数据的收集与表示(七年级)
- 格式:doc
- 大小:473.00 KB
- 文档页数:3
七年级数学分班数据的收集与表示在七年级学生入学后,为了实现更科学合理的数学教学分班,对相关数据的收集与表示至关重要。
这不仅有助于了解学生的数学基础和学习能力,还能为后续的教学安排提供有力的依据。
首先,我们来谈谈数据收集的方法。
常见的方式有问卷调查、入学测试和教师观察。
问卷调查是一种能够获取大量信息的手段。
通过设计一系列有针对性的问题,比如学生在小学阶段的数学学习兴趣、学习习惯、是否参加过课外数学辅导等,我们可以初步了解学生对数学的态度和过往的学习经历。
但需要注意的是,学生在回答问卷时可能会存在不真实或不准确的情况,这就需要我们在后续的分析中谨慎对待。
入学测试则是更为直接和客观的评估方式。
可以包括数学基础知识的考查,如算术运算、几何图形、代数初步等,还可以设置一些拓展性的题目,以检测学生的思维能力和解决问题的能力。
测试的结果能够较为准确地反映学生的数学水平,但一次测试可能会受到学生当时的状态和环境因素的影响,所以不能完全依赖这单一的数据来源。
教师观察也是不可忽视的一环。
在新生入学的初期,教师可以通过课堂表现、作业完成情况等方面观察学生。
比如,学生在课堂上是否积极参与互动、能否跟上教学进度、对于新知识的接受速度如何等等。
这种方式能够提供实时且动态的信息,但主观性相对较强,需要教师具备丰富的教学经验和敏锐的观察力。
收集到这些数据后,接下来就是如何有效地表示和分析它们。
对于问卷调查的数据,可以采用统计图表的方式,如柱状图展示不同选项的选择比例,饼状图呈现各类情况的占比。
通过直观的图表,我们能够快速了解学生在某些方面的总体倾向。
入学测试的成绩通常会以分数的形式呈现。
为了更清晰地分析学生的水平分布,可以绘制成绩的频数分布直方图或者折线图。
这样能够直观地看出成绩的集中区间、离散程度等特征。
教师观察的结果可以用文字描述的方式进行记录和整理,然后按照一定的分类标准,如学习态度积极、一般、消极等,进行归类和统计。
在对数据进行分析时,我们要综合考虑多方面的因素。
一、选择题1.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了100名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是100C.1000名学生是总体D.被抽取的每一名学生称为个体B解析:B【分析】根据全面调查与随机抽样调查、样本容量、总体、个体的定义逐项判断即可得.【详解】A、此次调查属于随机抽样调查,此项错误;B、样本容量是100,此项正确;C、1000名学生的视力是总体,此项错误;D、被抽取的每一名学生的视力称为个体,此项错误;故选:B.【点睛】本题考查了全面调查与随机抽样调查、样本容量、总体、个体,熟练掌握统计调查的相关概念是解题关键.2.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策C解析:C【解析】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.3.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.5B解析:B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.4.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④B解析:B【解析】根据全面调查和抽样调查的定义可知:①②可进行抽样调查,③④⑤可进行全面调查,故选B.5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.6.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.调查某校九年级一班50名同学的身高情况D解析:D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解全国中学生的视力情况的调查适宜采用抽样调查方式;B.调查某批次日光灯的使用寿命的调查适宜采用抽样调查方式;C.调查市场上矿泉水的质量情况的调查适宜采用抽样调查方式;D.调查某校九年级一班50名同学的身高情况适宜采用全面调查方式;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C.检测武汉市的空气质量D.了解北斗导航卫星的设备零件的质量情况C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解我校初一(1)班学生的视力情况,必须准确,故适合普查;B、企业招聘,对应聘人员进行面试,必须准确,故适合普查;C、检测武汉市的空气质量,适合抽样调查;D、了解北斗导航卫星的设备零件的质量情况,必须准确,故适合普查.故选:C.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本C解析:C【分析】根据总体:所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【详解】为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.9.去年某校有1 500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有()A.400名B.450名C.475名D.500名B解析:B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【详解】∵抽取200名考生的数学成绩,其中有60名考生达到优秀,∴该校考生的优秀率是:60×100%=30%,200∴该校达到优秀的考生约有:1500×30%=450(名);故选B.【点睛】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想.10.下列调查中,适合用全面调查方式的是()A.了解一批iPad的使用寿命B.了解电视栏目《朗读者》的收视率C.疫情期间,了解全体师生入校时的体温情况D.了解滇池野生小剑鱼的数量C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、了解一批iPad的使用寿命适合用抽样调查,故本选项不符合题意;B、了解电视栏目《朗读者》的收视率适合抽样调查,故本选项不符合题意;C、疫情期间,了解全体师生入校时的体温情况适合用全面调查方式,故本选项符合题意;D、了解滇池野生小剑鱼的数量适合用抽样调查,故本选项不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.为提高服务质量,学校食堂对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序:①绘制扇形统计图;②收集最受学生欢迎菜品的数据;③利用扇形统计图分析出最受学生欢迎的菜品;④整理所收集的数据.请按正确的调查统计顺序重新排序(只填番号):_________.②④①③【分析】根据统计的一般顺序排列即可统计的一般步骤:一般要经过收集数据整理数据绘制统计图表分析图表得出结论【详解】统计的一般步骤:一般要经过收集数据整理数据绘制统计图表分析图表得出结论故答案为解析:②④①③【分析】根据统计的一般顺序排列即可,统计的一般步骤:一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论,【详解】统计的一般步骤:一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论,故答案为:②④①③.【点睛】本题考查统计的一般步骤,一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论.12.有效的垃圾分类,可以减少污染、保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,并把测试成绩分为A,B,C,D四个等次,绘制成如图所示的两幅不完整的统计图.下面有四个推断:①本次的调查方式是抽样调查,样本容量是40;②扇形统计图中,表示C 等次的扇形的圆心角的度数为72°;③测试成绩为D 等次的居民人数占参测总人数的10%;④测试成绩为A 或B 等次的居民人数共30人.所有合理推断的序号是______.①②④【分析】根据扇形统计图中A 等级对应的百分比为条形统计图中读取其人数为12人可得样本容量;利用C 等级的人数占样本容量的比例可得其圆心角度数;测试成绩为D 等次的居民人数占参测总人数的百分比为求解即解析:①②④【分析】根据扇形统计图中A 等级对应的百分比为30%,条形统计图中读取其人数为12人,可得样本容量;利用C 等级的人数占样本容量的比例,可得其圆心角度数;测试成绩为D 等次的居民人数占参测总人数的百分比为81304540-%-%-⨯100%,求解即可;测试成绩为A 或B 等次的居民人数共()403045⨯%+%,求解即可.