2013年全国各地高考文科数学试题分类汇编16:选修部分
- 格式:doc
- 大小:745.50 KB
- 文档页数:8
2013年全国各地高考数学试题分类汇编(文科):立体几何各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013年全国各地高考数学试题分类汇编(文科):立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.B.C.D.【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为()A.B.C.D.【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥的正弦值等于()A.B.C.D.【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100 cm3 C.92cm3 D.84cm3【答案】B7 .(2013年高考北京卷(文))如图,在正方体中, 为对角线的三等分点,则到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是()A.B.C.D.【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.【答案】D10.(2013年高考浙江卷(文))设是两条不同的直线,α.β是两个不同的平面, ()A.若m‖α,n‖α,则m‖n B.若m‖α,m‖β,则α‖βC.若m‖n,m⊥α,则n⊥α D.若m‖α,α⊥β,则m⊥β【答案】C11.(2013年高考辽宁卷(文))已知三棱柱的6个顶点都在球的球面上,若, , ,则球的半径为()A.B.C.D.【答案】C12.(2013年高考广东卷(文))设为直线, 是两个不同的平面,下列命题中正确的是()A.若, ,则B.若, ,则C.若, ,则D.若, ,则【答案】B13.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是()A.B.C.D.8,8【答案】B14.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为()A.200+9π B.200+18π C.140+9π D.140+18π【答案】A二、填空题15.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.【答案】16.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【答案】317.(2013年高考课标Ⅰ卷(文))已知是球的直径上一点, , 平面, 为垂足, 截球所得截面的面积为,则球的表面积为_______.【答案】;18.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】319.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.【答案】20.(2013年高考大纲卷(文))已知圆和圆是球的大圆和小圆,其公共弦长等于球的半径, 则球的表面积等于______.【答案】21.(2013年上海高考数学试题(文科))已知圆柱的母线长为,底面半径为, 是上地面圆心, 、是下底面圆周上两个不同的点, 是母线,如图.若直线与所成角的大小为,则________.【答案】22.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为, 则正方体的棱长为______.【答案】23.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】24.(2013年高考江西卷(文))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF 与正方体的六个面所在的平面相交的平面个数为_____________.【答案】425.(2013年高考安徽(文))如图,正方体的棱长为1, 为的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是__________(写出所有正确命题的编号).①当时, 为四边形;②当时, 为等腰梯形;③当时, 与的交点满足;④当时, 为六边形;⑤当时, 的面积为.【答案】①②③⑤三、解答题26.(2013年高考辽宁卷(文))如图,(I)求证:(II)设【答案】27.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G是PC的中点,求DG与APC 所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求PGGC 的值.【答案】解:证明:(Ⅰ)由已知得三角形是等腰三角形,且底角等于30°,且,所以;、,又因为;(Ⅱ)设,由(1)知,连接,所以与面所成的角是,由已知及(1)知: ,,所以与面所成的角的正切值是;(Ⅲ)由已知得到: ,因为,在中, ,设28.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.(Ⅰ) 证明: A1BD // 平面CD1B1;(Ⅱ) 求三棱柱ABD-A1B1D1的体积.【答案】解: (Ⅰ) 设...(证毕)(Ⅱ).在正方形AB CD中,AO = 1 ..所以, .29.(2013年高考福建卷(文))如图,在四棱锥中, ,, ,, , , .(1)当正视图方向与向量的方向相同时,画出四棱锥的正视图.(要求标出尺寸,并画出演算过程);(2)若为的中点,求证: ;(3)求三棱锥的体积.【答案】解法一:(Ⅰ)在梯形中,过点作,垂足为, 由已知得,四边形为矩形,,在中,由, ,依勾股定理得:,从而,又由平面得,从而在中,由, ,得正视图如右图所示:(Ⅱ)取中点,连结,,在中, 是中点,∴, ,又,∴,, ∴四边形为平行四边形,∴又平面, 平面, ∴平面(Ⅲ) ,又, ,所以解法二:(Ⅰ)同解法一(Ⅱ)取的中点,连结,在梯形中, ,且,∴四边形为平行四边形∴,又平面, 平面∴平面,又在中,平面, 平面∴平面.又,∴平面平面,又平面∴平面(Ⅲ)同解法一30.(2013年高考广东卷(文))如图4,在边长为1的等边三角形中, 分别是边上的点, , 是的中点, 与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明: //平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.【答案】(1)在等边三角形中,,在折叠后的三棱锥中也成立,, 平面,平面, 平面;(2)在等边三角形中, 是的中点,所以①,.在三棱锥中, , ②;(3)由(1)可知,结合(2)可得.31.(2013年高考湖南(文))如图2.在直菱柱ABC-A1B1C1中,∠BAC=90°,AB=AC= ,AA1=3,D是BC的中点,点E在菱BB1上运动.(I) 证明:AD⊥C1E;(II) 当异面直线AC,C1E 所成的角为60°时,求三菱子C1-A2B1E的体积.【答案】解: (Ⅰ)..(证毕)(Ⅱ) ..32.(2013年高考北京卷(文))如图,在四棱锥中, , , ,平面底面, , 和分别是和的中点,求证:(1) 底面;(2) 平面;(3)平面平面【答案】(I)因为平面PAD⊥平面ABCD,且PA垂直于这个平面的交线AD 所以PA垂直底面ABCD.(II)因为AB‖CD,CD=2AB,E为CD的中点所以AB‖DE,且AB=DE所以ABED为平行四边形,所以BE‖AD,又因为BE 平面PAD,AD 平面PAD所以BE‖平面PAD.