因式分解专项练习
- 格式:doc
- 大小:56.50 KB
- 文档页数:2
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)宇文皓月3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。
因式分解专题训练一、整式有关概念:1.单项式(单个字母或数)(次数,系数);2.多项式(次数,项数)3.同类项与合并同类项二、幂的运算性质:1. n m n m aa a +=⋅ 2. ()mn n m a a = 3. ()n n nb a ab = 4. n n n b a b a =⎪⎭⎫ ⎝⎛ 5. n m n m a a a -=÷ 6. 10=a 7.p p a a 1=- 8. pp b a a b ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛- 三、整式的运算:加、减、乘、除(乘方、开方) 1. m (a+b+c )=ma+mb+mc 2. (a+b )(m+n )=am+an+bm+bn3. (a+b )(a-b )=22b a -4. ()2222a b ab a b +±=± 5. ()ca bc ab c b a c b a 2222222+++++=++ 6.()()3322b a b ab a b a ±=+± 7. ()()()ca bc ab c b a a c c b b a 222222222222+++++=+++++ 四、因式分解:1.把一个多项式化成几个整式的积的形式. 2.方法(一提二套三分组) (套公式包括十字相乘法)五、方法·规律·技巧:1.性质、公式的逆向使用;2.整体代入(配方、换元)3.非负数 的运用(配方)六、实际运用1.下列变形中,正确的是( )A. ()123422+-=+-x x xB. ()112+=+÷xx x x C. ()()22y x y x y x -=+--- D. xx x x -=-11 2.若n m n m b b a ++-224a 52与可以合并成一项,则nm 的值是( ) A. 2 B. 0 C. -1 D. 13.若22=+b a ,ab =2,则22b a +的值为( ) A. 6 B. 4 C. 23 D. 324.把多项式x x x 1212323+-分解因式,结果正解的是( )A. ()4432+-x x x B. ()243-x x C. ()()223-+x x x D. ()223-x x 5.已知0322=--x x ,则x x 422-的值为( )A. -6B. 6C. -2或6D. -2或306.下列等式从左到右的的变形,属于因式分解的是( )A. a (x-y )=ax-ayB.()12122++=++x x x xC. ()()34312++=++x x x xD. ()()11x 3-+=-x x x x7.因式分解:()()21622---x x x = .8.分解因式:(a-b )(a-4b )+ab = .9.分解因式:()9332--+x x x = . 10.分解因式:22my mx -= .11.多项式4x 2+1加上一个单项式后能成为一个完全平方式,请你写出符合条件的所有的单 项式: .12.计算:()20172016201642125.0⨯⨯-= . 13.已知===-n m n m a a a 4323,16,64则 .14.已知=+-=+-634x 964322x x x ,则 . 15.若()()222222,121y x y x y x +=-++= . 16、将下列各式分解因式:(1)x ax x 2842+-- (2)xy xy y x 2712322-+-(3)()b a b a +--22 (4)()()321612-+-x a x 17.将下列各式分解因式:(1)42161259y x - (2) 3394xy y x - (3)()()221162-++-x x (4)()()222516b a b a +--(5)2244y xy x -+- (6)22363ay axy ax ++(7)172x 4912+-x (8)()()9326322++-+y x y x (9)()()()()222510b a b a b a b a -+-+++ (10)()()1222222+-+-x x x x18.将下列各式分解因式: (1)232+-x x (2)1322++x x(3)22144y xy x -- (4)()()()32212-+-+-m x m x m 19.将下列各式分解因式:(1)()()a b y b a x -+-2249 (2)212+++-n n n x x x(3)()()xy y x41122--- (4)()133********-+-+-x x x x (5)()()15222222--+-x x x x (6)(x+1)(x+2)(x+3)(x+4)-12020.将下列各式分解因式:(1)9622-++-y x x (2)ab b a 44422-+-(3)2212b a a +--- (4)3223y xy y x x --+21.简便计算:(1)1323.16523.14823.1⨯⨯+⨯- (2)814.13125.06.18⨯+⨯ (3)2.48.1425.042.032⨯+⨯+⨯ (4)7582-2582 (5)99992+19998+1 (6)20162-2015×2017 (7)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222201611411311211 (8)420172014201320132016201420142016222-⨯-⨯-+ 22.