第七章习题
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
第七章树立法治观念遵重法律权威(自测练习题)编写说明:1.忠于大纲和教材。
绪论和各章习题严格按照“大纲”和《思想道德修养与法律基础》最新版本教材编写,并将紧随教材的日后修订不断调整、补充和完善。
2.覆盖面广,重点突出。
习题几乎覆盖教材所有知识点,在此基础上对于基本理论、基础知识和重要知识点做到从多角度进行考查。
3.排列有序。
全部习题的排列以题型为单元,每种题型内的习题严格按照所考查知识点在教材上出现的先后顺序呈现,对于涉及多个知识点的,一般以最后出现的知识点为准,以便于练习。
4.难易结合,有一定区分度,考察基本理论和基础知识的同时,力求注重考查理解、分析和综合运用能力。
使用说明:1.可服务于训练、复习和考试。
本套习题可以作为学生学习各章节内容的同步训练,也可以作为学生在准备全国硕士研究生入学“思想政治理论”课统一考试的复习参考,又可以作为教师命制该课程期末考试试题的选择素材。
2.可服务于自测、巩固和提高。
学生在使用本套习题时,应首先学习和阅读教材,在此基础上进行自测训练,巩固记忆、加深理解、强化认识、提高能力,做到把握基本理论和基础知识的同时,形成一定的理论体系和逻辑结构,提高理论水平的同时提升思想道德素质和法律素质,具备较强的理论思维方式与运用所学知识观察、分析和解决社会生活实际问题的能力。
的历史使命?一、单项选择题1.依法享有和行使法律自由意味着()。
A.废除人们的自由B.任意干涉人们的自由C.对当事人的自由施加合理的约束D.任意限制人们的自由2. 人民当家作主的社会主义国家性质在法治理念上的必然反映是()。
A.服务大局B. 执法为民C. 党的领导D. 公平正义3、社会主义法治建设的根本价值追求是()。
A.依法治国B. 执法为民C. 党的领导D. 公平正义4.公平正义的起点是()。
A.立法公正B. 执法公正C. 司法公正D. 守法5.公平正义的保障是()。
A.立法公正B. 执法公正C. 司法公正D. 守法6.公平正义的最后一道防线是()。
MR,试求:图7—1(1)A点所对应的MR值;(2)B点所对应的MR值。
解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为e d =eq \f(15-5,5)=2或者e d =eq \f(2,3-2)=2再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则A点的MR值为MR=2×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B点的需求的价格弹性为e d =eq \f(15-10,10)=eq \f(1,2)或者e d =eq \f(1,3-1)=eq \f(1,2)再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则B点的MR值为MR=1×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,1/2)))=-12. 图7—2(即教材第205页的图7—19)是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量。
图7—2图7—3(1)长期均衡点为E点,因为在E点有MR=LMC。
由E点出发,均衡价格为P0,均衡数量为Q0。
(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图7—3所示。
在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。
(3)长期均衡时的利润量由图7—3中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q 0。
3. 已知某垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3 000,反需求函数为P=150-3.25Q。