(III)因为AB⊥AD,而且ABED为平行四边形所以BE⊥CD,AD⊥CD,由(I)知PA ⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD所以CD⊥PD,因为E和F分别是CD 和PC的中点所以PD‖EF,所以CD⊥EF,所以CD ⊥平面BEF,所以平面BEF⊥平面PCD.33.(2013年高考课标Ⅰ卷(文))如图,三棱柱中, ,, .(Ⅰ)证明: ;(Ⅱ)若, ,求三棱柱的体积.【答案】【答案】(I)取AB的中点O,连接、、,因为CA=CB,所以,由于AB=A A1,∠BA A1=600,故为等边三角形,所以OA ⊥AB.因为OC⨅OA =O,所以AB 平面OA C.又A CC平面OA C,故AB AC.(II)由题设知34.(2013年高考山东卷(文))如图,四棱锥中, ,,分别为的中点(Ⅰ)求证: ;(Ⅱ)求证:【答案】35.(2013年高考四川卷(文))如图,在三棱柱中,侧棱底面, , ,分别是线段的中点, 是线段上异于端点的点.(Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;(Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积.(锥体体积公式: ,其中为底面面积, 为高)【答案】解:(Ⅰ)如图,在平面ABC内,过点作直线,因为在平面外,BC在平面内,由直线与平面平行的判定定理可知, 平面.由已知, , 是BC中点,所以BC⊥AD,则直线,又因为底面,所以,又因为AD, 在平面内,且AD与相交,所以直线平面(Ⅱ)过D作于E,因为平面,所以,又因为AC, 在平面内,且AC与相交,所以平面,由,∠BAC ,有,∠DAC ,所以在△ACD中, ,又,所以因此三棱锥的体积为36.(2013年高考湖北卷(文))如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为, ,且. 过, 的中点, 且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.【答案】(Ⅰ)依题意平面, 平面, 平面,所以A1A2‖B1B2‖C1C2. 又, , ,且.因此四边形、均是梯形.由‖平面, 平面,且平面平面,可得AA2‖ME,即A1A2‖DE. 同理可证A1A2‖FG,所以DE‖FG.又、分别为、的中点,则、、、分别为、、、的中点,即、分别为梯形、的中位线.因此, ,而,故,所以中截面是梯形.(Ⅱ) . 证明如下:由平面, 平面,可得.而EM‖A1A2,所以,同理可得.由是△的中位线,可得即为梯形的高,因此,即.又,所以.于是.由,得, ,故.37.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A1B1C1中,D,E 分别是AB,BB1的中点.(1) 证明: BC1//平面A1CD;(2) 设AA1= AC=CB=2,AB=2 ,求三棱锥C一A1DE的体积.【答案】38.(2013年高考大纲卷(文))如图,四棱锥P-ABCD中,∠ABC=∠BAD=900,BC=2AD,△PAB与△PAD 都是边长为2的等边三角形.(I)证明:PB⊥CD;(II)求点A到平面PCD的距离.【答案】(Ⅰ)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由和都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故,从而.因为O是BD的中点,E是BC的中点,所以OE//CD.因此, .(Ⅱ)解:取PD的中点F,连结OF,则OF//PB.由(Ⅰ)知, ,故.又, ,故为等腰三角形,因此, .又,所以平面PCD.因为AE//CD, 平面PCD, 平面PCD,所以AE//平面PCD.因此,O到平面PCD的距离OF就是A到平面PCD的距离,而,所以A至平面PCD的距离为1.39.(2013年高考安徽(文))如图,四棱锥的底面是边长为2的菱形, .已知.(Ⅰ)证明:(Ⅱ)若为的中点,求三菱锥的体积.【答案】解:(1)证明:连接交于点又是菱形而⊥面⊥(2)由(1) ⊥面=40.(2013年上海高考数学试题(文科))如图,正三棱锥底面边长为,高为,求该三棱锥的体积及表面积.【答案】41.(2013年高考天津卷(文))如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.(Ⅰ) 证明EF//平面A1CD;(Ⅱ) 证明平面A1CD⊥平面A1ABB1;(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.【答案】42.(2013年高考重庆卷(文))(本小题满分12 分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(19)图,四棱锥中, ⊥底面, , ,(Ⅰ)求证: ⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积.【答案】43.(2013年高考江西卷(文))如图,直四棱柱ABCD –A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E为CD上一点,DE=1,EC=3(1) 证明:BE⊥平面BB1C1C;(2) 求点B1 到平面EA1C1 的距离【答案】解.(1)证明:过B作CD的垂线交CD于F,则在在,故由(2),同理,因此.设点B1到平面的距离为d,则,从而各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
2013年全国各地高考数学试题(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。
满分150分。
考试时间120分钟。
考试结束后,将本试题卷和答题卡上一并交回。
第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、设集合{1,2,3}A =,集合{2,2}B =-,则AB =( )(A)∅ (B){2} (C){2,2}- (D){2,1,2,3}- 2、一个几何体的三视图如图所示,则该几何体可以是( ) (A)棱柱 (B)棱台 (C)圆柱 (D)圆台3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A)A (B)B (C)C (D)D4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。
若命题:,2p x A x B ∀∈∈,则( ) (A):,2p x A x B ⌝∃∈∈ (B):,2p x A x B ⌝∃∉∈ (C):,2p x A x B ⌝∃∈∉ (D):,2p x A x B ⌝∀∉∉5、抛物线28y x =的焦点到直线0x =的距离是( ) (A)216、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。
以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )8、若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A)48 (B)30 (C)24 (D)169、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )(A)4 (B)12(C)210、设函数()f x =a R ∈,e 为自然对数的底数)。