已知()()()()137373212-----x x x x 可分解因式为()()b x a x ++3,其中a 、b 都是整数,求a+3b 的值.23.已知2222912x 4,010644y xy y x y x +-=++-+求的值.24.已知13,022232++=-+x x x x 求的值.25.已知n 为正整数,试说明n n 332-+能被24整除. 26.若()5522,,1,1n m n m n n m m +≠+=+=求的值.27.设()()222222211212,...,35,13--+=-=-=n n a a a n (n 是大于0的自然数)。
因式分解练习题加答案200道分解因解题目因式分解3a3b2c—6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac +3c^2)3.因式分解xy+6—2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y—x)=(x+y)(x-y)^25。
因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x—1得因式,试分解x3+3x2-4=(x—1)(x+2)^28、因式分解ab(x2-y2)+xy(a2—b2)=(ay+bx)(ax—by)9、因式分解(x+y)(a-b-c)+(x-y)(b+c—a)=2y(a—b-c) 10、因式分解a2-a-b2-b=(a+b)(a—b—1)11。
因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a—7b)^212、因式分解(a+3)2-6(a+3)=(a+3)(a-3)13、因式分解(x+1)2(x+2)—(x+1)(x+2)2=-(x+1)(x+2)abc+ab—4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2—30x+25=(3x-5)^2(4)x2-7x—30=(x—10)(x+3)35。
因式分解x2-25=(x+5)(x-5)36。
因式分解x2-20x+100=(x-10)^237。
因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x—1)(2x—5)39、因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)—x=x(x+1)(3)x2-4x—ax+4a=(x—4)(x—a)(4)25x2—49=(5x-9)(5x+9)(5)36x2—60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x—3)(x-6)(8)2x2-5x—3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x—4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41。
1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3)²-6(a+3)13.)(x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.)x(x+2)-x18.)x²-4x-ax+4a19.)25x²-4920.)36x²-60x+2521.)4x²+12x+922.)x²-9x+1823.)2x²-5x-324.)12x²-50x+825.)3x²-6x26.)49x²-2527.)6x²-13x+528.)x²+2-3x29.)12x²-23x-2430.)(x+6)(x-6)-(x-6)31.)3(x+2)(x-5)-(x+2)(x-3)32.)9x²+42x+4933.)x4-2x³-35x34.)3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.)(x²-3x)+(x-3)²55.)9x²-66x+12156.)8-2x²57.)x4-158.)x²+4x-xy-2y+459.)4x²-12x+560.)21x²-31x-2261.)4x²+4xy+y²-4x-2y-362.)9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是(64.)若9x²−12xy+m是两数和的平方式,那么m的值是(65)把多项式a4− 2a²b²+b4因式分解的结果为()66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()) )1ö67.)æç-÷è2ø2001æ1ö+ç÷è2ø200068)已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N的大小关系为()69)对于任何整数m ,多项式( 4m+5)²−9都能()A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.)将−3x ²n −6x n 分解因式,结果是()71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是()2x 72.)若+2(m -3)x +16是完全平方式,则m 的值等于_____。