【详解】解:①样本容量为1230%40÷=,故①正确;②表示C 等次的扇形的圆心角的度数为83607240⨯︒=︒,故②正确; ③测试成绩为D 等次的居民人数占参测总人数的百分比为81304540-%-%-⨯100%=5%,故③错误; ④测试成绩为A 或B 等次的居民人数共()40304530⨯%+%=(人),故④正确; 故答案为:①②④.【点睛】本题考查扇形统计图与条形统计图信息关联,读取两个统计图中相关信息是解题的关键. 13.已知某组数据的频数为49,频率为0.7,则样本容量为_______70【分析】根据即可求解【详解】解:样本容量为故答案为:70【点睛】本题考查频数与频率掌握是解题的关键解析:70【分析】 根据=频数频率总数即可求解. 【详解】 解:样本容量为49=700.7, 故答案为:70.【点睛】本题考查频数与频率,掌握 频数频率总数是解题的关键.14.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是_____ (写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少①③【分析】观察比较扇形统计图和条形统计图获取相关信息然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56占一半以上即①正确;②互联网行业中从事技术岗位的80前人数占解析:①③【分析】观察、比较扇形统计图和条形统计图获取相关信息,然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56%,占一半以上,即①正确;②互联网行业中从事技术岗位的80前人数占总人数1-56%-41%=3%,故②错误;.③B互联网行业中从事技术岗位的90后人数占总人数的0.56×0.41=0.2296 >0.2,故③正确;④从事设计岗位的90后人数占总人数的0.56×0.08=0.0448>0.03故选④错误;故答案为①③.【点睛】本题主要考查对扇形统计图和条形统计图的观察分析能力,掌握条形统计图和扇形统计图的关联是解答本题的关键.15.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.120【分析】根据条形统计图可以得出一二三月份的利润再根据折线统计图中各月份的利润率可以求出前三个月的成本进而求出四月份的成本再求出四月份的利润【详解】解:一月份的成本:125÷200=625万元二解析:120【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成本:125÷20.0%=625万元,二月份的成本:120÷30.0%=400万元,三月份的成本:130÷26.0%=500万元,四月份的成本:2005−625−400−500=480万元,四月份的利润为:480×25.0%=120万元,故答案为:120.【点睛】考查条形统计图、折线统计图的意义和制作方法,从统计图中获取数据和数据之间的关系式正确解答的关键.16.为了考察我区七年级学生数学知识与能力测试的成绩,从中抽取30本试卷,每本试卷30份,在这个问题中样本容量是_____________.【分析】样本中调查对象的数量即是样本容量根据定义解答【详解】∵从测试的成绩中抽取本试卷每本试卷份共900份∴这个问题中样本容量是900故答案为:900【点睛】此题考查样本容量的定义熟记定义是解题的关键解析:900【分析】样本中调查对象的数量即是样本容量,根据定义解答.【详解】∵从测试的成绩中,抽取30本试卷,每本试卷30份,共900份,∴这个问题中样本容量是900,故答案为:900.【点睛】此题考查样本容量的定义,熟记定义是解题的关键.17.运算能力是一项重要的数学能力.王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中5位同学的测试成绩.(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高.)①在5位同学中,有_____位同学第一次成绩比第二次成绩高;②在甲、乙两位同学中,第三次成绩高的是_____.(填“甲”或“乙”)3;甲【分析】①看横坐标比纵坐标大的有几个同学;②看甲乙两位同学哪个的气泡大【详解】①在5位同学中有3个同学横的横坐标比纵坐标大所以有3位同学第一次成绩比第二次成绩高;故答案为3;②在甲乙两位同学中解析:3;甲【分析】①看横坐标比纵坐标大的有几个同学;②看甲、乙两位同学哪个的气泡大.【详解】①在5位同学中,有3个同学横的横坐标比纵坐标大,所以有3位同学第一次成绩比第二次成绩高;故答案为3;②在甲、乙两位同学中,根据甲、乙两位同学的位置可知第一次和第二次成绩的平均分差不多,而甲的气泡大,表示三次成绩的平均分的高,所以第三次成绩高的是甲.故答案为甲.【点睛】考查了象形统计图,象形统计图是人们描述数据常用的一种方法,其类型较多,其中用所统计的物体的象形图形来表示的一类统计图叫做象形统计图.解题的关键是得出每个象形符号代表什么.18.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示的统计图,则该班参加乒乓球和羽毛球项目的人数总和为__________.25【分析】用总人数乘以羽毛球和乒乓球所占比例之和即可得【详解】该班参加乒乓球和羽毛球项目的人数总和为50×(+30)=25(人)故答案为:25【点睛】此题主要考查了扇形统计图的应用求出乒乓球人数和解析:25【分析】用总人数乘以羽毛球和乒乓球所占比例之和即可得.【详解】该班参加乒乓球和羽毛球项目的人数总和为50×(72360︒︒+30%)=25(人),故答案为:25.【点睛】此题主要考查了扇形统计图的应用,求出乒乓球人数和羽毛球人数所占比例之和是解本题的关键.19.扇形统计图中,某统计项目所对应的扇形的圆心角度数为72°,则该项目点总体的百分比为_____.20【分析】根据每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可【详解】解:根据题意知该项目点总体的百分比为×100=20故答案为:20【点睛】考核知识点:扇形图理解扇解析:20%【分析】根据每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.【详解】解:根据题意知该项目点总体的百分比为72360×100%=20%,故答案为:20%.【点睛】考核知识点:扇形图.理解扇形图中圆心角的计算公式是关键.20.建设路实验学校为了了解本校学生参加课外体育锻炼情况,随机抽取本校部分学生进行问卷调查统计整理并绘制了如下扇形统计图,如果抽取的学生中,从不参加课外体育锻炼的学生有9人,则抽取的学生中经常参加课外体育锻炼的学生有_____人.24【分析】根据不参加课外锻炼的人数和百分比求出总人数然后求出答案即可【详解】解:根据题意总人数为:(人)经常参加:(人)故答案为:24【点睛】本题考查了扇形统计图用样本估计总体解题的关键是正确求出解析:24【分析】根据不参加课外锻炼的人数和百分比求出总人数,然后求出答案即可.【详解】解:根据题意,总人数为:915%60÷= (人),经常参加:()60115%45%6040%24⨯--=⨯=(人) .故答案为:24.【点睛】本题考查了扇形统计图,用样本估计总体,解题的关键是正确求出抽取的总人数.三、解答题21.某超市双11对销售A 、B 、C 三个品牌服装进行了统计,绘制成图1,图2统计图,根据图中提供的信息,解答下列问题:(1)该日销售这三个品牌服装共_______件;(2)补全条形统计图;(3)求扇形统计图中A 品牌服装对应扇形的圆心角的度数.(4)该超市明年双11对A 、B 、C 三个品牌服装如何进货?请你提出一条合理化建议.解析:(1)2400;(2)补图见解析;(3)60°;(4)A、B、C三个品牌服装大约按1:2:3的比例进货.【分析】(1)用C品牌的销售量除以它所占的百分比即可得销售这三种品牌服装总个数;(2)B品牌的销售量=总销售量﹣1200﹣400,然后补全图形即可;(3)用A品牌服装所占的百分比乘以360度即可;(4)按照三钟品牌的销售比例进货即可.【详解】解:(1)销售这三种品牌服装的总销售量为:1200÷50%=2400(件),故答案为:2400;(2)B品牌的销售量为:2400﹣1200﹣400=800(件),条形统计图如下:(3)A品牌服装在图中所对应的圆心角的度数=360°×4002400=60°;(4)建议:从今年的服装销售情况可以看出,市民对C品牌的服装比较感兴趣,而对A、B品牌特别是A品牌并不看好,因此明年进货C品牌的服装应该多进货,A、B、C三个品牌服装大约按1:2:3的比例进货.