第七章证券评价一、单项选择题1.已知某证券的 系数等于1,则表明该证券( C )。
A.无风险B.有非常低的风险C.与金融市场所有证券平均风险一致D.比金融市场所有证券平均风险大1倍2.某种股票为固定成长股票,年增长率为5%,预期一年后的股利为6元,现行国库券的收益率为11%,平均风险股票的必要收益率等于16%,而该股票的贝他系数为1.2,那么,该股票的价值为( A )。
A.50B.33C.45D.303.投资短期证券的投资者最关心的是( D)。
A.发行公司的经营理财状况的变动趋势B.证券市场的现时指数C.发行公司当期可分派的收益D.证券市场价格的变动4.证券投资者的购买证券时,可以接受的最高价格是( C )。
A.出卖市价B.风险价值C.证券价值D.票面价值5.一般而言,金融投资不是( B )。
A.对外投资B.直接投资C.证券投资D.风险投资6.非系统风险( B )。
B.归因于某一投资企业特有的价格因素或事件C.不能通过投资组合得以分散D.通常以 系数进行衡量7.下列说法中正确的是( D )。
A.国库券没有利率风险B.公司债券只有违约风险D.国库券没有违约风险,但有利率C.国库券和公司债券均有违约风险风险8.如果组合中包括了全部股票,则投资人( A )。
A.只承担市场风险B.只承担特有风险C.只承担非系统风险D.不承担系统风险9.债券的价值有两部分构成,一是各期利息的现值,二是( C )的现值。
A.票面利率B.购入价格C.票面价值D.市场价格10.A公司发行面值为1000元,票面利率10%,期限五年,且到期一次还本付息(单利计息)的债券,发行价格为1050元,B投资者有能力投资,但想获得8%以上的投资报酬率,则B投资者投资该债券的投资报酬率为( B)。
A.8%B.7.4%C.8.25%D.10%11.某企业于1996年4月1日以950元购得面额为1000元的新发行债券,票面利率12%,每年付息一次,到期还本,该公司若持有该债券至到期日,其到期收益率为( A )。
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。
第七章物权法一、单项选择题1、2016年3月1日,甲以自有的一套房屋为债权人乙设定了抵押权并办理抵押登记。
5月1日,甲又以该房屋为债权人丙设定抵押,但一直没有办理抵押登记。
6月1日,甲擅自将该房屋转让给丁并办理了过户登记。
对此,下列说法错误的是()。
A、甲与丙的抵押合同无效B、乙可以对该房屋行使抵押权C、丙可以要求甲赔偿自己所遭受的损失D、甲与丁之间转让房屋的合同有效2、甲向乙借款100万,丙以自己价值100万的房屋一套提供抵押,并办理了抵押登记,后乙将对甲的债权转让给丁,则抵押权将()。
A、消灭B、由乙继续享有C、由丁享有D、由乙、丁共同享有3、林某因耕田需要,于5月1日借用了赵某家的耕牛,后于5月20日向赵某表示希望买下该牛,赵某于次日表示同意,5月25日,林某向赵某支付价款8000元。
按照物权法规定,林某取得耕牛所有权的时间为()。
A、5月1日B、5月20日C、5月21日D、5月25日4、根据《物权法》及相关规定,下列关于动产质权的说法中正确的是()。
A、动产质权的生效要件是质物的交付B、动产质权人在质权存续期间,可以使用质物,不需要经过出质人的同意C、动产质权人无权收取质物的孳息D、混同不会导致动产质权的消灭5、田某与王某签订借款合同,并约定由王某将自己的钻戒出质给田某,但其后王某并未将钻戒如约交付给田某,而是把该钻戒卖给了唐某。
唐某取得钻戒后,与田某因该钻戒权利归属发生纠纷。
根据《物权法》与《合同法》的规定,下列关于该钻戒权利归属的表述中,正确的是()。
A、唐某不能取得该钻戒的所有权,因为该钻戒已质押给田某B、唐某能取得该钻戒的所有权,但田某可依其质权向唐某追偿C、唐某能取得该钻戒的所有权,田某不能对该钻戒行使质权D、唐某能否取得该钻戒的所有权,取决于田某是否同意6、南某、顾某和林某共有一套房屋,三人所占份额相同。
为提高房屋的价值,顾某主张重新铺地板,南某表示赞同,但林某反对。
对此,下列说法正确的是()。
