微机保护硬件组成及作用
- 格式:doc
- 大小:252.00 KB
- 文档页数:8
微机综合保护原理微机综合保护原理是指在微机控制系统中,通过采取多种措施对系统进行保护的原理。
这种保护是为了防止外界干扰、操作失误、故障等因素对系统正常运行和数据安全产生影响。
微机综合保护原理主要包括硬件保护和软件保护两个方面。
硬件保护主要是通过硬件电路来实现的。
常用的硬件保护措施包括过电流保护、过压保护、过温保护等。
过电流保护是为了防止电流超过设定值而对电路造成损坏。
一般采用熔丝、电流保险丝等方式来实现过电流保护。
过压保护是为了防止电压超过设定值而对电路造成损坏。
一般采用过压保护器、瞬变电压抑制器等方式来实现过压保护。
过温保护是为了防止温度超过设定值而对电路造成损坏。
一般采用温度传感器、风扇等方式来实现过温保护。
软件保护主要是通过软件编程来实现的。
常用的软件保护措施包括系统自检、错误处理、恢复机制等。
系统自检是指在系统启动过程中对关键参数进行检测和验证,以确保系统的正常运行。
例如,检测CPU、内存、硬盘等是否正常工作,检测系统的硬件和软件配置是否与预期一致等。
错误处理是指在系统运行过程中,对可能出现的错误进行处理。
例如,对于输入数据错误、传感器异常、通信中断等情况,系统可以进行相应的处理,包括报警、自动纠错、数据重发等操作。
恢复机制是指在系统发生故障时,通过自动恢复措施使系统尽快恢复正常工作状态。
例如,系统可以自动重启、切换到备用系统、恢复最近的工作状态等。
此外,微机综合保护原理还包括网络安全防护。
网络安全防护涉及到对系统进行防火墙、入侵检测、数据加密等方面的保护措施,以确保系统的安全。
总的来说,微机综合保护原理通过硬件和软件两个方面的措施,保护系统免受外界干扰和故障的影响,确保系统的正常运行和数据的安全。
这是现代微机控制系统不可或缺的重要部分,也是保证系统稳定性和可靠性的基础。
微机保护装置的硬件原理1.电压电流采样和信号调理:微机保护装置通过安装在电力系统中的电流互感器和电压互感器对电力系统的电流和电压进行采样。
采样的模拟信号经过滤波、放大、保持等各种处理电路,转换为数字信号,经过数据处理和分析。
2.AD转换和DSP处理:采样信号经过模数转换器(ADC)转换成数字信号,然后送入数字信号处理器(DSP)。
DSP是微机保护装置的核心处理器,它能够高效执行各种复杂的算法,如差动、过流、过压、欠压等等。
DSP还可以实时采集、分析和存储数据,并与外部通信模块交互。
3.数据传输和通信:微机保护装置通常与电力系统交换信息,以便实时监测和保护。
通信模块可以是串行方向、以太网或光纤等多种方式。
通过通信模块,保护装置可以接收来自其他设备的控制信号,也可以将故障信息发送给监控中心或其他装置。
4.保护算法:微机保护装置内置了多种保护算法,用于识别电力系统中的各种故障和异常情况。
常见的保护算法包括差动保护(用于检测设备内部短路故障)、过流保护(用于检测额定电流以上的电路过流故障)、过压保护(用于检测设备额定电压以上的电压异常)等。
这些算法通过对采集的信号进行实时分析和比较,确定故障类型,并触发相应的保护动作。
5.控制和输出接口:保护装置通常还具有控制和输出接口,用于与其他设备或系统进行交互。
控制接口可以接收来自其他设备或系统的控制信号,如远方信号、故障信号等,并实施相应的动作。
输出接口则可以控制蜂鸣器、继电器等设备,实现报警、断路等操作。
综上所述,微机保护装置的硬件原理涉及到电压电流采样、信号调理、AD转换、DSP处理、数据传输和通信、保护算法、控制和输出接口等方面。
它通过采集、处理和分析电力系统的信号数据,并按照预设的保护算法进行相应的保护动作,有效地保护电力系统设备的安全运行。
微机综合保护原理微机综合保护是指对微机系统进行全面保护的措施和原理。
微机系统是指由微处理器、存储器、输入输出设备和各种外设组成的一套完整的计算机系统,它们被广泛应用在各种领域,包括工业控制、通信、医疗、商业等。
由于微机系统通常运行着重要的任务和数据,因此确保其安全和可靠性对于各行各业都至关重要。
微机系统有许多方面需要进行保护,包括硬件、软件、网络等各个方面。
综合保护原理主要是通过多层次的措施来保护微机系统的安全和可靠性。
以下将从硬件、软件、网络等方面来详细介绍微机综合保护的原理。