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.泉州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,某校从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间()t h频数频率00.5t<≤240.51t<≤360.31 1.5t<≤0.41.52t<≤12b合计a1根据以上信息,回答下列问题:(1)表中a=_________ ,b=_________.(2)请补全频数分布直方图;(3)若该校有学生2000人,试估计该校学生每天课外阅读时间超过1h的人数.解析:(1)120;0.1;(2)见解析;(3)1000人【分析】(1)由0.5<t≤1的频数与频率可得总人数a,再用12除以总人数可得b的值;(2)总人数乘以0.4得出第3组频数,从而补全图形;(3)利用样本估计总体思想可得.【详解】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为2000×(0.4+0.1)=1000(人).∴该校学生每天课外阅读时间超过1h的人数约1000人.【点睛】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.23.农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某市食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉粽(下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)在本次调查中,适宜________.(填普查或者抽样调查)(2)本次被调查的市民有________人;并补全条形统计图;(3)扇形统计图中蛋黄棕对应的圆心角是________度;(4)若该市有居民约50万人,估计其中喜爱大肉粽的有多少人?解析:(1)抽样调查;(2)200人,统计图见解析;(3)90°;(4)17.5万人【分析】(1)根据普查和抽样调查的特点进行判断;(2)根据D种类的对应的数据可以求得本次调查的市民人数,并计算出喜爱B种类的人数,从而可以将条形统计图补充完整;(3)用蛋黄棕对应的百分比乘以360即可;(4)根据样本估计总体可以计算出喜爱大肉粽的人数.【详解】解:(1)由于人员较多,数量较大,∴适宜抽样调查,故答案为:抽样调查;(2)本次被调查的市民:50÷25%=200(人),B的人数:200-40-10-50-70=30(人),补全统计图如下:(3)扇形统计图中蛋黄棕对应的圆心角为:25%×360=90°;(4)50×70200=17.5万人.答:估计其中喜爱大肉粽的有17.5万人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.人工智能(ArtificialIntelligence),英文缩写为AI它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状?A.非常了解;B.了解;C.基本了解;D.不了解,将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有______名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本里相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.解析:(1)20人,补全图形见解析;(2)240人;(3)14%.【分析】(1)根据各发展状况的人数之和等于总人数即可求得“基本了解”的人数,从而补全条形图;。
期末复习六数据的收集、整理与描述各个击破命题点1 调查方式的选用例1漳州中考下列调查中,适宜采用普查方式的是DA.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件方法归纳全面调查适合的条件:1总体的数目较少,2研究的问题要求情况真实、准确性较高,3调查工作方面,没有破坏性;抽样调查适合的条件:1受客观条件限制,无法对所有个体进行调查,2调查具有破坏性.1.重庆中考下列调查中,最适合采用全面调查普查的是DA.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级1班同学的身高情况的调查2.遂宁中考以下问题,不适合用全面调查的是DA.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱命题点2 总体、个体、样本、样本容量例2为了了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是DA.6 000名学生是总体B.每个学生是个体C.300名学生是抽取的一个样本D.每个学生的数学成绩是个体方法归纳解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.3.聊城中考电视剧铁血将军在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是CA.2 400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况命题点3 统计图表的选择与制作例3某校八2班共有52人,一次英语考试的成绩单位:分如下:93 84 28 78 57 69 97 30 56 90 82 8079 77 67 91 42 89 93 75 85 95 87 8168 70 59 66 79 95 48 67 74 78 81 3986 83 79 62 68 49 66 79 81 57 89 8985 96 80 1001列出频数分布表,画出频数分布直方图;2估计该班65分及以上的频率和85分及以上的频率各是多少思路点拨1计算最大值与最小值的差,决定组距与组数,列频数分布表,画出频数分布直方图;2根据频数分布表或者频数分布直方图回答2中的问题.因为组距选取不同,所以频数分布表与频数分布直方图不唯一.不过考虑到2中65分及以上的频率、85分及以上的频率,所以65、85应作为小组的起点数据.解答答案不唯一,如:1最大值与最小值的差为100-28=72.取组距为10,由于72÷10=,于是可将这组数据分为8组,列频数分布表如下:分组划记频数25≤x<35 235≤x<45 245≤x<55 255≤x<65 正 565≤x<75 正975≤x<85 正正正1685≤x<95 正正1195≤x<正 5105合计52 52画频数分布直方图:265分及以上的频率为错误!×100%≈%.85分及以上的频率为错误!×100%≈%.方法归纳组距与组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定.但当问题中出现某些条件时,组数、组距的划分要考虑解决问题的方便.4.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩划记频数百分比不及格正9 10%及格正正正18 20%良好正正正正正正正36 40%优秀正正正正正27 30%合计90 90 100% 1从上表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;2估计该校七年级体育测试成绩不及格的人数.解:1选择扇形统计图表示各种情况的百分比,图形如下:某中学七年级90名学生体育测试成绩扇形统计图2450×10%=45人.答:估计该校七年级体育测试成绩不及格的约有45人.命题点4 统计图表中信息的获取例4义乌中考在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:1本次共调查了200名学生;2被调查的学生中,最喜爱丁类图书的有15人,最喜爱甲类图书的人数占本次被调查人数的40%;3在最喜爱丙类图书的学生中,女生人数是男生人数的倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.思路点拨3先求出最喜爱丙类图书的总人数,然后用x表示男生人数,表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.解答140÷20%=200人.2200-80-65-40=15人,错误!×100%=40%.3设最喜爱丙类图书的男生人数为x人,则女生人数为人.根据题意,得x+=1 500×20%.解得x=120.当x=120时,=180.答:最喜爱丙类图书的女生人数为180人,男生人数为120人.方法归纳解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.5.