因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解专项练习题(含答案)1. 二次多项式的因式分解问题描述给定一个二次多项式ax2+bx+c,请将其进行因式分解。
解答步骤1.首先确定二次多项式的系数a、b和c。
2.接着,我们需要找到两个因子,使得它们的乘积等于ac,并且它们的和等于b。
3.最后,将多项式按照因子的形式进行因式分解。
示例问题:将二次多项式2x2+3x−2进行因式分解。
解答:1.确定系数a=2,b=3和c=−2。
2.找到两个因子,它们的乘积等于ac=−4,并且它们的和等于b=3。
在本例中,-2 和 2 是满足要求的因子。
3.将多项式进行因式分解:2x2+3x−2=(x−2)(2x+1)。
因此,二次多项式2x2+3x−2的因式分解结果为(x−2)(2x+1)。
答案(x−2)(2x+1)2. 完全平方式的因式分解问题描述给定一个完全平方式a2−b2,请将其进行因式分解。
解答步骤1.首先确定完全平方式的两个因子a和b。
2.接着,根据公式(a−b)(a+b)进行因式分解。
示例问题:将完全平方式9x2−4进行因式分解。
解答:1.确定完全平方式的两个因子a=3x和b=2。
2.根据公式进行因式分解:9x2−4=(3x−2)(3x+2)。
因此,完全平方式9x2−4的因式分解结果为(3x−2)(3x+2)。
答案(3x−2)(3x+2)3. 其它特殊情况的因式分解问题描述除了二次多项式和完全平方式外,还有一些特殊情况需要进行因式分解。
下面是几个例子:1.差平方式:形式为a2−b2的差平方式可以利用公式(a−b)(a+b)进行因式分解。
2.特殊二次多项式:形式为ax2+bx+c的二次多项式,如果不能直接进行因式分解,可以尝试使用求根公式进行因式分解。
3.多项式的公因式提取:对于多项式ax2+bx,可以提取公因式得到x(ax+b)进行因式分解。
示例问题:将差平方式16x2−9进行因式分解。
解答:根据公式(a−b)(a+b)进行因式分解:16x2−9=(4x−3)(4x+3)。
超经典的因式分解练习题有答案精品1. 因式分解.(1) a(a-b) -2(w-b).(2)x²-2x²+x.2.因式分解:(1)12m²κ⁻¹−8m²κ⁴;(2) x³-4x²y+4xy².3.将下列多项式因式分解:(1) 2x²-6x;(2) -6x²+12a-6;(3) 4x²-(y²-4y-4).4. 因式分解: (m+1) (m-9) +8m.5.因式分解:25x²{a-b}+49y² (b-a).6.因式分解:2x¹-8r³y8xy².7.因式分解:(1) 4a²-9;(2) 16m³-8me+n³.8. 因式分解:(1) 2ax²-2m²;(2) 3a²-6a²b+3ab².9. 因式分解:(1) m²-m;(2) x³-4x²+4x.10. 因式分解:4.²(x-1) -9 (x+7).11.因式分解:-3a+12a²-12a³.12. 因式分解:(1) m²-y³;(2) x(x-y) ty(y-x).参考答案10. 因式分解.(1) a(a-b) -2(a-b).(2) x³2x³+x.【分析】(1) 原式提取公因式分解即可;(2) 原式提取公因式,再利用完全平方公式分解即可.【解答】解: (1) a (a -b) -2(a -b) = (a-b) ( a -2).(2)x³-2x²+x=x (x²-2x-1)=x(x-1)².【点评】此题考查了提公园式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.因式分解:(1) 12m³k⁴-8m²n³;(2)x³-4r³y+4xy².【分析】(1) 找到公因式,提取公因式即可:(2) 先提取公因式,再看用完全平方公式.【解答】解: (1) 原式=4m²n⁴ (3m-2m²);(2)原式: =x(x²-4xy-4y²)=x (x-2y)².【点评】本题考查了整式的因式分解,掌握提取公因式法,公式法是解决本题的关键。
完整版)《因式分解》计算题专项练习因式分解练题1、提取公因式1、cx-cy+cz2、px-qx-rx3、15a^3-10a^24、12abc-3bc^25、4x^2y-xy^26、63pq+14pq^27、24a^3m-18a^2m^28、x^6y-x^4z9、15x^3y^2+5x^2y-20x^2y^310、-4a^3b^2+6a^2b-2ab11、-16x^4-32x^3+56x^212、6m^2n-15mn^2+30m^2n^213、x(a+b)-y(a+b)14、5x(x-y)+2y(x-y)15、6q(p+q)-4p(p+q)16、(m+n)(p+q)-(m+n)(p-q)17、a(a-b)+(a-b)^218、x(x-y)^2-y(x+y)^219、(2a+b)(2a-3b)-3a(2a+b)20、x(x+y)(x-y)-x(x+y)21、p(x-y)-q(y-x)22、m(a-3)+2(3-a)23、(a+b)(a-b)-(b+a)24、a(x-a)+b(a-x)-c(x-a)25、10a(x-y)^2-5b(y-x)26、3(x-1)^3y-(1-x)^3z27、x(a-x)(a-y)-y(x-a)(y-a)28、-ab(a-b)^2+a(b-a)^22、运用公式法因式分解:1、a^2-492、64-x^23、(m+3n)(m-3n)4、0.49p^2-144q^25、(a+b)^2-xy^96、121x^2-4y^27、(m+n)^2-n^28、2-(x+2y)^29、169(a-b)^2-196(a+b)^210、1-36b^211、(2x+y)(2x-y)24、需要删除,因为没有明确的题目或内容。
