ak xx (m k ) Ex(n) (n m)
k 1
p
而
m0 0, E x(n) (n m) 2 , m 0
•Yule-Walker方程的推导
故
p a k xx (m k ) , m 0 k 1 xx (m) p a (k ) 2 , m 0 k xx k 1 或
p
2
需要推导AR参数与 xx (m)之间的关系。
3.1
• 估计方法
自回归模型法
2 与xx (m)乊间的关系 参数a1, a2, a3, …, ap及 ——Yule-Walker方程
已知:自相关函数 已知: 自相关函数
Yule-Walker方程
要求: AR模型的阶数p,以及p个AR 要求: AR模型的阶数p,以及p个 AR 参数a(i),激励源方差 2 参数a(k),激励源方差
3.2
最大熵谱估计法
• 基本思想——熵
代表一种不定度; 最大熵为最大不定度,即它的时间序列最随机, 它的PSD应是最平伏(最白色)。 Shannon对熵的定义: 当x的取值为离散的时,熵H定义为
H pi ln pi
i
pi:出现状态i 的概率。
当x的取值为连续的时,熵H定义为
p(x):概率密度 函数
(n)
...
z-1 a1
z-1
z-1
a2
...
ap
3.1
自回归模型法
q
• MA(Moving Average)模型 ——全零点模型
x(n) bl (n l )
l 0
H ( z ) B( z ) 1 bl z k