常见刚体的转动惯量
- 格式:pdf
- 大小:433.79 KB
- 文档页数:9
转动惯量计算方法转动惯量是描述物体对转动运动的惯性大小的物理量,它在物理学中有着重要的应用。
在工程和科学领域中,我们经常需要计算各种物体的转动惯量,以便更好地理解它们的转动特性。
本文将介绍一些常见的转动惯量计算方法,希望能够帮助读者更好地理解和运用这一概念。
首先,我们来介绍一下关于点质点的转动惯量计算方法。
对于一个质点,其转动惯量可以通过以下公式计算:\[ I = mr^2 \]其中,m为质点的质量,r为质点到转轴的距离。
这个公式表明,转动惯量与质点的质量成正比,与质点到转轴的距离的平方成正比。
这是一个非常基础的转动惯量计算方法,适用于质点的简单情况。
接下来,我们来介绍一下关于刚体的转动惯量计算方法。
对于一个刚体,其转动惯量可以通过积分的方法计算:\[ I = \int r^2 dm \]其中,r为刚体上各个质点到转轴的距离,dm为刚体上各个质点的质量微元。
通过对整个刚体进行积分,我们可以得到刚体的转动惯量。
这个方法适用于各种形状的刚体,可以比较准确地计算出其转动惯量。
此外,对于一些特殊形状的物体,我们也可以利用一些特殊的公式来计算其转动惯量。
比如对于绕轴旋转的圆环,其转动惯量可以通过以下公式计算:\[ I = mr^2 \]其中,m为圆环的质量,r为圆环的半径。
这个公式适用于绕轴旋转的圆环,可以方便地计算出其转动惯量。
总结一下,转动惯量的计算方法有很多种,我们可以根据具体的情况选择合适的方法来计算。
对于质点,可以利用简单的公式进行计算;对于刚体,则可以通过积分的方法得到转动惯量;对于一些特殊形状的物体,也可以利用特殊的公式来计算。
希望本文介绍的内容能够对大家有所帮助,让大家对转动惯量的计算有更深入的理解。
常见几何体]转动惯量公式表关于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
关于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
关于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径关于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径关于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2别离为其内外半径。
关于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
关于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径关于立方体当回为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只明白转动惯量的计算方式而不能利用是没成心义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外,β为。
能够看出那个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不行分析转动刚体的问题,是因为其中不包括刚体的任何转动信息,里面的速度v只代表刚体的质心运动情形。
由这一公式,能够从能量的角度分析刚体动力学的问题。
惯量(Moment of Inertia)是绕轴转动时惯性(回转物体维持其或静止的特性)的,用字母I或J表示。
常见几何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。
对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
对于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外力矩,β为角加速度。
可以看出这个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。
由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
转动惯量公式表 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】常见几何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3其中m是杆的质量,L是杆的长度。
对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。
对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
对于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外,β为。
可以看出这个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v只代表刚体的质心运动情况。
由这一公式,可以从能量的角度分析刚体动力学的问题。
常用转动惯量公式
常用转动惯量表达式:I=mr2。
其中m是其质量,r是质点和转轴的垂直距离。
转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度。
扩展资料
转动惯量计算公式
1、对于细杆:
当回转轴过杆的中点(质心)并垂直于杆时I=mL2/I2;其中m是杆的'质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时I=mL2/3;其中m是杆的质量,L是杆的长度。