25、需要对表达式进行简化和重写:y + y + 25 = 2y + 2525m2 - 80m + 64 = (5m - 8)226、需要对表达式进行简化和重写:4a + 36a + 81 = 40a + 8127、需要对表达式进行简化和重写:4p - 20pq + 25q = (2p - 5q)228、需要删除,因为没有明确的题目或内容。
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)之杨若古兰创作3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内没法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 .1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( B )A.2B. 4C.6D.82.若9x2−12xy+m是两数和的平方式,那么m的值是( B ) A.2y2B.4y 2C.±4y2D.±16y23.把多项式a4− 2a2b2+b4因式分解的结果为( D )A.a2(a2−2b2)+b4 B.(a2−b2)2C.(a−b)4 D.(a+b)2(a−b)24.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( C )A.( 3a−b)2 B.(3b+a)2C.(3b−a)2 D.( 3a+b)26.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为(B )A.M>N B.M≥NC.M≤ND.不克不及确定7.对于任何整数m,多项式( 4m+5)2−9都能( A ) A.被8整除B.被m整除C.被(m−1)整除 D.被(2n−1)整除9.以下变形中,是准确的因式分解的是(D )A.0.09m2− n2 = ( 0.03m+ n )( 0.03m−n)B.x2−10 = x2−9−1 = (x+3)(x−3)−1C.x4−x2 = (x2+x)(x2−x)D.(x+a)2−(x−a)2 = 4ax10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( A ) A.x+y−z B.x−y+z C.y+z−x D.不存在11.已知x为任意有理数,则多项式x−1−x2的值( ) A.必定为负数B.不成能为负数C.必定为负数D.可能为负数或负数或零二、解答题:分解因式:(1)(ab+b)2−(a+b)2(2)(a2−x2)2−4ax(x−a)2(3)7xn+1−14xn+7xn−1(n为不小于1的整数)答案:一、选择题:1.B说明:右侧进行整式乘法后得16x4−81 = (2x)4−81,所以n 应为4,答案为B.2.B说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,是以,m = b2y2 = 4y2,答案为B.3.D说明:先应用完整平方公式,a4− 2a2b2+b4 = (a2−b2)2,再应用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,留意因式分解要分解到不克不及分解为止;答案为D.4.C说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.6.B说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.7.A说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).9.D说明:选项A,,则0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右侧不是乘积的方式;选项C右侧(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.10.A说明:本题的关键是符号的变更:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.11.B说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非负数,准确答案应当是B.二、解答题:(1) 答案:a(b−1)(ab+2b+a)说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).(2) 答案:(x−a)4说明:(a2−x2)2−4ax(x−a)2= [(a+x)(a−x)]2−4ax(x−a)2= (a+x)2(a−x)2−4ax(x−a)2= (x−a)2[(a+x)2−4ax]= (x−a)2(a2+2ax+x2−4ax)= (x−a)2(x−a)2 = (x−a)4.(3) 答案:7xn−1(x−1)2说明:原式= 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.