与直线6430x y +-=垂直.则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【知识点】充分条件、必要条件,直线垂直的判断.【解题过程】2a =时,直线为2310x y +-=,可以计算26+34120⨯⨯=≠,所以两直线不平行,充分性不成立;由两直线平行可得6+340a ⨯=,即2a =-,所以必要性不成立.【思路点拨】直线1110A x B y C ++=与直线2220A x B y C ++=垂直,则12120A A B B ⋅+⋅=.【答案】D3.已知函数()cos f x x b x =+,其中b 为常数,那么0b =“”是“()f x 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【知识点】充分条件、必要条件,函数奇偶性.【解题过程】0b =时,()f x x =,显然为奇函数,充分性成立;当()cos f x x b x=+为奇函数时,由其定义域为R 可知(0)0f =,即0cos 00b +=解得0b =,必要性成立.【思路点拨】 奇函数中若定义域可取0,则定有(0)0f =成立.【答案】C4.“sin cos αα=”是“2,4k k Z παπ=+∈”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【知识点】充分条件、必要条件,三角函数.【解题过程】当sin cos αα=时,即tan =1α,所以4k k Z παπ=+∈,充分性不成立;当24k k Z παπ=+∈,时tan =1α,即sin cos αα=,必要性成立. 【思路点拨】 三角函数求值.【答案】B(二)课堂设计1.知识回顾(1)充分条件和必要条件的定义;(2)充分条件和必要条件的判定.2.问题探究探究一 结合实例理解充分必要条件●活动① 回顾旧知,引入概念已知命题p :整数=41()a k k Z ±∈;命题q :整数a 是奇数.请问:p 是q 的充分条件吗?p 是q 的必要条件吗?(抢答)提示:要判断p 是否是q 的充分条件,就要看p 是否能推出q ,要判断p 是否是q 的必要条件,就要看q 是否能推出p .显然p ⇒q ,p 是q 的充分条件,q ⇒p ,p 是q 的必要条件.此时我们就说p 是q 的充分必要条件.【设计意图】通过学生熟悉的例子,自然过渡到充分必要条件的概念,容易理解和接受.●活动② 结合实例,提取概念一般地,如果p ⇒q 且q ⇒p ,就记作p q ⇔.此时,就说p 是q 的充分必要条件,简称充要条件.显然如果p 是q 的充分必要条件,则q 也是p 的充分必要条件.说明:在讨论p 是q 的什么条件时,一般指的是以下四种情况之一:(1)如果p q q p ⇒⇒且,则p 叫做q 的充要条件;(2)如果p q q p ⇒⇒/且,则p 叫做q 的充分不必要条件;(3)如果p q q p ⇒⇒/且,则p 叫做q 的必要不充分条件;(4)如果p q q p ⇒⇒//且,则p 叫做q 的既不充分也不必要条件.【设计意图】通过类比,得到其余三种形式的条件.●活动③ 运用反馈,巩固概念例 1 “m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0互相垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【知识点】充分条件、必要条件.【解题过程】 (m +2)x +3my +1=0与(m -2)x +(m +2)y -3=0互相垂直的充要条件是(m +2)(m -2)+3m (m +2)=0,即(m +2)(4m -2)=0. ∴m =-2,或m =12.故为充分不必要条件.【思路点拨】根据垂直计算出参数的值再判断.【答案】B .同类训练 “a +c >b +d ”是“a >b 且c >d ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【知识点】充分条件、必要条件.【解题过程】如a =1,c =3,b =2,d =1时,a +c >b +d ,但a <b ,故由“a +c >b +d ”⇒/“a >b 且c >d ”,由不等式的性质可知,a >b 且c >d ,则a +c >b +d , ∴ 为必要不充分条件.