2、对于圆柱体:
当回转轴是圆柱体轴线时I=mr2/2;其中m是圆柱体的质量,r 是圆柱体的半径。
3、对于细圆环:
当回转轴通过环心且与环面垂直时,I=mR2;当回转轴通过环边缘且与环面垂直时,I=2mR2;I=mR2/2沿环的某一直径;R为其半径。
4、对于立方体:
当回转轴为其中心轴时,I=mL2/6;当回转轴为其棱边时I=2mL2/3;当回转轴为其体对角线时,I=3mL2/16;L为立方体边长。
5、对于实心球体:
当回转轴为球体的中心轴时,I=2mR2/5;当回转轴为球体的切线时,I=7mR2/5;R为球体半径。
向你推荐的相关文章
相关文章列表
微信扫码分享。
刚体转动与转动惯量计算刚体转动是物体绕固定轴进行转动的运动。
在刚体转动中,关键参数是物体的转动惯量,它反映了物体对转动的惯性。
转动惯量的定义是:转动惯量(I)是刚体对轴的转动惯性的量度,它等于刚体各个微小质量元的质量乘以其到转轴的距离的平方之和,即I=Σm_i*r_i²其中,m_i是质量微元,r_i是质量微元到转轴的距离。
对于不同形状的物体,转动惯量有不同的计算方法。
我们来分别讨论以下几种常见形状的物体和它们的转动惯量计算方法。
1.球体的转动惯量:对于均匀球体来说,其转动惯量与质量和尺寸有关,可以通过以下公式计算:I=(2/5)*m*r²其中,m是球体的质量,r是球体的半径。
2.圆柱体的转动惯量:对于均匀圆柱体来说,其转动惯量与质量和尺寸有关,可以通过以下公式计算:I=(1/2)*m*r²其中,m是圆柱体的质量,r是圆柱体的半径。
3.长方体的转动惯量:对于均匀长方体来说,其转动惯量与质量和尺寸有关,可以通过以下公式计算:I=(1/12)*m*(a²+b²)其中,m是长方体的质量,a和b是长方体的两个相邻边的长度。
4.薄杆的转动惯量:对于均匀薄杆来说,其转动惯量与质量和尺寸有关,可以通过以下公式计算:I=(1/12)*m*h²其中,m是薄杆的质量,h是薄杆的长度。
5.圆环的转动惯量:对于均匀圆环来说,其转动惯量与质量和尺寸有关,可以通过以下公式计算:I=m*r²其中,m是圆环的质量,r是圆环的半径。
6.圆盘的转动惯量:对于均匀圆盘来说,其转动惯量与质量和尺寸有关,可以通过以下公式计算:I=(1/2)*m*r²其中,m是圆盘的质量,r是圆盘的半径。
需要注意的是,上述公式都是对于均匀物体的计算方法。
如果物体不均匀,转动惯量的计算将更为复杂,需要将物体分为质量微元进行积分计算。
转动惯量在物理学中有着广泛的应用,例如在机械工程中,可以用来计算机械系统的转动稳定性;在天体物理学中,可以用来描述行星、恒星等宏观物体的转动状态等等。
常见几何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。
对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
对于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外力矩,β为角加速度。
可以看出这个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。
由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
转动惯量计算
惯量是物体对转动的惯性的度量,可以通过以下公式计算:
1. 对于质点的转动惯量:
I = m * r^2
其中,I代表转动惯量,m代表质量,r代表离转轴的距离。
2. 对于刚体的转动惯量:
I = Σ(m * r^2)
其中,I代表转动惯量,Σ表示对所有质点求和,m代表质量,r代表质点离转轴的距离。
3. 对于一些常见几何形状的转动惯量,可以使用以下公式
计算:
- 球体的转动惯量:
I = (2/5) * m * r^2
- 圆柱体绕轴线的转动惯量:
I = (1/2) * m * r^2
- 薄圆环绕直径轴线的转动惯量:
I = (1/2) * m * r^2
- 均匀长方体绕轴线的转动惯量:
I = (1/12) * m * (a^2 + b^2)
其中,I代表转动惯量,m代表质量,r代表半径,a和b 代表长方体的边长。
需要注意的是,以上公式仅适用于一些简单的几何形状,对于其他复杂的形状,转动惯量的计算可能需要使用积分或其他数值方法进行近似求解。
最全的转动惯量的计算(经典实用)
转动惯量是描述物体旋转惯性大小的物理量,通常用I表示。
下面是最全的转动惯量计算方法:
1. 刚体转动惯量的定义公式为:I = ∫r²dm,其中r是质点到转
轴的距离,m是质点的质量。
将质点相加得到刚体的质量分布,因此整个刚体的转动惯量可以表示为:I = ∫r²dm,其中积分是
对整个刚体的所有小质点进行的。
2. 对于均匀密度的均匀球体,转动惯量可以用公式I =
(2/5)MR²来计算,其中M是球体的质量,R是球体的半径。
3. 对于均匀密度的长直圆柱体,转动惯量可以用公式I =
(1/2)MR²来计算,其中M是圆柱体的质量,R是圆柱体的半径,同时也是圆柱体绕着垂直于轴线的质量分布半径。
4. 对于均匀密度的长直棒,转动惯量可以用公式I = (1/12)ML²来计算,其中M是棒的质量,L是棒的长度。
5. 对于精细计算,可以将物体分解为若干个小物体进行计算,然后将它们的转动惯量相加。
这种方法适用于任何形状的物体,但需要计算的小物体数量较大,具有较高的复杂度。
6. 对于不规则物体,可以使用轴绕定理求解物体绕轴转动的转动惯量。
轴绕定理指出,如果一个物体绕一个与其重心相切的轴旋转,那么它的转动惯量等于绕过绕该轴垂直于该轴的一个轴旋转时的转动惯量加上一个关于该轴的平行轴定理项。