因式分解之十字相乘法专项练习题(1)a2-7a+6; (2)8x2+6x-35;(3)18x2-21x+5; (4) 20-9y-20y2;(5)2x2+3x+1; (6)2y2+y-6;(7)6x2-13x+6; (8)3a2-7a-6;(9)6x2-11x+3; (10)4m2+8m+3;(11)10x2-21x+2; (12)8m2-22m+15;(13)4n2+4n-15; (14)6a2+a-35;(15)5x2-8x-13; (16)4x2+15x+9;(17)15x2+x-2; (18)6y2+19y+10;(19) 2(a+b) 2+(a+b)(a-b)-6(a-b) 2; (20)7(x-1) 2+4(x-1)-20;(1)(a-6)(a-1),(2)(2x+5)(4x-7)(3)(3x-1)(6x-5),(4)-(4y-5)(5y+4)(5)(x+1)(2x+1),(6)(y+2)(2y-3)(7)(2x-3)(3x-2),(8)(a-3)(3a+2)(9)(2x-3)(3x-1),(10)(2m+1)(2m+3)(11)(x-2)(10x-1),(12)(2m-3)(4m-5)(13)(2n+5)(2n-3),(14)(2a+5)(3a-7)(15)(x+1)(5x-13),(16)(x+3)(4x+3)(17)(3x-1)(5x=2),(18)(2y+5)(3y+2)(19)(3a-b)(5b-a),(20)(x+1)(7x-17)例1 分解因式思路1 因为所以设原式的分解式是然后睁开,利用多项式的恒等,求出m, n,的值.解法1因为所以可设比较系数,得由①、②解得把代入③式同样成立.∴思路2 前面同思路1,然后给x,y取特殊值,求出m,n 的值.解法2 因为所以可设因为该式是恒等式,所以它对所有使式子成心义的x,y都成立,那么不妨令得令得解①、②得或把它们分别代入恒等式检验,得∴说明:本题解法中方程的个数多于未知数的个数,必须把求得的值代入多余的方程一一检验.若有的解对某个方程或所设的等式不成立,则需将此解舍去;若得方程组无解,则说明原式不克不及分解成所设构成的因式.例2 分解因式思路本题是关于x的四次多项式,可考虑用待定系数法将其分解为两个二次式之积.解设由恒等式性质有:由①、③解得代入②中,②式成立.∴说明若设原式由待定系数法解题知关于a与b的方程组无解,故设原式例3 在关于x的二次三项式中,当时,其值为0;当时,其值为0;当时,其值为10,求这个二次三项式.思路1 先设出关于x的二次三项式的表达式,然后利用已知条件求出各项的系数.可考虑利用恒待式的性质.解法1 设关于x的二次三项式为把已知条件分别代入,得解得故所求的二次三项为思路2 根据已知时,其值0这一条件可设二次三项式为然后再求出a的值.解法2 由已知条件知当时,这个二次三项式的值都为0,故可设这个二次三项式为把代入上式,得解得故所求的二次三项式为即说明要留意利用已知条件,巧设二次三项式的表达式.例4 已知多项式的系数都是整数.若是奇数,证实这个多项式不克不及分解为两个整系数多项式的乘积.思路先设这个多项式能分解为两个整系数多项式的乘积,然后利用已知条件及其他常识推出这类分解是不成能的.证实:设(m,n,r都是整数).比较系数,得因为是奇数,则与d都为奇数,那么mr 也是奇数,由奇数的性质得出m,r也都是奇数.在①式中令,得②由是奇数,得是奇数.而m为奇数,故是偶数,所所以偶数.如许②的右边是奇数,右侧是偶数.这是不成能的.是以,题中的多项式不克不及分解为两个整系数多项式的乘积.说明:所要证的命题涉及到“不克不及”时,经常考虑用反证法来证实.例5 已知能被整除,求证:思路:可用待定系数法来求睁开前后系数之间的关系.证实:设睁开,比较系数,得由①、②,得,代入③、④得:,∴例6若a是天然数,且的值是一个质数,求这个质数.思路:因为质数只能分解为1和它本人,故可用待定系数法将多项式分解因式,且使得因式中值较小的为1,即可求a的值.进而解决成绩.解:由待定系数法可解得因为a是天然数,且是一个质数,∴解得当时,不是质数.当时,是质数.∴=11 .1、分解因式_______.2、若多项式能被整除,则n=_______.2、-4.提示:设原式=比较系数,得由①、②解得代入③得3、二次三项式当时其值为-3,当时其值为2,当时其值为5 ,这个二次三项式是_______.4、m, n是什么数时,多项式能被整除?5、多项式能分解为两个一次因式的积,则k=_____.6、若多项式能被整除,则_______.7、若多项式当 2 时的值均为0,则当x=_____时,多项式的值也是0.8、求证:不克不及分解为两个一次因式的积.参考答案或提示:1.提示:设原式比较两边系数,得由①、②解得将代入③式成立.∴原式3、提示:设二次三项式为把已知条件代入,得解得∴所求二次三项式为4.设比较系数,得解得∴当m=-11,n=4已知多项式能被整除.提示:设原式.比较系数,得解得提示:设原式比较系数,得解得∴7.3.提示:设原式比较系数,得解得c=3.∴当x=3时,多项式的值也是0.且睁开后比较系数,得由④、⑤得代入③,再由①、③得将上述入②得.而这与③矛盾,即方程组无解.故命题得证.。
因式分解专项练习
题组一:提公因式法
例1 分解因式:15a3b2﹣5a4b3.
【解答】解:原式=5a3 b2·3﹣5a3 b2·ab [找公因式]
=5a3b2(3﹣ab)[提取公因式]
例2 因式分解:6a(m﹣n)2﹣8(n﹣m)3.
