子空间迭代法
- 格式:ppt
- 大小:1.09 MB
- 文档页数:10
20世纪十大算法本世纪初,美国物理学会(American Institute of Physics)和IEEE计算机社团(IEEE Computer Society)的一本联合刊物《科学与工程中的计算》发表了由田纳西大学的Jack Dongarra和橡树岭国家实验室的Francis Sullivan联名撰写的“世纪十大算法”一文,该文“试图整理出在20世纪对科学和工程领域的发展产生最大影响力的十大算法”。
作者苦于“任何选择都将是充满争议的,因为实在是没有最好的算法”,他们只好用编年顺序依次列出了这十项算法领域人类智慧的巅峰之作——给出了一份没有排名的算法排行榜。
有趣的是,该期杂志还专门邀请了这些算法相关领域的“大拿”为这十大算法撰写十篇综述文章,实在是蔚为壮观。
本文的目的,便是要带领读者走马观花,一同回顾当年这一算法界的盛举。
1946蒙特卡洛方法在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,呃,能帮我算算这个不规则图形的面积么?蒙特卡洛(Monte Carlo)方法便是解决这个问题的巧妙方法:随机向该正方形内扔N(N是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个:那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。
别小看这个数黄豆的笨办法,大到国家的民意测验,小到中子的移动轨迹,从金融市场的风险分析,到军事演习的沙盘推演,蒙特卡洛方法无处不在背后发挥着它的神奇威力。
蒙特卡洛方法由美国拉斯阿莫斯国家实验室的三位科学家John von Neumann(看清楚了,这位可是冯诺伊曼同志!),Stan Ulam和Nick Metropolis共同发明。
就其本质而言,蒙特卡洛方法是用类似于物理实验的近似方法求解问题,它的魔力在于,对于那些规模极大的问题,求解难度随着问题的维数(自变量个数)的增加呈指数级别增长,出现所谓的“维数的灾难”(Course of Dimensionality)。
迭代方法和最优化算法及其应用概述迭代方法和最优化算法是当代数学和计算机科学领域中非常重要的研究方向。
它们被广泛应用于各种实际问题的求解中,比如物理、金融、工程、医学、社会科学等领域。
本文将讨论迭代方法和最优化算法的基本概念、性质和应用,并以实际案例为例,说明它们在现实生活中的重要性和实用价值。
迭代方法迭代方法是一种基于递推公式或迭代框架的数值计算方法。
它的基本思想是利用已知结果来推导新的结果,并不断逼近最终解。
常见的迭代方法有牛顿迭代法、Jacobi迭代法、Gauss-Seidel迭代法、共轭梯度法、Krylov子空间方法等。
以牛顿迭代法为例,其递推公式为:$x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}$其中,$x_k$是第k次迭代得到的近似解,$f(x)$和$f'(x)$分别是函数f(x)及其导数。
牛顿迭代法的主要优点是收敛速度较快,但也有不足之处,如迭代路径不一定收敛、局部最优解的存在、计算导数的困难性等。
最优化算法最优化算法是一种通过数学优化模型来求解优化问题的方法。
它的基本思想是通过优化目标函数来找到最优解,其中目标函数可以是线性的或非线性的,并且通常还要满足一定的限制条件。
最优化算法的常见分类有线性规划、整数规划、非线性规划、凸优化、半定规划等等。
其中最常用的最优化算法之一是梯度下降法,其主要思想是朝着当前位置负梯度方向走一步,来不断逼近最小值。
应用实例迭代方法和最优化算法被广泛应用于现实生活中各种领域的问题求解中。
以金融领域为例,投资组合优化是一个经典的优化问题,目的是在给定的风险和收益目标下,找到最优的投资组合。
这个问题可以通过构建数学模型来求解,其中一个应用广泛且高效的方法是基于最优化算法的组合优化模型。
另一方面,迭代方法和最优化算法在医学中也有广泛应用。
例如,在医学影像重建中,迭代算法可以用于改善低剂量CT图像的清晰度,从而帮助医生更准确地诊断病情。
特征值与特征向量算法的研究摘要:目前在很多科学领域中进行研究时,问题常会转化成特征值与特征向量的求解。
本文就求解特征值、特征向量的几个重要的算法作出了研究。
如:幂法,反幂法,QR算法,Jacobi迭代法等。
讨论了各算法的原理及各算法在MATLAB中的运行情况,从而比较出在面对不同性质的矩阵时每个算法都各有千秋。
幂法计算简单,特别适用于高阶稀疏矩阵,但其收敛速度较慢,要想加快幂法的收敛速度可采用反幂法及位移技术。
QR方法被人们称为数值数学,最值得注意的算法之一,它是目前求任意矩阵全部特征值和特征向量最有效的方法。
Jacobi方法是古典方法,它收敛快,精度高,便于并行计算且算法稳定。
但比较适用于求低阶的对称矩阵的全部特征值和特征向量。
关键词:特征值特征向量幂法 QR算法雅可比算法Abstract:At present While carrying on research in a lot of scientific fields,the questions often change into how to solve the eigenvalue and eigenvector. The degree paper do research in some important arithmetic on eigenvalue and eigenvector, such as power method, inverse power method, QR arithmetic and Jacobi arithmetic etc. In this paper, we discuss the theory of arithmetic, also including how to use them in the MATLAB. Then we can come to the conclusion that the power method is easy to run, it is fit to sparse matrix, but the speed is too slow! If you want to speed the rate of convergence, you can use inverse power method. QR is diffused as numerical mathematics, one of the noteworthiness arithmetic; it is the best arithmetic which can solve all eigenvalue and eigenvector of any matrix. Jacobin arithmetic is a classicality, the rate of convergence is fast, and the precision are high too. It is easy to parallel calculate, and the result is steady but it is fit to calculate all eigenvalue and eigenvector of symmetric matrix.Keywords:Eigenvalue eigenvector power method QR arithmetic Jacobin arithmetic目录摘要 (1)1绪论1.1问题提出与研究的目的和意义 (3)1.2国内外研究现状 (3)1.3论文结构与研究方法 (3)1.4论文使用的软件环境 (4)2 MATLAB语言及其在数值计算方面应用的简介 (4)2.1幂法 (4)2.2反幂法 (6)2.3移位反幂法 (8)2.4 QR算法 (10)2.5雅可比(Jacobi)迭代法 (12)3记单侧旋转法的对称矩阵特征值的求法 (16)4几种算法的比较 (16)5 MATLAB计算仿真结果 (17)在MATLAB中用幂法求其特征值与特征向量 (17)6尚待深入研究的问题 (17)参考文献 (18)致谢 (18)一、绪论1.1问题提出与研究的目的和意义代数特征值问题是数值代数的一个重要研究领域。