【思路点拨】不等式的性质.【答案】A .【设计意图】通过训练,熟悉充分必要条件的判断.探究二 从集合的观点理解充分条件、必要条件和充要条件●活动① 运用概念 探求新知请同学们快速判断下列各题中,p 是q 的什么条件?你能发现什么?(1):2:1;p x q x >> (2):2:1;p x q x <<(3):2:2;p x q x >> (4):2:1;p x q x ><【设计意图】促使学生学会用集合的包含观点理解充分条件和必要条件. ●活动② 知识点归纳从集合的角度理解充分条件与必要条件: 设集合{}|()|P x p x =,{}=|()Q x q x .(1)p q ⇒,相当于P Q ⊆,即 或即:要使x Q ∈成立,只要x P ∈就足够了.(2)q p ⇒,相当于Q P ⊆,即 或即:为使x Q ∈成立,必须要使x P ∈.可以归纳为以下六点:(1) 若P Q ⊆,则p 是q 的充分条件.(2) 若Q P ⊆,则p 是q 的必要条件.(3) 若=P Q ,则p 是q 的充要条件.(4) 若P Q ⊂,则p 是q 的充分不必要条件.(5) 若Q P ⊂,则p 是q 的必要不充分条件.(6) 若P Q ⊆/且Q P ⊆/,则p 是q 的既不充分也不必要条件.●活动③ 运用反馈,巩固概念例2 若p 是r 的充分不必要条件,r 是q 的必要条件,r 是s 的充要条件,q 是s 的必要条件,则:(1)s 是p 的什么条件? (2)r 是q 的什么条件?【知识点】充分条件、必要条件.【数学思想】【解题过程】画出集合图像分析.【思路点拨】运用集合的包含关系.【答案】(1)必要不充分条件;(2)充要条件.同类训练 已知命题p :|x -8|≤2,q :x -1x +1>0,r :x 2-3ax +2a 2<0(a >0).若命题r 是命题p 的必要不充分条件,且r 是q 的充分不必要条件,试求a 的取值范围.【知识点】充分条件、必要条件.【数学思想】【解题过程】命题p 即:6≤x ≤10;命题q 即:x >1;命题r 即:a <x <2a .若记以上3个命题中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,所以有A C B ⊆⊆,结合数轴应有16210a a ≤<⎧⎨>⎩,即5<a <6.【思路点拨】运用集合的包含关系.【答案】a 的取值范围是5<a <6.3. 课堂总结知识梳理1.充分条件、必要条件、充要条件的定义;2.充分、必要条件判断的几种方法:定义法、等价法、集合间的包含关系. 重难点归纳1. 判断充分、必要条件时要分清楚条件和结论,然后尝试从条件推结论,若成立,则充分性具备,再从结论推条件判断必要性是否成立,一定要注意分类讨论;2. 判断充分、必要条件几种方法的灵活运用.(三)课后作业基础型 自主突破1.“x >0”是“0x ≠”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【知识点】充要条件的判定.【解题过程】x >0,则0x ≠;反之,0x ≠,不一定x >0.【思路点拨】不等式的性质.【答案】A2.已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【知识点】充要条件的判定.【解题过程】显然,充分性不成立.若a -c >b -d 和c >d 都成立,则同向不等式相加得a >b ,即由“a -c >b -d ”⇒“a >b ”.所以选B .【思路点拨】不等式的性质.【答案】B3.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab > ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【知识点】充要条件的判定.【解题过程】“0a >且0b >”可以推出“0a b +>且0ab > ”,反之也成立的,故是充分必要条件.【思路点拨】不等式的性质.【答案】C4.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【知识点】充要条件的判定.