【解答】原式=6a(m﹣n)2+8(m﹣n)3.[先变号]
=2(m﹣n)2[3a+4(m﹣n)] [再提取]
=2(m﹣n)2(3a+4m﹣4n).[去小括号]
巩固练习1:把下列各式分解因式
①2ax3+6a2x2.②6(x﹣y)3﹣3y(y﹣x)2.
题组二:运用公式法+++
例3 因式分解:m2﹣4n2
【解答】解:原式= m2﹣(2n)2
=(m+2n)(m﹣2n)
例4 因式分解:2a2﹣4a+2.
【解答】原式=2(a2﹣2a+1)[先提取2]
=2(a﹣1)2 [再用完全平方公式]
巩固练习2:把下列各式分解因式
①x2﹣9 ②4x2﹣y2 ③4a2﹣36
④﹣x2+2xy﹣y2 ⑤2x2﹣18
例5分解因式:x4﹣y4
【解答】原式=(x2+y2)(x2﹣y2),
=(x2+y2)(x+y)(x﹣y).[继续分解]
例6分解因式:(x2﹣6x)2+18(x2﹣6x)+81
【解答】原式=(x2﹣6x)2+2·(x2﹣6x)·9+92
=(x2﹣6x+9)2
=(x2﹣2·x·3+32)2
=[(x﹣3)2]2
=(x﹣3)4[应去掉中括号]
例7分解因式:(a2+1)2﹣4a2.
【解答】解:原式=(a2+1)2﹣(2a)2.
=(a2+1﹣2a)(a2+1+2a)[先平方差]
=(a﹣1)2(a+1)2 [再完全平方] 巩固练习3:把下列各式分解因式
①16x4﹣1 ②x4﹣10x2y2+9y4.
③m4﹣2m2+1.④16﹣a4.
题组三:分组分解法
例8 分解因式:
(1)6x(x+y)﹣x﹣y (2)x2﹣2xy+y2﹣z2.【解答】解:
原式=6x(x+y)﹣(x+y) [分组]
=(x+y)(6x-1)
解:(2)x2﹣2xy+y2﹣z2
=(x﹣y)2﹣z2 [分组]
=(x﹣y+z)(x﹣y﹣z).巩固练习4:把下列各式分解因式
①a2﹣b2﹣2b﹣1.②a2(x﹣y)+4y﹣4x
题组四:综合运用
例9把下列各式分解因式
①3m2﹣18m+27;
解:(1)3m2﹣18m+27
=3(m2﹣6m+9)[先提取]
=3(m﹣3)2;[再完全平方]
②(x﹣1)(x﹣3)+1.
【解答】解:原式=x2﹣3x-x+3+1 [先变形]
=x2﹣4x+4 [合并同类项]
=(x﹣2)2.[再完全平方]
③(3x﹣2)2﹣(2x+7)2
【解答】解:
原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)] =(3x﹣2+2x+7)(3x﹣2﹣2x﹣7)
=(5x+5)(x﹣9)(★仍要把“5”提出来)
=5(x+1)(x﹣9);
巩固练习5:把下列各式分解因式
①2a3﹣4a2b+2ab2 ②(a﹣4b)(a+b)+3ab.③a4﹣(2a﹣1)2.
巩固练习
把下列各式分解因式
(1)x2y﹣y;
(2)a2b+ab2
(3)8a3b2+12ab3c;
(4)2x2﹣50
(5)3a3b2﹣12ab3c;
(6)81m3﹣54m2+9m
(7)3x2﹣18xy+27y2.
(8)9x2﹣6x+1
(9)a3b﹣2a2b2+ab3.
(10)x3﹣4x2 y+4xy2.
(11)1﹣a2﹣b2﹣2ab;[见例8]
(12)9a2(x﹣y)+4b2(y﹣x).[先提取,再平方差] (13)(x2+y2)2﹣4x2y2[见例7]
(14)25(x﹣y)2+10(y﹣x)+1.[见例6] (15)﹣2m2+8mn﹣8n2[见例4]
(16)a2(x﹣1)+b2(1﹣x)[先变号,再提取] (17)(m2+n2)2﹣4m2n2.[见例7]
(18)(2x+y)2﹣(x+2y)2.[见例9③]
(19)(x+2)(x+6)+4 [见例9②]
(20)(a2﹣12)2+6(a2﹣12)+9.[见例6]。