2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V = Sh , 其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7 (B) 6(C) 5(D) 4(4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件(D) 既不充分也不必要条件(5) 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a = (A) 12-(B) 1(C) 2(D)12(6) 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1-(B)(C)(D) 0 (7) 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2](8) 设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 (A) ()0()g a f b << (B) ()0()f b g a << (C) 0()()g a f b <<(D) ()()0f b g a <<2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) i 是虚数单位. 复数(3 + i )(1-2i ) = .(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .(11) 已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为 .(13) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .(14) 设a + b = 2, b >0, 则1||2||a a b+的最小值为 .三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:产品编号 A 1 A 2 A 3 A 4 A 5 质量指标(x , y , z ) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A 6A 7A 8A 9A 10质量指标(x , y , z ) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.(16) (本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.(17) (本小题满分13分)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ;(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左,右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 证明13*)61(n n S n S +≤∈N .(20) (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.2013年普通高等学校招生全国统一考试(北京卷)数学(文)C1A1C 本试卷共5页,150分.考试时长120分钟。
2013年普通高等学校招生统一考试(上海卷)数学(文科)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式12-x x <0的解为 )21,0( . 【答案】 )21,0(【解析】)21,0(0)12(∈⇒<-x x x2.在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= 15 . 【答案】 15【解析】 1530)(232324321=+⇒=+=+++a a a a a a a a3.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 【答案】 -2【解析】 20102)1(22222-=⇒⎪⎩⎪⎨⎧≠-=-+⇒-+-+m m m m i m m m 是纯虚数4.已知1x 12=0,1x 1y=1,则y= 1 .【答案】 1 【解析】111 2021 12 =-==⇒=-=y x yx x x x ,又已知,1,2==y x 联立上式,解得5. 已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是π32. 【答案】 π32【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a6. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 . 【答案】 78【解析】 7880100607510040=⋅+⋅=平均成绩7. 设常数a ∈R.若52x ⎪⎭⎫ ⎝⎛+x a 的二项展开式中x 7项的系数为-10,则a= -2 .【答案】 -2 【解析】10,110)()()(15752552-==⇒-=⇒+-a C r x xa x C x a x r r r 2,105-=-=⇒a a 8. 方程x 31139x=+-的实数解为 4log 3 . 【答案】 4log 3 【解析】⇒>+±=⇒±=-⇒-=-⇒=+-01333131313931139x x x xxx 4log 433=⇒=x x9. 若cosxcosy+sinxsiny=31,则cos(2x-2y)= 97- . 【答案】 97- 【解析】971)(cos 2)(2cos 31)cos(sin sin cos cos 2-=--=-⇒=-=+y x y x y x y x y x10. 已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则r l3 .【答案】3【解析】 3336tan =⇒==rll r π由题知,11. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是75(结果用最简分数表示).【答案】75 【解析】考查排列组合;概率计算策略:正难则反。
2013年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.13.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣34.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣15.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a 9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(5分)(2013•新课标Ⅱ)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.1【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:===.故选:C.【点评】本题考查复数的模的求法,考查计算能力.3.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣3【分析】先画出满足约束条件:,的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=2x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如下图所示,由得,由图可知目标函数在点A(3,4)取最小值z=2×3﹣3×4=﹣6.故选:B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣1【分析】由sin B,sin C及b的值,利用正弦定理求出c的值,再求出A的度数,由b,c 及sin A的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:∵b=2,B=,C=,∴由正弦定理=得:c===2,A=,∴sin A=sin(+)=cos=,=bc sin A=×2×2×=+1.