第七章表面现象习题一、是非题下列各题中的叙述是否正确?正确的选“√”,错误的选“×”。
√ × 1.垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面处加热时,水柱会上升。
√ × 2.水在干净的玻璃毛细管中呈凹液面,因附加压力p < 0,所以表面张力< 0 。
√ × 3.通常物理吸附的速率较小,而化学吸附的速率较大。
√ × 4.兰缪尔定温吸附理论只适用于单分子层吸附。
二、选择题选择正确答案的编号:1.附加压力产生的原因是:(A)由于存在表面;(B)由于在表面上存在表面张力;(C)由于表面张力的存在,在弯曲表面两边压力不同(D)难于确定。
2.在水平放置的玻璃毛细管中注入少许水(水润湿玻璃),在毛细管中水平水柱的两端呈凹液面,当在右端水凹面处加热,毛细管中的水向何端移动:(A)向左移动;(B)向右移动;(C)不动;3.今有一球形肥皂泡,半径为r,肥皂水溶液的表面张力为,则肥皂泡内附加压力是:(A);(B);(C)。
(D)以上答案均不正确4.接触角是指:(A)g/l界面经过液体至l/s界面间的夹角;(B)l/g界面经过气相至g/s界面间的夹角;(C)g/s界面经过固相至s/l界面间的夹角;(D)l/g界面经过气相和固相至s/l界面间的夹角;5.高分散度固体表面吸附气体后,可使固体表面的吉布斯函数:(A)降低;(B)增加;(C)不改变(D)以上答案均不正确6.高分散度固体表面吸附气体后,可使固体表面的吉布斯函数:(A)降低;(B)增加;(C)不改变(D)以上答案均不正确7.兰谬尔吸附定温式适用于:(A)化学吸附;(B)物理吸附;(C)单分子吸附;(D)多分子吸附(E)以上答案均不正确8将待测乳浊液中加入高锰酸钾,振荡均匀后取一滴于显微镜下观察,若判定结果为“O/W”型,则显微镜视野中必须有如下现象,即(B )(A)不连续的亮点被成片红色所包围,分散相为“W”,分散介质为“O”(B)不连续的亮点被成片红色所包围,分散相为“O”,分散介质为“W”(C)不连续的红斑点被成片清亮液包围,分散相为“W”,分散介质为“O”(D)不连续的红斑点被成片清亮液包围,分散相为“O”,分散介质为“W”9比表面能是( C )(A)单位体积物质的表面能(B)一摩尔物质的表面能(C)单位面积的表面能(D) 表面张力10恒温恒压条件下的润湿过程是:( A )(A)表面Gibbs自由能降低的过程(B)表面Gibbs自由能增加的过程(C)表面Gibbs自由能不变的过程(D)表面积缩小的过程11. 丁达尔效应是由于下列哪种原因造成的()A.光的反射B.光的散射C.光的折射D.光的透射12. 气体在固体表面的物理吸附是指()(A)气体分子存在于固体表面,且渗透到固体表面以下(B)气体分子与固体表面分子之间在范德华力作用下在固体表面上的吸附(C)气体分子与固体表面分子之间为化学健力作用(D)气体分子与固体表面的化学反应三、填空题在以下各小题中的1.定温下溶液的表面张力随浓度增大而减小,则单位表面吸附量 。
一、名词解释1.氧化反应:有机化合物分子中,凡失去电子或电子偏移,使碳原子上电子密度降低的反应称为氧化反应。
狭义地说,是指化合物分子增加氧或失去氢的反应,或两者兼而有之。
2. 沃氏氧化反应:仲醇或伯醇在异丙醇铝催化下,用过量酮(丙酮或环己酮等)作为电子受体,可被氧化成相应的羰基化合物,该反应成为沃氏氧化反应。
3.消除反应: 从一个有机化合物分子中同时除去两个基团(或原子)而形成一个新的分子的反应称为消除反应。
4.达参反应:邻位或对位有羟基的芳醛或芳酮,在碱性条件下用过氧化氢氧化生成多羟基化合物的反应称为达参反应。
5.沃氏氧化反应(Oppenauer氧化):仲醇或伯醇在异丙醇铝催化下,用过量酮(丙酮或环己酮等)作为电子受体,可被氧化成相应的羰基化合物,该反应成为沃氏氧化反应。
二、填空题1. 高锰酸盐为强氧化剂,在酸性、中性及碱性条件下均能起氧化作用。
常在中性或碱性溶液中使用。
2. 过量的高锰酸钾可以用亚硫酸钠等还原剂将其分解掉。
过滤,除去不溶性的二氧化锰后,将羧酸盐的水溶液用无机酸酸化,即可得到较纯净的产物。
3. 重铬酸钠容易潮解,但是比重铬酸钾的价格便宜得多,在水中的溶解度大,故在工业上应用广泛。