泰州中考为了了解学生参加社团的活动,从2012年起,某市教育部门每年都从全市所有学生中随机抽取2 000名学生进行调查.图1、图2是部分调查数据的统计图参加社团的学生每人只报一项.根据统计图提供的信息解决下列问题:1求图2中“科技类”所在扇形的圆心角α的度数;2该市2014年抽取的学生中,参加体育类与理财类社团的学生共有多少人3该市2016年共有50 000名学生,请你估计该市2016年参加社团的学生人数.解:1图2中“科技类”所在扇形的圆心角α的度数为:1-10%-15%-25%-30%×360°=72°.2300+200×10%+30%=200人.答:参加体育类与理财类社团的学生共有200人.350 000×错误!=28 750人.答:该市2016年参加社团的学生人数为28 750人.整合集训一、选择题每小题3分,共30分1.重庆中考下列调查中,最适合普查方式的是BA.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况2.下列调查方式合适的是CA.为了了解市民对电影南京的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.福州中考下列选项中,显示部分在总体中所占百分比的统计图是A A.扇形图B.条形图C.折线图D.直方图4.德阳中考为了考察一批电视机的使用寿命,从中任意抽取了10台进行试验,在这个问题中样本是DA.抽取10台电视机B.这一批电视机的使用寿命C.10D.抽取10台电视机的使用寿命5.随着全球经济危机的到来,我国纺织品行业的出口受到严重影响,下图是甲、乙纺织厂的出口和内销情况.从图中可看出出口量较多的是DA.甲B.乙C.两厂一样多D.不能确定6.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示其中每个分数段包括最小值,不包括最大值,结合表中的信息,可得测试分数在80~90分数段的学生共有C名B.200名C.150名D.100名7.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为AA.万件B.9万件C.9 500件D.5 000件8.某次考试中,某班级的数学成绩统计图如图.下列说法错误的是D A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格≥60分的人数是269.广元中考某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形统计图表示上述分布情况.已知来自甲地区的为160人,则下列说法不正确的是DA.扇形甲的圆心角是72°B.学生的总人数是800人C.丙地区的人数比乙地区的人数多160人D.甲地区的人数比丙地区的人数少160人10.某市股票在七个月之内增长率的变化状况如图所示,从图中看出,下列结论不正确的是DA.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌二、填空题每小题5分,共20分11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1∶2∶5∶3∶1,人数最多的一组有25人,则该班共有60人.12.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是53,最小的值是47,如果组距为,那么应分成4组.13.某区卫生局在2012年11月对全区初中毕业生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值是.14.山西中考四川雅安发生地震后,某校九1班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图,写出一条你从图中所获得的信息:答案不唯一,可以从总体来说:该班有50人参与了献爱心活动;也可以具体分情况来说:捐款10元的有20人等.三、解答题共50分15.6分设计调查问卷时,下列提问是否合适如果不合适应该怎样改进1你上学时使用的交通工具是A.汽车B.摩托车C.步行D.其他2你对老师的教学满意吗A.比较满意B.满意C.非常满意解:1不合适.提供选择的答案不够全面,应增加选项“自行车”,因为自行车也是初中生上学使用的主要交通工具之一.2不合适.提供选择的答案不够全面,应增加选项“不满意”,因为所有选项中都是满意,不便于学生表达真实想法.另外问题改为“你对××科老师教学是否满意”可使调查目的更明确.16.6分初一学生小丽、小杰为了了解本校初二学生每周上网时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中4名学生每周上网的时间;小杰从全体初二学生名单中随机抽取了40名学生,调查他们每周上网的时间.你认为哪位学生抽取的样本具有代表性说说你的理由.解:小杰抽取的样本具有代表性.理由如下:小杰选取的样本具有代表性和随机性而且选取的样本足够大;小丽选取的样本比较特殊,不具有随机性而且选取的样本小.内容符合题意即可17.8分阅读对人成长的影响是很大的.希望中学共有1 500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”只选一项随机调查了部分学生,并将调查结果统计后绘制成如下的统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:1这次随机调查了300名学生;2把统计表和条形统计图补充完整.解:如图表.18.10分龙东中考学生对小区居民的健身方式进行调查,并将调查结果绘制成如下两幅不完整的统计图.请根据所给信息解答下列问题:1本次共调查50人;2补全图1中的条形统计图,图2中“跑步”所在扇形对应的圆心角度数是36°;3估计2 000人中喜欢打太极的大约有多少人解:2如图所示.32 000×错误!=120人.答:估计2 000人中喜欢打太极的大约有120人.19.10分今年,市政府的一项实事工程就是由政府投入1 000万元资金对城区4万户家庭的老式水龙头和抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:1试估计该社区需要对水龙头、马桶进行改造的家庭共有1_000户;2改造后,一个水龙头一年大约可节省5吨水,一个马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水3在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户 解:2抽样的120户家庭一年共可节约用水:1×31+2×28+3×21+4×12×5+1×69+2×2×15=198×5+73×15=2 085吨,∴该社区一年共可节约用水的吨数为:2 085×1201200=20 850吨. 3设既要改造水龙头又要改造马桶的家庭共有x 户,则x +31+28+21+12-x +69+2-x =100,解得x =63.答:既要改造水龙头又要改造马桶的家庭共有63户.20.10分德州中考某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量单位:吨,并将调查数据进行了如下整理:4.74.53.55.74.5频数分布表分组划记 频数 <x ≤ 正正 11<x≤正正正19<x≤正正13<x≤正 5<x≤ 2合计50频数分布直方图1把上面的频数分布表和频数分布直方图补充完整;2从直方图中你能得到什么信息写出两条即可3为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少为什么解:1如图表.2答案不唯一:如①从直方图可以看出:居民月均用水量大部分在至之间;②居民月均用水量在<x≤范围内最多,有19户;③居民月均用水量在<x≤范围内的最少,只有2户等.合理即可3要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.。
青岛版数学七年级上册第4章《数据的收集、整理与描述》教学设计一. 教材分析《青岛版数学七年级上册》第4章《数据的收集、整理与描述》的内容包括数据的收集、整理、描述和分析。
这部分内容是学生初步接触数据分析的基础知识,通过这部分的学习,使学生了解数据收集和整理的方法,学会用图表和统计量描述数据,并能对数据进行分析,从而培养学生对数据的敏感性和数据分析能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,但对于数据的收集、整理和描述可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中提出数学问题,培养学生的数据意识,同时,要注重学生动手操作和小组合作的能力。
三. 教学目标1.了解数据的收集、整理和描述的方法;2.学会使用图表和统计量描述数据;3.能对数据进行分析,培养数据分析能力;4.培养学生的数据意识和团队协作能力。