则S△ABC故选:B.【点评】此题考查了正弦定理,三角形的面积公式,以及两角和与差的余弦函数公式,熟练掌握正弦定理是解本题的关键.5.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选:D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选:A.【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++【分析】由程序中的变量、各语句的作用,结合流程图所给的顺序可知当条件满足时,用S+的值代替S得到新的S,并用k+1代替k,直到条件不能满足时输出最后算出的S 值,由此即可得到本题答案.【解答】解:根据题意,可知该按以下步骤运行第一次:S=1,第二次:S=1+,第三次:S=1++,第四次:S=1+++.此时k=5时,符合k>N=4,输出S的值.∴S=1+++故选:B.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,以及表格法的运用,属于基础题.8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【分析】判断对数值的范围,然后利用换底公式比较对数式的大小即可.【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:C.【点评】本题考查对数值的大小比较,换底公式的应用,基本知识的考查.9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:法一:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入(*)得﹣2y2=且﹣3y22=﹣4,消去y2得k2=3,解之得k=∴直线l方程为y=(x﹣1)或y=﹣(x﹣1)法二:做出抛物线的准线,以及A、B到准线的垂线段AA'、BB',并设直线l交准线与M,设|BF|=m,由抛物线的定义可知|BB'|=m,|AA'|=|AF|=3m,由BB'∥AA'可知,,即,所以|MB|=2m,则|MA|=6m,故∠AMA'=30°,根据斜率与角度的关系可得选C选项.故选:C.【点评】本题给出抛物线的焦点弦AB被焦点F分成1:3的两部分,求直线AB的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】对于A,对于三次函数f(x)=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;对于B,根据对称变换法则,求出对应中心坐标,可以判断;对于C:采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.【解答】解:A、对于三次函数f(x)=x3+ax2+bx+c,A:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,故A正确;B、∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c=﹣+2c,f (﹣)=(﹣)3+a (﹣)2+b (﹣)+c =﹣+c ,∵f (﹣﹣x )+f (x )=2f (﹣),∴点P (﹣,f (﹣))为对称中心,故B 正确.C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x ,对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,﹣)∪(1,+∞)由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(﹣,1)∴函数f (x )的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误;D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0)=0,故D 正确.由于该题选择错误的,故选:C .【点评】本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.12.(5分)(2013•新课标Ⅱ)若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是()A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【分析】转化不等式为,利用x 是正数,通过函数的单调性,求出a 的范围即可.【解答】解:因为2x (x ﹣a )<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.【点评】本题考查不等式的解法,函数单调性的应用,考查分析问题解决问题的能力.二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是0.2.【分析】由题意结合组合数公式可得总的基本事件数,再找出和为5的情形,由古典概型的概率公式可得答案.【解答】解:从1,2,3,4,5中任意取出两个不同的数共有=10种情况,和为5的有(1,4)(2,3)两种情况,故所求的概率为:=0.2故答案为:0.2【点评】本题考查古典概型及其概率公式,属基础题.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为24π.【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD的侧棱长OA,最后根据球的表面积公式计算即得.【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,∴OH=,在直角三角形OAH中,OA===所以表面积为4πr2=24π;故答案为:24π.【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【分析】根据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin (2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.【点评】本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=A sin(ωx+φ)的图象变换等知识,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2.【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.【分析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD ⊥平面ABB1A1.求得CD的值,利用勾股定理求得A 1D、DE和A1E的值,可得A1D⊥DE.进而求得的值,再根据三棱锥C﹣A1DE的体积为••CD,运算求得结果.【解答】解:(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.∵直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.由于DF⊂平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.(Ⅱ)∵AA1=AC=CB=2,AB=2,故此直三棱柱的底面ABC为等腰直角三角形.由D为AB的中点可得CD⊥平面ABB1A1,∴CD==.