目前,由于重铬酸盐价格较贵,含铬废液的处理费用较高,因此已逐渐被其他氧化法所代替。
4. 三氧化铬—吡啶络合物又称为Collins试剂,其制备方法是将一份三氧化铬缓慢分次加入10份吡啶中,逐渐提高温度至30℃,最后得到黄色络合物,将三氧化铬—吡啶络合物从吡啶中分离出来,干燥后再溶于二氯甲烷中组成溶液。
它于无水条件下氧化醇,可得收率较高的醛或酮。
5. 过氧化氢俗称双氧水,是一种缓和氧化剂,其最大特点是反应后不残留杂质,因而产品纯度高。
市售的过氧化氢试剂通常浓度为30%,它的氧化反应可在中性、酸性和碱性或催化剂存在下进行。
过氧化氢最大优点是在反应完成后本身变成水,无有害残留物。
但是过氧化氢不够稳定,只能在低温下使用,这就限制了它的使用范围。
第七章参数估计1.估计量的含义是指(A )。
A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好,这种评价标准称为( B )。
A.无偏性 B.有效性 C.一致性 D .充分性3.根据一个具体的样本求出的总体均值的95%的置信区间(D )。
A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值4.无偏估计是指(B )。
A.样本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估总体参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致5.总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以( A )。
A.样本均值的抽样标准差 B.样本标准差C. 样本方差D.总体标准差6.当样本量一定时,置信区间的宽度(B )。
A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7.当置信水平一定时,置信区间的宽度(A )。
A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8.一个95%的置信区间是指(C )。
A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9.95%的置信水平是指(B )。
A.总体参数落在一个待定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个待定的样本所构造的区间内的概率为5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10.一个估计量的有效性是指(D )。
第7章 一、选择题 1.下列说法中错误的一项是( )。 A.组件是一个可视化的能与用户在屏幕上交互的对象 B.组件能够独立显示出来 C.组件必须放在某个容器中才能正确显示 D.一个按钮可以是一个组件 2.进行Java基本GUI设计需要用到的包是( )。 A.java.io B.java.sql C.java.awt D.java.rmi 3.Container是下列哪一个类的子类( )? A.Graphics B.Window C.Applet D.Component 4.java.awt.Frame的父类是( )。 A.java.util.Window B.java.awt Window C.java.awt Panel D.java.awt.ScrollPane 5.下列哪个方法可以将MenuBar加入Frame中( )? A.setMenu() B.addMenuBar() C.add() D.setMenuBar() 6.下列叙述中,错误的一项是( )。 A.采用GridLayout布局,容器中的每个组件平均分配容器空间 B.采用GridLayout布局,容器中的每个组件形成一个网络状的布局 C.采用GridLayout布局,容器中的组件按照从左到右、从上到下的顺序排列 D.采用GridLayout布局,容器大小改变时,每个组件不再平均分配容器空间 7.