四. 教学重难点1.数据的收集和整理方法;2.图表和统计量的表示方法;3.数据分析的方法和技巧。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生提出数学问题,培养学生的问题解决能力;通过案例教学,使学生了解数据的收集、整理和描述的方法;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.教学PPT;2.教学案例和数据;3.小组合作学习资料。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生提出数学问题,激发学生的学习兴趣。
例如:某班有50名学生,男生和女生各有多少人?2.呈现(15分钟)呈现教学案例和数据,让学生观察和分析数据,引导学生思考如何收集和整理数据。
例如:某班学生的身高数据如下:165, 170, 168, 162, 167, 172, 164, 166, 163, 169, 165, 171, 168, 160, 166, 170, 167, 164, 165, 162, 169, 166, 172, 163, 168, 164, 167, 165, 171, 166, 170, 162, 164, 167, 163, 169, 165, 172, 168, 166, 171, 167, 164, 165, 163, 168, 164, 167, 165, 171, 166, 170, 162, 164, 167, 163, 169, 165, 172, 168, 166, 171, 167, 164, 165, 163, 168, 164, 167, 165, 171, 166, 170, 162, 164, 167, 163, 169, 165, 172, 168, 166, 171, 167, 164, 165, 163, 168, 164, 167, 165, 171, 166, 170, 162, 164, 167, 163, 169, 165, 172, 168, 166, 171, 167, 164, 165, 163, 168, 164, 167, 165, 171, 166, 170, 162, 164, 167,在完成《青岛版数学七年级上册》第4章《数据的收集、整理与描述》的教学设计后,进行课堂反思是十分重要的。
数据的收集与整理(7大题型清单)知识点1:数据的收集(1)方式:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等(根据具体情况合理地选择数据收集的方式)(2)步骤:(1)明确调查的问题和目的;(2)确定调查对象;(3)选择调查方式;(4)设计调查问题;()展开调查;(6)收集并整理数据;(7)分析数据,得出结论01 思维导图02 知识速记知识点2:普查和抽样调查(1)普查:对所有考察对象进行全面调查叫普查优点:可以直接获得总体情况;缺点:总体中个体数目较多时,普查的工作量较大(2)总体:所要考察的对象的全体叫总体个体:组成总体的每一个考察对象叫做个体(3)抽样调查:从总体中抽取部分个体进行调查,这种调查叫做抽样调查优点:调查范围小,节省时间、人力、物力及财力缺点:没有普查得到的结果准确样本:从总体中抽取的部分个体叫做总体的一个样本,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性知识点3:数据的表示扇形统计图概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小特点:(1)反映具体问题中的部分与总体的数量关系(2)只能得到各部分的百分比,得不到具体数量(3)在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比绘制扇形统计图的步骤:计算各部分占总体的百分比;计算各部分对应的扇形的圆心角的度数;画出扇形统计图,表上百分比;写出扇形统计图的名称条形统计图:一般是由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同的项目,长方形的高表示其中一个项目的数据特点:能清楚地表示出每个项目的具体数据折线统计图:用折线的起伏表示数据的增减变化知识点2:频数直方图(1)频数:在数据统计中每个对象出现的次数称为频数(2)注意:频数能反映每个对象出现的频繁程度;所有对象的频数之和等于数据总数(3)绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图(4)频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴(即长方形的高)表示各组数据的频数(5)频数直方图的优点:能更清晰、更直观地反映数据的整体状况统计图的选择:条形统计图:清楚地表示每个项目的具体数目折线统计图:清楚地反映事物的变化情况扇形统计图:清楚地表示出各部分在总体中所占的百分比频数直方图:能更清晰、更直观地反映数据的整体状况03 题型归纳题型一调查收集数据的过程与方法例题:某学校数学社团为了解本校学生每天完成家庭作业所花时间,根据以下四个步骤完成调查:①收集数据;②得出结论,提出建议;③分析数据;④制作并发放调查问卷.这四个步骤的先后顺序为()A.①②③④B.④①②③C.④①③②D.①③②④巩固训练1.随着时代进步,现代化信息技术与传统教学方式深度融合.学校为了解学生对现代化教学方式的喜爱程度,随机抽取200名学生根据以下四个步骤完成统计调查:①从扇形统计图中分析出学生对现代化教学方式的喜爱程度;②随机抽取200名学生,发放调查问卷,利用问卷收集数据;③根据频数分布表绘制扇形统计图;④整理收集的数据并绘制频数分布表.这四个步骤合理的排序为()A.①→②→③→④B.②→③→④→①C.②→③→①→④D.②→④→③→①【答案】D【分析】本题考查了调查收集数据的过程与方法,解决本题的关键是明确数据的收集调查的6个步骤:明确调查问题,确定调查对象,选择调查方法,展开调查,记录结果,得出结论.根据数据的收集调查的步骤,即可解答.【详解】解:正确的统计步骤的顺序是:②随机抽取200名学生,发放调查问卷,利用问卷收集数据;④整理收集的数据并绘制频数分布表;③根据频数分布表绘制扇形统计图;①从扇形统计图中分析出学生对现代化教学方式的喜爱程度;这四个步骤合理的排序为:②→④→③→①故选:D2.小明为了解同学们的课余生活,设计如下调查问卷:小莉认为选项不合理,应该删去的一项是()你平时最喜欢的一项课余活动是()①看课外书②体育活动③看电视④打篮球A.①B.②C.③D.④3.舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确的统计步骤顺序是:()A.①②③④B.②①③④C.①③②④D.②④③①【答案】D【分析】本题考查统计知识解决实际问题,掌握基本数据搜集分析步骤即可得到答案,理解统计分析基本处理步骤是解决问题的关键.【详解】解:用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,统计步骤是:从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表;按统计表的数据绘制折线统计图;从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势.∴正确的统计步骤顺序是②④③①,故选:D.题型二普查和抽样调查例题:下列调查中,最适合采用普查的是()A.调查某市居民每天丢弃塑料袋的数量B.调查某班学生每周参加户外活动的时间C.调查我省中学生对禁毒知识的了解情况D.调查某品牌新能源汽车电池的使用寿命巩固训练1.下列调查中,适宜采用抽样调查的是( )A.调查某班学生的视力情况B.调查冬奥会1000m短道速滑决赛运动员兴奋剂的使用情况C.调查某批国产汽车的抗撞击能力D.调查“神十四”载人飞船各零部件的质量【答案】C【分析】本题考查的是抽样调查和全面调查的区别.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某班学生的视力情况,适合全面调查,故本选项不符合题意;B、查冬奥会1000m短道速滑决赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;C、调查某批国产汽车的抗撞击能力,适合抽样调查,故本选项符合题意;D、调查“神十四”载人飞船各零部件的质量,适合全面调查,故本选项不符合题意.故选:C.2.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率3.下列调查方式选择不适宜的是()A.调查某批次汽车的抗撞击能力采用抽样调查B.企业对应聘人员采用抽样调查C.