∵A1D==,同理,利用勾股定理求得DE=,A1E=3.再由勾股定理可得+DE2=,∴A1D⊥DE.∴==,∴=••CD=1.【点评】本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.【分析】(I)由题意先分段写出,当X∈[100,130)时,当X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.【解答】解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,当X∈[130,150]时,T=500×130=65000,∴T=.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.【分析】(Ⅰ)由题意,可直接在弦心距、弦的一半及半径三者组成的直角三角形中利用勾股定理建立关于点P的横纵坐标的方程,整理即可得到所求的轨迹方程;(Ⅱ)由题,可先由点到直线的距离公式建立关于点P的横纵坐标的方程,将此方程与(I)所求的轨迹方程联立,解出点P的坐标,进而解出圆的半径即可写出圆P的方程.【解答】解:(Ⅰ)设圆心P(x,y),由题意得圆心到x轴的距离与半径之间的关系为2=﹣y2+r2,同理圆心到y轴的距离与半径之间的关系为3=﹣x2+r2,由两式整理得x2+3=y2+2,整理得y2﹣x2=1即为圆心P的轨迹方程,此轨迹是等轴双曲线(Ⅱ)由P点到直线y=x的距离为得,=,即|x﹣y|=1,即x=y+1或y =x+1,分别代入y2﹣x2=1解得P(0,﹣1)或P(0,1)若P(0,﹣1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y﹣1)2+x2=3;综上,圆P的方程为(y+1)2+x2=3或(y﹣1)2+x2=3【点评】本题考查求轨迹方程的方法解析法及点的直线的距离公式、圆的标准方程与圆的性质,解题的关键是理解圆的几何特征,将几何特征转化为方程21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.【分析】(Ⅰ)利用导数的运算法则即可得出f′(x),利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ)利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.【解答】解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(Ⅱ)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,∵曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,则=.①当x0<0时,0,即f′(x0)>0,∴f(x0)在(﹣∞,0)上单调递增,∴f(x0)<f(0)=0;②当x 0>2时,令f′(x0)=0,解得.当时,f′(x0)>0,函数f(x0)单调递增;当时,f′(x0)<0,函数f(x0)单调递减.故当时,函数f(x 0)取得极小值,也即最小值,且=.综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪.【点评】本题考查利用导数求函数的极值与利用导数研究函数的单调性、切线、函数的值域,综合性强,考查了推理能力和计算能力.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b ≥2a ,+c ≥2b ,+a ≥2c ,三式累加即可证得结论.【解答】证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得:a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.(Ⅱ)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,故+++(a +b +c )≥2(a +b +c ),即++≥a +b +c .所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.2013年全国统一高考数学试卷(文科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.2246.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)7.(5分)(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)8.(5分)(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.9.(5分)(2013•大纲版)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.210.(5分)(2013•大纲版)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a =()A.9B.6C.﹣9D.﹣611.(5分)(2013•大纲版)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.12.(5分)(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•大纲版)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x ﹣2,则f(﹣1)=.14.(5分)(2013•大纲版)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)(2013•大纲版)若x、y满足约束条件,则z=﹣x+y的最小值为.16.(5分)(2013•大纲版)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.(12分)(2013•大纲版)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sin A sin C=,求C.19.(12分)(2013•大纲版)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)(2013•大纲版)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)(2013•大纲版)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)(2013•大纲版)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.2013年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,解得x∈(﹣2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.【解答】解:(x+2)8展开式的通项为T r+1=x8﹣r2r令8﹣r=6得r=2,∴展开式中x6的系数是22C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:。
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.2、21i=+( ) (A) (B )2 (C(D )1 【答案】C 【解析】22(1)2(1)11(1)(1)2i i i i i i --===-+-+,所以21i =+ C. 3、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由z=2x-3y 得3y=2x-z ,即233zy x =-。