首先从硬件方面来看,微机系统的硬件包括主机、外设和各种传感器等。
为了保护这些硬件不受损坏或者遭受攻击,可以采取以下措施:1.选择高质量的硬件设备。
在选择微机系统的硬件设备时,应该选择那些经过认证、质量可靠的设备,避免使用低质量甚至是侵权的硬件设备。
2.加固硬件防护措施。
在安装和使用硬件设备时,可以采取物理防护措施,比如加固机箱、设置密码锁等,以防止未经授权的人员破坏或者篡改硬件设备。
3.及时更新硬件设备。
随着科技的进步,硬件设备可能存在漏洞或者安全隐患,因此要及时更新硬件设备的驱动程序或固件,以确保其安全可靠。
其次从软件方面来看,微机系统的软件包括操作系统、应用程序等。
软件的安全和可靠性直接影响到整个微机系统的运行,因此需要采取下面的措施:1.选择安全可靠的软件。
在选择操作系统和应用软件时,应该选择那些由正规厂家发布的、受到广泛认可的软件,并且要定期更新,以确保安全可靠。
2.加固软件安全性。
采取加密、权限控制、强化认证等措施,保护软件免受非法侵入和攻击。
3.实施漏洞修复方案。
软件可能存在各种漏洞,需要及时采取修复措施,以免受到攻击和破坏。
再者从网络方面来看,微机系统通常需要联网,与其他设备或者系统进行数据交换。
为了保护微机系统不受来自网络的威胁,需要采取下面的网络安全措施:1.搭建安全网络环境。
采用防火墙、入侵检测系统、防病毒软件等措施,构建安全可靠的网络环境,避免受到未经授权的访问和入侵。
简述微机保护的基本构成和主要部分的功能1、简述微机保护的基本构成和主要部分的功能答:微机保护是由一台计算机和相应的软件(程序)来实现各种复杂功能的继电保护装置。
微机保护的特性主要是由软件决定的,具有较大的灵活性,不同原理的保护可以采用通用的硬件。
微机保护包括硬件和软件两大部分。
硬件一般包括以下三大部分。
(1) 模拟量输入系统(或称数据采集系统) 包括电压形成、模拟滤波、采样保持、多路转换以及模数转换等功能,完成将模拟输入量准确地转换为所需的数字量。
(2) CPU主系统包括微处理器(MPU)、只读存储器(EPROM)、随机存取存储器(RAM)以及定时器等。
MPU执行存放在EPROM中的程序,对由数据采集系统输入至RAM区的原始数据进行分析处理,以完成各种继电保护的功能。
(3) 开关量(或数字量)输入/输出系统由若干并行接口适配器、光电隔离器件及有接点的中间继电器等组成,以完成各种保护的出口跳闸、信号警报、外部接点输入及人机对话等功能。
微机保护软件是根据继电保护的需要而编制的计算机程序。
72、电力变压器的不正常工作状态和可能发生的故障有哪些?一般应装设哪些保护?答:变压器的故障可分为内部故障和外部故障两种。
变压器内部故障系指变压器油箱里面发生的各种故障,其主要类型有:各相绕组之间发生的相间短路,单相绕组部分线匝之间发生的匝间短路,单相绕组或引出线通过外壳发生的单相接地故障等。
变压器外部故障系变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的单相接(通过外壳)短路,引出线之间发生的相间故障等。
变压器的不正常工作状态主要包括:由于外部短路或过负荷引起的过电流、油箱漏油造成的油面降低、变压器中性点电压升高、由于外加电压过高或频率降低引起的过励磁等。
为了防止变压器在发生各种类型故障和不正常运行时造成不应有的损失,保证电力系统安全连续运行,变压器一般应装设以下继电保护装置: (1)防御变压器油箱内部各种短路故障和油面降低的瓦斯保护。
现场微机保护装置:
采用微机来实现的保护称为微机保护,具有如下优点:
(1)可靠性高;
(2)灵活性强;
(3)性能改善,功能易于扩充;
(4)维护调试方便;
(5)有利于实现变电站综合自动化
微机保护装置从功能上可以分为六个部分,如图所表示:
各部分的功能如下:
1.模拟量输入系统(数据采集系统)——采集由被保护设备的电流电压互感器输入的模拟信号,将此信号经过滤波,然后转
换为所需的数字量。
2.CPU主系统——包括微处理器CPU,只读存储器(EPROM)、随机存取存储器(RAM)及定时器(TIMER)等。
CPU执行存放在EPROM中的程序,对由数据采集系统输入至RAM区的原始数据进行分析处理,并与存放于E2PROM中的定值比较,以