地铁安检部对乘客采用全面调查D.检测飞机的零部件采用全面调查【答案】B【分析】本题主要考查调查方式的选择,直接利用全面调查以及抽样调查的意义分别分析得出答案.【详解】解:A.调查某批次汽车的抗撞击能力采用抽样调查,调查方式选择适宜,故此选项不合题意;B.企业对应聘人员采用全面调查,调查方式选择不适宜,故此选项符合题意;C.地铁安检部对乘客采用全面调查,调查方式选择适宜,故此选项不合题意;D.检测飞机的零部件采用全面调查,调查方式选择适宜,故此选项不合题意.故选:B.题型三总体、个体、样本、样本容量例题:2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个巩固训练1.某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,在全校学生注册学号中,随意抽取100个学号,调查这些学号对应的学生.下列说法错误的是()A.此次调查为抽样调查B.总体是2000名学生C.样本是每一名学生对五类电视节目的喜爱情况D.样本容量是100【答案】B【分析】根据总体、个体、样本、样本容量的定义进行判断即可,本题考查了抽样类型以及总体、个体、样本、样本容量的定义,正确掌握相关性质内容是解题的关键.【详解】解:A、本题中,采用的调查方法是抽样调查,故该选项是正确的,不符合题意;B、总体是2000名学生对五类电视节目的喜爱情况,故该选项是不正确的,符合题意;C、样本是每一名学生对五类电视节目的喜爱情况,故该选项是正确的,不符合题意;D、样本容量是100,故该选项是正确的,不符合题意.故选:B.2.2023年世界泳联跳水世界杯首战于2023年4月14日在西安举行,西安市某校想了解全校2000名学生对跳水运动的喜爱情况,随机抽取了150名学生进行统计分析,下列描述正确的是()A.2000名学生是总体B.抽取的150名学生是总体的一个样本C.样本容量是150名D.本次调查是抽样调查3.某中学要了解八年级学生的身高情况,在全校八年级中抽取了40名学生进行检测,在这个问题中,样本容量是.【答案】40【分析】考查了总体、个体、样本、样本容量,根据题意即可得出答案,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象;总体、个体与样本的考查对象是相同的,所不同的是范围的大小;样本容量是样本中包含的个体的数目,不能带单位.【详解】解:全校八年级中抽取了40名学生进行检测,∴样本容量是40,故答案为:40.题型四用样本估计总体例题:为了估计一片牧场里老鼠的数量,从牧场中捕获60只老鼠,做上记号,然后放回牧场,几天后再捕获第二批老鼠100只,发现其中带有标记的老鼠5只,估计这片牧场中约有老鼠的只数为()A.1000B.1200C.1500D.800【答案】B【分析】本题考查的是用样本估计总体的知识.设这片牧场中约有老鼠的只数为x,根据样本估计总体的思想列出算式,求出x的值即可.【详解】解:设这片牧场中约有老鼠的只数为x,根据题意得:60:5=x:100,解得:x=1200,答:这片牧场中约有老鼠的只数为1200只;故选:B.巩固训练1.某学校对600名女生的身高进行了测量,身高在1.57~1.62(单位:m)这一小组的频率为0.25,则该组的人数为()A.100B.150C.200D.250【答案】B【分析】利用总数乘以对应频率即可;【详解】根据题意知,该组的人数为:600×0.25=150(人);故答案选B.【点睛】本题主要考查了频数与频率,准确计算是解题的关键.2.小明在做抛掷硬币的试验中,抛掷结果为正面的频数为40,频率为40%,则小明共抛掷了次.【答案】100【分析】本题考查了频率和频数的关系,根据公式:数据个数=频数÷频率即可.【详解】解:40÷40%=100故答案为:100.3.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400 名学生,结果有170 名学生会游泳,那么估计该区会游泳的六年级学生人数约为人.题型五频率和频数直方图例题:合肥市在创建全国文明城市期间,某中学九年级开展创文明知识竞赛活动,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:请根据所给信息,解答下列问题:九年级抽取部分学生成绩的频率分布表(1)本次总共调查的人数是________人;将下图频数分布图补充完整.(2)表中a=________,b=________.(3)已知该校九年级共有500名学生参加这次竞赛,且成绩在90分以上(含90分)的成绩为优秀,估计该年级竞赛成绩为优秀的学生共有多少人?【答案】(1)50,图形见解析(2)18,0.28(3)320【分析】本题考查频数分布直方图、频数分布表、用样本估计总体,利用数形结合的思想解答是解答本题的关键.(1)用“75≤x<80”的频数除以它的频率0.04可得样本容量;用总人数减去已知的人数即可得出90≤x<95的频数,可以将频数分布直方图补充完整;(2)根据频数分布表中的数据,依据频数、频率、数据总数之间的关系可得a、b的值;(3)用九年级的人数乘样本中成绩为优秀的学生所占比例即可.【详解】(1)解:2÷0.04=50,答:本次总共调查的人数是50;故答案为:50;90≤x<95的频数为:50―2―6―10―14=18(人),补全频数分布直方图如下:(2)解:a=50×0.36=18,b=14÷50=0.28,故答案为:18,0.28;(3)解:500×(0.36+0.28)=320(人),答:估计该年级竞赛成绩为优秀的学生共有320人.巩固训练1.对某班的一次数学测验成绩(分数取正整数,满分为100分)进行统计分析,各分数段的人数如图所示(每一组含前一个边界值,不含后一个边界值),组界为70∼79分这一组的频数是;频率是.2.每年的6月6日是我国的全国“爱眼日”,旨在倡导科学防控近视,关注青少年眼健康.在某校的“爱眼日”活动中,校方随机抽取了部分学生进行视力检测,以右眼视力值作为分组依据,将学生分为五组,并进行了数据收集和整理.以下是得到的尚不完整的统计图表:视力频数分布表视力频数频率4.2≤x<4.410.024.4≤x<4.630.064.6≤x<4.880.164.8≤x<5.0a0.55.0≤x≤5.213b请根据图表信息,解答下列问题:(1)本次调查活动共抽取了______人;表中a=______,b=______;(2)若该校共有学生2400人,且视力值为4.8及以上的为视力良好,请估计该校视力良好的有多少人?【答案】(1)50,25,0.26(2)1824人【分析】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.(1)用第1组的频数除以它的频率即可得到调查的总人数,再计算出第四组的频数a,然后第五组的频率b;(2)利用样本估计总体,用2400乘以第四、五组的频率和可估计该校视力良好的学生数.【详解】(1)解:1÷0.02=50,所以本次抽样调查共抽取了50名学生,a=50×0.5=25,13÷50=0.26,故答案为:50,25,0.26;(2)解:2400×(0.5+0.26)=1824,所以估计该校视力良好的有1824人.3.某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了m名学生的得分进行统计.成绩(分)频数频率50≤x<6010a60≤x<70160.0870≤x<80b0.0280≤x<9062c90≤x<100720.36请你根据不完整的表格,回答下列问题:(1)请直接写出m,a,b,c的值(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”,这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?题型六统计图的选择例题:某农民在池塘里养了许多鱼,有草鱼、鲇鱼、鲤鱼、鲫鱼等,为了能更清楚地表示出各种鱼的条数,最适合使用的统计图是()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以【答案】C【分析】此题主要考查了统计图的选择.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据统计图的特点进行判断即可.【详解】解:条形统计图能清楚地表示出每个项目的具体数目,∴为了能更清楚地表示出各种鱼的条数,最适合使用的统计图是条形图;故选:C.巩固训练1.六(1)班喜欢看书的有25人,喜欢听音乐的有30人,喜欢打球的有20人,喜欢看电视的有30人,要表示这些数据,用()统计图较合适.A.条形B.折线C.扇形2.班长想统计开学前14天某同学的体温变化情况,用()统计图比较合适.A.条形B.扇形C.折线D.以上都可以【答案】C【分析】本题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;由此解答即可.