【解题过程】α=π6+2k π(k ∈Z ) ⇒cos2α=12;cos2α=12⇒α=2k π±π6 (k ∈Z )【思路点拨】已知角求三角函数值和已知三角函数值求角,注意周期性.【答案】A5.“x >0”是“0>”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件【知识点】充要条件的判定.【解题过程】x >0显然能推出32x >0;0>⇔0x >⇔0x ≠,不能推出x >0.故为充分不必要条件,故选A .【思路点拨】本题考查了充要条件的判定问题,这类问题的判断一般分正反两个方向进行.【答案】A6.若非空集合A 、B 、C 满足A ∪B =C ,且B 不是A 的子集,则( )A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B .“x ∈C ”是“x ∈A ”的必要条件但不是充分条件C .“x ∈C ”是“x ∈A ”的充要条件D .“x ∈C ”既不是“x ∈A ”的充分条件,也不是“x ∈A ”的必要条件【知识点】充分条件、必要条件.【解题过程】∵非空集合A 、B 、C 满足A ∪B =C ,且B 不是A 的子集 由x ∈A ⇒x ∈A ∪B ⇒x ∈C由x ∈C ⇒x ∈A ∪B ⇒x ∈A 或x ∈BB A ⊆/ ∴不一定有x ∈A∴选B【思路点拨】运用集合的包含关系.【答案】B能力型 师生共研7.条件p :“直线l 在y 轴上的截距是在x 轴上截距的两倍”;条件q :“直线l 的斜率为-2”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【知识点】充要条件的判定.【解题过程】注意当直线经过原点时,两个截距均为零,斜率值可以任意.【思路点拨】涉及直线在两轴上截距成倍数关系的题目,不要漏掉过原点的情形.【答案】B8.下列命题中的真命题有( )①两直线平行的充要条件是两直线的斜率相等;②△ABC 中,AB →·BC →<0是△ABC 为钝角三角形的充要条件;③2b =a +c 是数列a 、b 、c 为等差数列的充要条件;④△ABC 中,tan A tan B >1是△ABC 为锐角三角形的充要条件.A .1个B .2个C .3个D .4个【知识点】命题真假的判定.【解题过程】①两直线平行不一定有斜率,所以①假;②由AB →·BC →<0只能说明∠ABC 为锐角,当△ABC 为钝角三角形时,AB →·BC →的符号也不能确定,因为A 、B 、C 哪一个为钝角未告诉,所以②假;③显然为真;④由tan A tan B >1,知A 、B 为锐角,∴sin A sin B >cos A cos B ,∴cos(A +B )<0,即cos C >0.∴角C 为锐角,∴△ABC 为锐角三角形.反之若△ABC 为锐角三角形,则A +B >π2,∴cos(A +B )<0,∴cos A cos B <sin A sin B ,∵cos A >0,cos B >0,∴tan A tan B >1,故④真.【思路点拨】充要条件的判定.【答案】B探究型 多维突破9.α,β是两个不重合的平面,在下列条件中,可判定α∥β的是( )A .α,β都平行于直线l ,mB .α内有三个不共线的点到β的距离相等C .l ,m 是α内的两条直线且l ∥β,m ∥βD .l ,m 是两条异面直线且l ∥α,m ∥α,l ∥β,m ∥β【知识点】平面平行的判定.【解题过程】A 中,当a m l a ////,=⋂βα时不能推出βα//;C 中,当m l //时不能推出βα//.B 中三点位于两平面交线的两侧时,如图:AB ∥l ,α∩β=l ,A 与C 到l 的距离相等时,A 、B 、C 到β的距离相等.【思路点拨】每个选项分别判断,找出特殊情况进行排除.【答案】D10.已知三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0,则l 1、l 2、l 3构不成三角形的充要条件是k ∈集合________.【知识点】充要条件.【解题过程】①l 1∥l 3时,k =5;②l 2∥l 3时,k =-5;③l 1、l 2、l 3相交于同一点时,k =-10.【思路点拨】当有直线平行或三直线交于一点时,不能构成三角形.【答案】{}5,5,10--自助餐1.