当单击鼠标或拖动鼠标时,触发的事件是( )。 A.KeyEvent B.ActionEvent C.ItemEvent D.MouseEvent 8.下列哪一项不属于Swing的顶层组件( )? A.JApplet B.JDialog C.JTree D.Jframe 9.下列说法中错误的一项是( )。 A.在实际编程中,一般使用的是Component类的子类 B.在实际编程中,一般使用的是Container类的子类 C.Container类是Component类的子类 D.容器中可以放置组件,但是不能够放置容器 10.下列哪一项不属于AWT布局管理器( )? A.GridLayout B.CardLayout C.BorderLayout D.BoxLayout 11.下列说法中错误的一项是( )。 A.MouseAdapter是鼠标运动适配器 B.WindowAdapter是窗口适配器 C.ContainerAdapter是容器适配器 D.KeyAdapter是键盘适配器 12.布局管理器可以管理组件的哪个属性( )? A.大小 B.颜色 C.名称 D.字体 13.编写AWT图形用户界面的时候,一定要import的语句是( )。 A.import java.awt; B.import java.awt.*; C.import javax.awt D.import javax.swing.*; 14.在类中若要处理ActionEvent事件,则该类需要实现的接口是( )。 A.Runnable B.ActionListener C.Serializable D.Event 15.下列不属于java.awt包中的基本概念的一项是( )。 A.容器 B.组件 C.线程 D.布局管理器 16.下列关于AWT组件的说法中错误的一项是( )。 A.Frame是顶级窗口,它无法直接监听键盘输入事件 B.对话框需要依赖于其他窗口而存在 C.菜单只能被添加到菜单栏中 D.可以将菜单添加到任意容器的某处 17.JPanel的默认布局管理器是()。 A.BorderLayout B.GridLayout C.FlowLayout D.CardLayout 18.下列说法中错误的是( )。 A.在Windows系统下,Frame窗口是有标题、边框的 B.Frame的对象实例化后,没有大小,但是可以看到 C.通过调用Frame的setSize()方法来设定窗口的大小 D.通过调用Frame的setVisible(true)方法来设置窗口为可见 19.下列说法中错误的是( )。 A.同一个对象可以监听一个事件源上多个不同的事件 B.一个类可以实现多个监听器接口 C.一个类中可以同时出现事件源和事件处理者 D.一个类只能实现一个监听器接口 20.下列选项中不属于容器的一项是( )。 A.Window B.Panel C.FlowLayout D.ScrollPane
二、填空题 1.Java编程语言是一种跨平台的编程语言,在编写图形用户界面方面,也要支持 功能。 2.Java的图形用户界面技术经历了两个发展阶段,分别通过提供 开发包和 开发包来体现。 3.在进行界面设计的时候,只要掌握好AWT和Swing的三点思路,就能编写出较好的图形用户界面:首先是 ,其次是 ,第三是 。 4.java.awt包提供了基本的java程序的GUI设计工具,主要包括下述三个概念,它们分别是: 、 和 。 5.组件不能独立地显示出来,必须将组件放在一定的 中才可以显示出来。 6.容器本身也是一个 ,具有组件的所有性质,另外还具有放置其他 和 的功能。 7.容器中的布局管理器负责各个组件的 和 ,因此用户无法在这种情况下设置组件的这些属性。 8.如果用户确实需要亲自设置组件大小或位置,则应取消该容器的布局管理器,方法为 。 9.所有的组件都可以通过 方法向容器中添加组件。 10.有3种类型的容器: 、 、 。 11.FlowLayout类是 直接子类。其布局策略是:将容器中的组件按照加入的先后顺序从 向 排列,当一行排满之后就转到下一行继续从 向 排列每一行中的组件都 排列。它是 和 缺省使用的布局编辑策略。 