【详解】解:用折线图可以表示体温变化情况,故选:C.3.为了清楚地表示大气中各种气体所占的百分比,选用()比较合适.A.统计表B.条形统计图C.折现统计图D.扇形统计图【答案】D【分析】本题主要考查了条形统计图、折线统计图、扇形统计图的特点,条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.根据条形统计图、折线统计图、扇形统计图各自的特点即可解答.【详解】解:因为扇形统计图能反映部分与整体的关系,所以为了清楚地表示大气中各种气体所占的百分比,选用扇形统计图比较合适.故选:D.题型七统计图的综合运用例题:某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图(B所对应的是21人).根据图中提供的信息.解答下列问题:A:0≤x<2B:2≤x<4C:4≤x<6D:6≤x<8E:8≤x<10(1)这次抽样调查的学生人数是________人;并补全频数分布直方图;(2)扇形统计图m的值为________,其中“E”组对应的圆心角度数为________;(3)已知该校共有学生3000人,请根据调查结果估计该校每周课外阅读时间不少于6小时的学生人数.40%,则m=40,360°=14.4°;(人).答:估计该校每周课外阅读时间不少于6小时的学生人数约为870人.巩固训练1.某校为了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5∼46.5;B:46.5∼53.5;C:53.5∼60.5;D:60.5∼67.5;E:67.5∼74.5),并依据统计数据绘制了如下两个不完整的统计图.解答下列问题:(1)这次抽样调查中,该校一共抽查了_____名学生,在扇形统计图中D组的圆心角是_____度;(2)请补全频数分布直方图;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名.60kg的学生是:10+8=18(人),的学生有:2.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=___________;(2)在调查活动中,学校采取的调查方式是______(填写“普查”或“抽样调查”);(3)请补全上面的条形统计图;(4)在图2中,“乒乓球”所对应扇形的圆心角的度数为___________;(5)已知该校共有1200名学生,请你估计该校约有__________名学生最喜爱足球活动.【答案】(1)150(2)抽样调查(3)见解析(4)36°=36°所对应扇形的圆心角的度数为360°×15150名学生最喜爱足球活动.3.为了加强学生的安全意识,我校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,则样本容量为,a为;(2)n为,E组所占比例为%;(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.940,940人.。
七年级数学下册数据的收集、整理与描述(统计调查)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.为了解某校1000名九年级学生的视力情况,调查人员从中抽取了200名学生进行调查.在这个问题中,个体是______.2.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统.是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.在发射前,对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是__________.(填“普查”或“抽样调查”)3.全面调查和抽样调查是收集数据的两种方式._______收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;_______有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.4.“神十”圆满完成载人航天飞行任务后,专家将对返回舱零部件进行检查,应采取的合理的调查方式是____.5.检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.6.要从编号为1~100的总体中随机抽取10个个体组成一个样本.(1)小华选取的个体编号为1,2,3,4,5,6,7,8,9,10,你认为她选取的这个样本_____(填“具有”或“不具有”)代表性;(2)请你随机选取一个含有10个个体的样本,其中个体的编号为___________.二、单选题7.下列说法正确的是()A.为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B.“煮熟的鸭子飞了”是一个随机事件C.一组数据的中位数可能有两个D.为了解我省中学生的睡眠情况,应采用抽样调查的方式8.某校九年级学生共有600名,要了解这些学生每天上网的时间,现采用抽样调查的方式,下列抽取样本数量既可靠又省时、省力的是()A.选取10名学生作样本B.选取50名学生作样本C.选取300名学生作样本D.选取500名学生作样本9.下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量10.为了解某县2021年参加中考的14000名学生的视力情况,抽查了其中1000名学生的视力进行统计分析,下面叙述错误的是()A.14000名学生的视力情况是总体B.样本容量是14000C.1000名学生的视力情况是总体的一个样本D.本次调查是抽样调查11.某校为了了解线上教育对孩子视力的影响情况对该校1200名学生中抽取了120名学生进行了视力下降情况的抽样调查,下列说法正确的是()A.1200名学生是总体B.样本容量是120名学生的视力下降情况C.个体是每名同学的视力下降情况D.此次调查属于普查12.为了解某市5万名学生平均每天完成课后作业的时间,请你运用数学的统计知识将统计的主要步骤进行排序:①得出结论,提出建议;①分析数据;①从5万名学生中随机抽取500名学生,调查他们平均完成课后作业的时间;①利用统计图表将收集的数据整理和表示.合理的排序是()A.①①①①B.①①①①C.①①①①D.①①①①三、解答题13.要调查下面几个问题,你认为应该作全面调查还是抽样调查?(1)了解全班同学每周体育锻炼的时间.(2)调查市场上某种食品的色素含量是否符合国家标准.(3)鞋厂检测生产的鞋底能承受的弯折次数.14.为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).15.调查全班同学在家做家务活的现状.注意明确你的调查内容和目的,用适当的图表表示你的调查结果,并说明你获得数据信息的方式.参考答案:1.九年级每名学生的视力情况【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】本题考查的对象是为了解某校1000名九年级学生的视力情况,故个体是九年级每名学生的视力情况.故答案为:九年级每名学生的视力情况【点睛】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象,总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.普查【分析】根据抽样调查与普查的特点及被调查的事情的精度与难度,可行性等可得答案.【详解】解:中国自行研制的全球卫星导航系统,对各部件的要求:必须百分百符合要求,所以对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是普查.故答案为:普查.【点睛】本题考查的是抽样调查与普查的含义,掌握选择抽样调查与普查的依据是解题的关键.3.全面调查抽样调查【解析】略4.普查【分析】直接利用普查和抽样调查的特点解题即可【详解】返回舱的每个零部件都非常关键,所以必须得对零部件进行全面普查【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键5.2500件包装食品的质量所抽取的50件包装食品的质量【分析】根据总体是指考查的对象的全体,样本是总体中所抽取的一部分个体即可解答.【详解】解:检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题%=50件包装食品的质量,中,总体是2500件包装食品的质量,样本是抽取的25002故答案为:2500件包装食品的质量;所抽取的50件包装食品的质量.【点睛】本题考查了总体、样本的概念,解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.