平面向量a 、b 都是非零向量,a ·b <0是a 与b 夹角为钝角的________条件.【知识点】充分、必要条件的判断.【解题过程】若a 与b 夹角θ为钝角,则cos 0θ<,所以a ·b =cos a b θ<0;反之a ·b <0时,如果a 与b 方向相反,则a 与b 夹角不是钝角.【思路点拨】a ·b =cos a b θ.【答案】必要不充分2.函数f (x )的定义域为I ,p :“对任意x ∈I ,都有f (x )≤M ”;q :“M 为函数f (x )的最大值”,则p 是q 的________条件.【知识点】充分、必要条件的判断.【解题过程】只有当①对于任意x ∈I ,都有f (x )≤M ,②存在x 0∈I ,使f (x 0)=M ,同时成立时,M 才是f (x )的最大值,故p ⇒/ q ,q ⇒p∴p 是q 的必要不充分条件.【思路点拨】函数最值.【答案】必要不充分3.k >4,b <5是一次函数y =(k -4)x +b -5的图象交y 轴于负半轴,交x 轴于正半轴的____________条件.【知识点】充分、必要条件的判断.【解题过程】∵k >4时,k -4>0,b <5时,b -5<0,∴直线y =(k -4)x +b -5交y 轴于负半轴,交x 轴于正半轴;y =(k -4)x +(b -5)与y 轴交于(0,b -5)与x 轴交于)0,45(--k b ,由交y 轴于负半轴,交x 轴于正半轴可知⎩⎨⎧ b -5<05-b k -4>0∴⎩⎪⎨⎪⎧ b <5k >4 【思路点拨】一次函数图象问题.【答案】充分必要条件 4.设x 、y 为实数,求证:|x +y |=|x |+|y |成立的充分且必要条件是0xy ≥.【知识点】充分、必要条件的证明.【数学思想】【解题过程】充分性:当0xy ≥时,若x =0或y =0,|x +y |=|x |+|y |显然成立.若xy >0,则x 、y 同号.当x >0,y >0时,|x +y |=x +y ,|x |+|y |=x +y∴|x +y |=|x |+|y |若x <0,y <0时,|x +y |=-x -y ,|x |+|y |=-x -y∴|x +y |=|x |+|y |∴综上所述,知xy ≥0⇒|x +y |=|x |+|y |必要性:∵|x +y |=|x |+|y |,两边平方得:x 2+y 2+2xy =x 2+y 2+2|xy |∴xy =|xy |,∴xy ≥0∴|x +y |=|x |+|y |⇒xy ≥0∴xy ≥0是|x +y |=|x |+|y |成立的充要条件.【思路点拨】证明不等式.【答案】见解题过程5.方程y =a |x |与y =x +a (a >0)所确定的曲线有两个交点的充要条件是什么?【知识点】充分、必要条件.【解题过程】解法一:依题意有⎩⎨⎧y =a |x |y =x +a,即a |x |=x +a ,当x >0时,x =a a -1>0,解得a >1或a <0(舍);当x <0时,x =-a a +1<0,解得a >0或a <-1(舍). ∴两曲线y =a |x |和y =x +a (a >0)有两个交点的充要条件是a >1.解法二:如图所示,数形结合可知a >1成立.【思路点拨】数形结合.【答案】a>16.设α、β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?【知识点】充分、必要条件的判断.【解题过程】根据韦达定理得a =α+β,b =αβ,判定的条件是p :⎩⎨⎧ a >2b >1,结论是q :⎩⎨⎧ α>1,β>1.(还要注意条件中需要满足大前提Δ=a 2-4b ≥0) (1)由⎩⎨⎧α>1β>1,得a =α+β>2,b =αβ>1,∴q ⇒p .(2)为了说明p ⇒/q ,可以举出反例:取α=4,β=12,它满足a =α+β=4+12>2,b =α·β=4×12=2>1,且满足Δ>0,但q 不成立.由上述讨论可知:a >2且b >1是α>1,β>1的必要但不充分条件.【思路点拨】把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件p 与结论q 分别指什么,然后再验证p ⇒q 还是q ⇒p ,还是p ⇔q .【答案】必要不充分条件。