作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1 【答案】B 【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得c =117sin 22212bc A π=⨯⨯.因为72231s i n s i n (()12342222πππ=++,所以11sin ()12222bc A =+=,选B. 5、设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( ) (A(B )13 (C )12(D【答案】D【解析】因为21212,30P F F F P F F ⊥∠=,所以2122tan 30,PF c PF ===。
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2013年全国各地高考文科数学试题分类汇编16:选修部分一、选择题错误!未指定书签。
.(2013年高考大纲卷(文))不等式222x -<的解集是 ( )A .()-1,1B .()-2,2C .()()-1,00,1D .()()-2,00,2【答案】D二、填空题 错误!未指定书签。
.(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.P【答案】 .6错误!未指定书签。
.(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.【答案】1cos sin x y θθ=+⎧⎨=⎩(θ为参数) 错误!未指定书签。
.(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2,则关于实数x 的不等式||||2x a x b -+->的解集是______.【答案】A:R错误!未指定书签。
.(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.【答案】152错误!未指定书签。
.(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____ 【答案】4错误!未指定书签。
.(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ .【答案】(1, 0)错误!未指定书签。
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅2.已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213- (B )513- (C )513 (D )1213 3.已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-14.不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,25.()862x x +的展开式中的系数是 (A )28 (B )56 (C )112 (D )2246.函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 (A )()1021x x >- (B )()1021x x ≠- (C )()21x x R -∈ (D )()210x x -> 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 8.已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为(A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y += 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则(A )5 (B )4 (C )3 (D )210.已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为, (A )9 (B )6 (C )-9 (D )-611.已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A )23 (B)(C(D )13 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =(A )12 (B)2(C(D )2 二、填空题:本大题共4小题,每小题5分13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, .14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答) 15.若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为 .16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 . 三、解答题:解答应写出文字说明、证明过程或演算步骤17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和 18.(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,a bc ,()()a b c a b c ac ++-+=。
2013年全国各地高考文科数学试题分类汇编16:选修部分
一、选择题
1 .(2013年高考大纲卷(文))不等式222x -<的解集是 ( )
A .()-1,1
B .()-2,2
C .()()-1,00,1
D .()()-2,00,2
【答案】D
二、填空题 2 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的
延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.
P
【答案】 .6
3 .(2013年高考广东卷(文))(坐标系与参数方程选做题)
已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.
【答案】1cos sin x y θθ
=+⎧⎨=⎩(θ为参数)
4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式
||||2x a x b -+->的解集是______.
【答案】A:R
5 .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交
于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.
【答案】152
[来源:学&科&网Z&X&X&K] 6 .(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s
=+⎧⎨=⎩(s 为参数)和直线
2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____
【答案】4
7 .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线2
2x t y t
⎧=⎨=⎩ (t 为参数)的焦点坐标是
____________ .
【答案】(1, 0)
8 .(2013年高考广东卷(文))(几何证明选讲选做题)
如图3,在矩形ABCD 中
,AB 3BC =,BE AC ⊥,垂足为E ,则ED =_______.