掌握总体、样本的概念是解题关键.6.不具有;2,14,39,40,43,59,79,85,92,88(答案不唯一).【分析】根据抽取的样本是否具有广泛性和代表性,即各个方面,各个层次的对象都要有所体现解答即可.【详解】因为小华选取的个体编号为1,2,3,4,5,6,7,8,9,10,不具有随机性,所以这个样本不具有代表性;如可抽取2,14,39,40,43,59,79,85,92,88(答案不唯一).故答案为不具有;2,14,39,40,43,59,79,85,92,88(答案不唯一).【点睛】本题考查了样本的选取,抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.7.D【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解.【详解】解:A. 为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;B. “煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;C. 一组数据的中位数只有1个,故该选项不正确,不符合题意;D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意;故选:D.【点睛】本题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键.必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.B【分析】根据抽样调查的样本容量要适当,可得答案.【详解】解:A样本容量太小,不具代表性,故A不可取;B样本容量适中,省时省力又具代表性,故B可取;C 样本容量太大,费时费力,故C不可取;D 样本容量太大,费时费力,故D不可取;故选:B.【点睛】本意考查了抽样调查的可靠性,注意样本容量太小不具代表性,样本容量太大费时费力.9.B【分析】根据随机事件的定义、全面调查的意义、方差的意义以及样本容量的定义进行判定即可.【详解】解:A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件,故A选项不符合题意;B.要了解小王一家三口的身体健康状况,适合采用全面调查调查,故B选项符合题意;C.一组数据的方差越小,它的波动越小,故C选项不符合题意;D.样本中个体的数目称为样本容量,故D选项不符合题意.故选:B.【点睛】本题考查统计的相关定义,掌握其定义和意义是解决问题关键.10.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 14000名学生的视力情况是总体,故该选项正确,不符合题意;B. 样本容量是1000,故该选项不正确,符合题意;C. 1000名学生的视力情况是总体的一个样本,故该选项正确,不符合题意;D. 本次调查是抽样调查,故该选项正确,不符合题意故选B【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.11.C【分析】据题意可得1200名学生的视力下降情况,从中抽取了120名学生进行视力调查,这个问题中的总体是1200名学生的视力下降情况,样本是抽取的120名学生进行视力下降情况,个体是每一个学生的视力下降情况,样本容量是120,注意样本容量不能加任何单位,此次调查属于抽样调查.【详解】解:A、总体是1200名学生的视力下降情况,此选项错误;B、样本容量是120,此选项错误;C、个体是每名同学的视力下降情况,此选项正确;D、此次调查属于抽样调查,此选项错误;故选:C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.B【分析】根据统计的一般过程是收集数据,整理数据,描述数据,分析数据,得出结论、提出建议即可求解.【详解】解:统计的一般过程是收集数据,整理数据,描述数据,分析数据,得出结论、提出建议,故顺序为①①①①.故选:B【点睛】本题考查了统计的一般过程,熟知统计的一般过程是解题关键.13.(1)全面调查;(2)抽样调查;(3)抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【详解】解:(1)人数不多适合全面调查;(2)数量较多,适合抽样调查;(3)数量较多,且抽查具有破坏性,适合抽样调查.【点睛】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.14.(1)200;(2)90,94;(3)1440名【分析】(1)用D程度人数除以对应百分比即可;(2)用A程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B等级对应百分比,乘以样本容量可得m值;(3)用样本中A、B程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,①该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.15.见解析【分析】1、阅读题目信息,确定调查的方法;2、采用问卷调查的方法调查班级里每位同学做家务活的状况;3、根据调查对象和目的的确定,结合调查的结果即可制作出适当的图表.【详解】解:调查内容为学生做家务的现状;获取数据的方式为问卷调查;制作的图表如下:【点睛】本题主要考查了数据的收集与设计调查表,解题的关键是掌握收集数据的基本方法有调查、实验和查阅资料等,而在问卷设计中最重要的一点就是必须明确调查的内容和目的.。
数据的收集与表示(七年级)
一、选择
1、能够反映出每个对象出现的频繁程度的是()
A、频数
B、频率
C、频数和频率
D、以上答案都不对
2、某班进行民主选举班干部,要求每位同学将自己心中认为最合适的一位侯选
上,投入推荐箱。
这个过程是收集数据中的()
A、确定调查对象
B、展开调查
C、选择调查方法
D、得出结论。
3、为反映某种股票的涨跌情况,应选择()
A、扇形统计图
B、条形统计图
C、折线形统计图
D、以上三种都一样
4、在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”字出现的频率之和是0.7,那么“和”字出现的频数是()
A、14
B、15
C、16
D、17
5、下列各数中,负数出现的频率是()
-6.1,1
--,-(-1),(-2)2,(-2)3,-[-(-3)]
||
2
A.83.3% B. 66.7% C.50% D.33.3%
6、近年来,国内生产总值年增长率的变化情况如图,从图上看,下列结论中不正确的是()
A、1998-2002年,国内生产总值的年增长率逐年减小;
B、2003年国内的生产总值的年增长率开始回升;
C、这7年中,每年的国内生产总值不断增长;
D、这7年中,每年的国内生产总值有增有减。
二、填空
7、把200个数据分成5组,第一组的频率是0.18,第二组的频率是0.2,第四组和第五组
的频率和是0.52,则第三组的频率是,第二组的数据的个数是。
8、一个射击选手,连续射靶10次,其中1次射中10环,3次射中9环,5次射中8环,1次射中7环,射中______环的频数最大,其频率是______。
9、在扇形统计图中,A项目所占总体的份额是30%,则扇形统计图中A项目的扇形圆心角是。
10、一年有365天,其中出现“1号”的频率等于。
11、16、右图是某中学初一(1)班“最喜欢的球类运动”的扇形统计图,A表示羽毛球,
B表示篮球,C表示乒乓球,D表示足球、E表示其它。
则(1)E占
总人数的百分比是,每个对象出现的次数与总次数的比值
用____表示。
12、如图,图中折线表示一人骑自行车离家的距离与时
间的关系,骑车者九点离开家,十五点到家,根据折
线图提供的信息:
(1)该人离家最远距离是_____km;
(2)此人总共休息了_______分;
三、解答题
13、我国五座名山的海拔高度为:
(1)最高的山海拔是_____米,(2)庐山比泰山高_____米;
(3)根据数据制成条形统计图。
14
回答下列问题:(1)计算喜欢各项体育活动的人数占全班人数的百分比,
(2)上述百分比能否用扇形统计图表示?为什么?
(3)若想表示上述数据,可选用什么统计图?请画出该统计图。
15、为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:
A.1.5小时以上 B.1~1.5小时 C.0.5—1小时 D.0.5小时以下.
图A 图B
图A、图B是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图8中将选项B的部分补充完整;
(3)若该校有1800名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在
0.5小时以下。