12.对于一个原本不使用FlowLayout布局编辑器的容器,若需要将其布局策略改为FlowLayout,可以使用 方法。 13.BorderLayout类的布局策略是:把容器内的空间划分为 、 、 、 、 五个区域,它们分别用字符串常量 、 、 、 、 表示。 14.BorderLayout是 、 、 和 的缺省布局策略。 15.在事件处理的过程中,主要涉及3类对象: 、 和 。 16.事件类主要有两个: 类以及 类。 17.根据监听器器和注册监听器所在的类之间的关系,我们可以把事件处理分为以下几种情况:利用 对象、 对象、 对象和 对象处理事件。 18.标准组件是由 和 构成,容器是能够容纳其他组件的对象,而基本组件是放置在容器中而不能在其内部存放其他组件的对象。 19.按钮可以引发 事件,TextField可产生 和 事件,下拉列表可产生 项目事件。当用户单击复选框使其选中状态发生变化时就会引发 ItemEvent 类代表的选择事件。滚动条可以引发 类代表的调整事件。 20.ActionEvent事件类包含 事件,该事件通过 接口进行监听,通过调用 方法将事件源注册到监听器,通过调用 方法实现监听后的动作,通过调用 方法 可以获得发生事件的事件源对象,调用 方法可以获取引发事件动作的命令名。 21.通常在itemStateChanged(ItemEvent e)方法里,会调用 方法获得产生这个选择事件的列表(List)对象的引用,再利用列表对象的方法 或 就可以方便地得知用户选择了列表的哪个选项。 22.列表的双击事件 (能/不能)覆盖单击事件。当用户双击一个列表选项时,首先产生一个 事件,然后再产生一个 事件。 22.调整事件(AdjustmentEvent)类只包含一个事件—— 事件, 代表鼠标拖动滚动条滑块的动作。 23.调用MouseEvent对象的 方法就可以知道用户引发的是哪个具体的鼠标事件。 24.在菜单项之间增加一条横向分隔线的方法是 。 25.将菜单项添加到菜单中以及将菜单添加的菜单栏中所用的方法都是 ,将菜单栏添加到窗口中的方法是 。 26.对话框组件一般可以接受 事件和 事件。 27.创建字体后,可以用 类的成员方法 来设置自己希望使用的字体。 28.Java中可以利用Graphics2D类的 方法显示图像。 29.在Swing中完全可以使用 包中的各种类进行事件处理,同时它也可以使用 包中的类处理事件,而AWT则只能使用 包中的各种类进行事件处理。 30.可将JOptionPane类的对话框分为4种类型,分别是只给出提示信息的 、要求用户进行确认的 、可输入数据的 和由用户自己定义类型的 。
三、编程题 1.创建一个Frame类型窗口,在窗口中添加2个不同颜色的Panel面板,每个面板中添加2个按钮组件。 2.创建一个Frame类型窗口,采用GridLayout布局,在窗口中创建一个计算器的界面。 3.创建两个Frame类型窗口,在第一个窗口中添加一个按钮,当单击按钮时打开第二个窗口,当单击两个窗口中的关闭按钮时能关闭窗口。 4.编写一个能在窗口中同时响应鼠标事件和键盘事件的程序,能对鼠标的各种动作进行监听,对键盘的输入做出相应的反应。 5.编写一个测试计算是否正确的程序,窗口中包含3个按钮、3个单行文本输入区、一个下拉列表框,当单击第1个按钮时在第1个单行文本输入区中产生一个随机数,当单击第2个按钮时在第2个单行文本输入区中产生一个随机数,在下拉列表框中选择一种运算符,如+、-、*、/等,然后单击第3个按钮,将计算结果显示在第3个单行文本输入区中。 6.编写一个菜单程序,其中包含“文本”、“格式”、“图片”和“动画”菜单,其中“文本”、“图片”和“动画”菜单中分别包含“显示文本”、“显示图片”和“播放动画”菜单项,“格式”菜单中包含“字体大小”、“字体颜色”两个菜单项,“字体大小”菜单项又包含“20”、“40”、“60”三个子菜单项,“字体颜色”菜单项又包含“红色”、“绿色”、“蓝色”三个子菜单项。当单击菜单项或子菜单项时都能实现相应功能。 7.编写一个使用JOptionPane类对话框的程序,其中包含各种类型的JOptionPane对话框。