完成各种保护功能。
3.开关量输入/输出回路——由并行口、光电耦合电路及有接点的中间继电器等组成,以完成各种保护的出口跳闸、信号指示
及外部接点输入等工作。
4.人机接口部分——包括打印、显示、键盘、各种面板开关等,
其主要功能用于人机对话,如调试、定值调整等。
5.通讯接口——用于保护之间通讯及远动。
6.电源——提供整个装置的直流电源。
所谓开关量,就是只有两种状态的量,包括不带电位的接点位置(接通或断开)及只有高低两种电位的逻辑电平。
3.3.1开关量输入回路
开关量输入大多数是接点状态的输入,可以分成两类:一是安装在装置面板上的接点,另一类是从装置外部经过端子排引入装
置的触点。
第一类接点,与外界电路无联系,可直接接至微机的并行接口如图(a)所示,也可以直接与CPU的输入接口线相连。
在初始化时规定图中可编程并行接口的PA0为输入口,CPU可以通过软件查询,随时知道外部接点S的状态。
当S未被按下时,通过上拉电阻使PA0为5V,S按下时,PA0为0V。
因此CPU通过查询PA0的电平为“0”或为“1”,就可以判
断S是处于断开还是闭合状态。
第二类接点由于与外电路有联系,需经光耦器件进行隔离,以防接点输入回路引入的干扰,其原理接线如图(b)所示。
图中虚线框内是光耦元件,集成在一个芯片内。
当外部触点S接通时,有电流通过光耦器件的发光二极管,使光敏三极管受激发而导通,三极管集电极电位呈低电平。
S打开时,光敏三极管截止,集电极输出高电平。
因此三极管集电极的电位亦即PA0口线的电位变化,就代表了外部触点的通断情况。
3.3.2开关量输出回路
开关量输出主要包括保护的跳闸出口以及本地和中央信号
等。
如上图所示。
只要由软件使并行口的PB0输出“0”,PB1输出“1”,便可使与非门Y2输出低电平,发光二极管导通,光敏三极管激发导通,使继电器K动作,其接点闭合,启动后级电路。
在初始化和需要继电器返回时,应使PB0输出“1”,PB1输出“0”。
注:1)采用两个与非们,增强了并行口的带负荷能力及抗干
扰能力
2)PB0经一反相器,而PB1却不经反相器,这样接可防止
在拉合直流电源的过程中继电器K的短时误动。
微机保护的程序由主程序与中断服务程序两大部分组成。
在中断服务程序中有正常运行程序模块和故障处理程序模块。
正常运行程序中进行采样值自动零漂调整、及运行状态检查,运行状态检查包括交流电压断线、检查开关位置状态、变化量制动电压形成、重合闸充电、准备手合判别等。
不正常时发告警信号,信号分两种,一种是运行异常告警,这时不闭锁装置,提醒运行人员进行相应处理;另一种为闭锁告警信号,告警同时将装置闭锁,保护退出。
故障计算程序中进行各种保护的算法计算,跳闸逻辑判断以及事件报告、故障报告及波形的整理等。
3.5.1主程序
主程序按固定的采样周期接受采样中断进入采样程序,在采
样程序中进行模拟量采集与滤波,开关量的采集、装置硬件自检、交流电流断线和起动判据的计算,根据是否满足起动条件而进入正常运行程序或故障计算程序。
硬件自检内容包括RAM、
E2PROM、跳闸出口三极管等。
3.5.2中断服务程序
1.故障处理程序
根据被保护设备的不同,保护的故障处理程序有所不同。
对于线路保护来说,一般包括纵联保护、距离保护、零序保护、电压
电流保护等处理程序。
2.正常运行程序
正常运行程序包括开关位置检查、交流电压电流断线判断、交
流回路零点调整等。
检查开关位置状态:三相无电流,同时断路器处于跳闸位置动作,则认为设备不在运行。
线路有电流但断路器处于跳闸位置动作,或三相断路器位置不一致,经10秒延时报断路器位置异常。
交流电压断线:交流电压断线时发TV断线异常信号。
TV断线信号动作的同时,将TV断线时会误动的保护(如带方向的距离保护保护等)退出,自动投入TV断线过流和TV断线零序过流保护或将带方向保护经过控制字的设置改为不经方向元件控制。
三相电压正常后, 经延时发TV断线信号复归。
交流电流断线:交流电流断线发TA断线异常信号。
保护判出
交流电流断线的同时,在装置总起动元件中不进行零序过流元件起动判别,且要退出某些会误动的保护,或将某些保护不经过方
向控制。
电压、电流回路零点漂移调整:随着温度变化和环境条件的改变,电压、电流的零点可能会发生漂移,装置将自动跟踪零点
的漂移。