图 3
【答案】2 9 .(2013年上海高考数学试题(文科))若
2011x =,111
x y =,则x y +=________. 【答案】1
三、解答题 10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲
如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,
BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:
(I);FEB CEB ∠=∠ (II)2
.EF AD BC =
【答案】
11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线
交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆. (Ⅰ)证明:CA 是△ABC 外接圆的直径;
(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.
【答案】
12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程
已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩
(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.
(Ⅰ)把1C 的参数方程化为极坐标方程;
(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).
【答案】解:(1)将45cos 55sin x t y t
=+⎧⎨=+⎩,消去参数t,化学普通方程22(4)(5)25x y -+-=, 即 1C : 22810160x y x y +--+=,
将22cos ,810160sin x p x y x y y p θθ
=⎧+--+=⎨=⎩代入得 [来源:学+科+网]
28cos 10sin 160ρρθρθ--+=;
所以1C 极坐标方程为
28cos 10sin 160ρρθρθ--+=.
(2)2C 的普通方程为22
20x y y +-=,
2222810160=1=0y=2y=2.20x y x y x x x y y ⎧+--+=⎧⎧⎪⎨⎨⎨+-=⎪⎩⎩⎩,,,解得或, 所以12C C 与
交点的极坐标为),(2,)42ππ
. 13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程
已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩
(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.
(Ⅰ)求M 的轨迹的参数方程;
(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.
【答案】
14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲
如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交
圆于点D.
(Ⅰ)证明:DB DC
=;
(Ⅱ)设圆的半径为1
,BC=,延长CE交AB于点F,求BCF
∆外接圆的半径
.
[来源:学。
科。
网]
【答案】解:(1)连接DE,交BC为G,由弦切角定理得,ABE BCE
∠=∠,而,,
ABE CBE CBE BCE BE CE
∠=∠∠=∠=
故.又因为DB BE
⊥,所以DE为直径,∠DCE=90°,由勾股定理可得
DB=DC.
(II)由(1),CDE BDE
∠=∠,DB DC
=,故DG是BC的中垂线,
所以BG=,圆心为O,连接BO,则0
60
BOG
∠=,0
30
ABE BCE CBE
∠=∠=∠=,所以CF BF
⊥,
故外接圆半径为
2
. 15.(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲
已知函数()|21||2|
f x x x a
=-++,()3
g x x
=+.
(Ⅰ)当2
a=-时,求不等式()()
f x
g x
<的解集;
(Ⅱ)设1
a>-,且当
1
[,)
22
a
x∈-时,()()
f x
g x
≤,求a的取值范围[来源:学科网ZXXK]【答案】解:(I)当2()
a f x
=-时,不等式<g(x)化为21223
x x x
-+---<0.
设函数y=21223
x x x
-+---,则
1
5,
2
1
2,1,
2
36, 1.
x x
y x x
x x
⎧
-<
⎪
⎪
⎪
--≤≤
⎨
⎪
->
⎪
⎪⎩
其图像如图所示
从图像可知,当且仅当x (0,2)∈时,y<0,所以原不等式的解集是{}02x x <<; (II)当)1,,()1.22a x f x a ⎡∈-=+⎢⎣ 不等式()f x ≤g(x)化为1+a≤x+3.
所以x≥a -2对x ∈1,22a ⎡⎫-
⎪⎢⎣⎭都成立,故22a a -≥-,即43a ≤, 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦
.
16.(2013年高考课标Ⅱ卷(文))选修4—5;不等式选讲
设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222
1a b c b c a
++≥.
【答案】
[来源:学_科_网Z_X_X_K][来源:学科网]
17.(2013年高考辽宁卷(文))选修4-5:不等式选讲
已知函数()f x x a =-,其中1a >.
(I)当=2a 时,求不等式()44f x x ≥=-的解集;
(II)已知关于x 的不等式()(){}
222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.
[来源:学&科&网]
【答案】
18.(2013年高考辽宁卷(文))选修4-4:坐标系与参数方程
在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C
的极坐标方程分别为
4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭
. (I)求1C 与2C 交点的极坐标;
(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312
x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. 【答案】。