最全的转动惯量的计算.
- 格式:ppt
- 大小:596.50 KB
- 文档页数:25
转动惯量公式表常见⼏何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环当回转轴通过中⼼与环⾯垂直时,J=mR^2;当回转轴通过边缘与环⾯垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中⼼与盘⾯垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘⾯垂直时,J=﹙3/2﹚mR^2;R为其半径对于空⼼圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。
对于球壳当回转轴为中⼼轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
对于实⼼球体当回转轴为球体的中⼼轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于⽴⽅体当回转轴为其中⼼轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对⾓线时,J=(3/16)mL^2;L为⽴⽅体边长。
只知道转动惯量的计算⽅式⽽不能使⽤是没有意义的。
下⾯给出⼀些(绕定轴转动时)的刚体动⼒学公式。
⾓加速度与合外⼒矩的关系:⾓加速度与合外⼒矩式中M为合外⼒矩,β为⾓加速度。
可以看出这个式⼦与⽜顿第⼆定律是对应的。
⾓动量:⾓动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质⼼动能。
只⽤E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,⾥⾯的速度v 只代表刚体的质⼼运动情况。
由这⼀公式,可以从能量的⾓度分析刚体动⼒学的问题。
平⾏轴定理:设刚体质量为m,绕通过质⼼转轴的转动惯量为Ic,将此轴朝任何⽅向平⾏移动⼀个距离d,则绕新轴的转动惯量I为:I=Ic+md^2这个定理称为平⾏轴定理。
转动惯量公式转动惯量是物体对于绕指定轴旋转的惯性特性的度量。
它与物体的质量、形状以及旋转轴的位置有关。
在这篇文章中,我们将介绍转动惯量的概念以及相关的公式。
1. 转动惯量的定义转动惯量是描述物体绕某个轴旋转时对其惯性的度量。
物体的质量分布越集中,转动惯量越小,物体的形状越分散,转动惯量越大。
对于一个质量分布均匀的物体来说,转动惯量可以通过以下公式计算:转动惯量公式转动惯量公式其中,I 是转动惯量,r 是与旋转轴的距离,dm 是物体的微小质量元素。
转动惯量的单位是千克·米²。
2. 转动惯量的计算方法对于一些常见的几何形状,我们可以通过特定的公式计算它们的转动惯量。
下面是一些常见形状的转动惯量计算公式:•线状物体(绕与物体平行的轴旋转):线状物体转动惯量公式线状物体转动惯量公式其中,m 是线状物体的质量,l 是线状物体长度。
•圆盘状物体(绕与盘面平行的轴旋转):圆盘状物体转动惯量公式圆盘状物体转动惯量公式其中,m 是圆盘状物体的质量,r 是圆盘状物体半径。
•球体(绕球的直径轴旋转):球体转动惯量公式球体转动惯量公式其中,m 是球体的质量,r 是球体的半径。
这些公式可以帮助我们计算常见几何形状物体的转动惯量。
对于复杂的物体形状,可以使用积分计算转动惯量。
3. 转动惯量的应用转动惯量在物理学中有广泛的应用。
它是理解刚体转动运动的重要参数,可以帮助我们研究物体在旋转过程中的角动量、角加速度等性质。
转动惯量的大小决定了物体在给定轴上旋转的难易程度。
当转动惯量较大时,物体旋转需要更大的力矩才能实现,导致旋转速度较慢。
相反,转动惯量较小的物体则更容易加速旋转。
此外,转动惯量还与物体的稳定性有关。
当物体的质量分布越接近旋转轴时,转动惯量越小,物体越稳定。
4. 结论转动惯量是描述物体绕某个轴旋转时对其惯性的度量。
它与物体的质量、形状以及旋转轴的位置有关。
我们可以根据物体的几何形状和分布情况,使用特定的公式来计算转动惯量。
最全的转动惯量的计算转动惯量是物体对绕轴旋转的惯性特性的度量。
它是一个重要的物理量,在机械工程、物理学和工程技术等领域有广泛的应用。
转动惯量的计算有许多方法和技巧,下面将介绍一些常见的计算方法。
1.刚体转动惯量的定义:刚体转动惯量(或者称为惯性矩)是物体在绕任意轴旋转时,由物体的质量分布确定的。
它可以表示为I,即:I = ∫ r² dm其中,r是距离轴线的距离,dm是质量微元。
2.转动惯量的计算方法:(1)几何法计算:几何法是根据物体的几何形状和分布来计算转动惯量。
常见的几何形状包括球体、圆柱体、长方体等。
根据不同形状,使用不同的公式进行计算。
(2)积分法计算:积分法是通过对物体的质量分布进行积分来计算转动惯量。
这种方法适用于任意形状的物体,需要进行积分计算。
根据不同的质量分布,可以使用不同的坐标系和积分区域。
3.常见物体的转动惯量计算:(1)球体的转动惯量:对于球体,其转动惯量公式为:I=2/5*m*r²其中,m是球体的质量,r是球体的半径。
(2)圆柱体的转动惯量:对于圆柱体,其转动惯量公式为:I=1/2*m*r²其中,m是圆柱体的质量,r是圆柱体的半径。
(3)长方体的转动惯量:对于长方体,其转动惯量公式为:I=1/12*m*(a²+b²)其中,m是长方体的质量,a和b是长方体的宽度和高度。
如果长方体绕距离中心轴旋转,转动惯量计算公式会有所不同。
(4)其它常见物体的转动惯量:对于其它常见的物体,如圆环、圆盘、棒体等,都有相应的转动惯量计算公式。
这些公式可以在物理学的相关教材和参考资料中找到。
4.复杂物体的转动惯量计算:对于复杂物体,其转动惯量的计算相对较为复杂,通常需要使用积分法或数值计算的方法来求解。
这种方法适用于任意形状的物体,可以将物体分成无数微小的质量元,并对每个微小质量元的转动惯量进行积分求和。
总结起来,转动惯量的计算方法有几何法和积分法两种,常见的物体有相应的转动惯量公式。
电机转动惯量计算公式
电机转动惯量是指电机在相同转速下所需的力矩大小,它是电机的一项重要参数。
电机转动惯量的大小取决于电机的物理结构,它可以通过一个特定的公式来计算。
电机转动惯量的计算公式如下:
J = (1/2)mvr2
其中,J是电机转动惯量,单位是千克·米2/秒2;m是转子的质量,单位是千克;v是转子的半径,单位是米;r是转速,单位是转/秒。
电机转动惯量的大小与转子的质量、半径和转速有关,当转子的质量、半径和转速增大时,电机转动惯量也会增大;当转子的质量、半径和转速减小时,电机转动惯量也会减小。
此外,电机转动惯量还受到电机物理结构的影响,比如电机的转子形状、磁芯材料以及绕组的结构都会影响电机转动惯量的大小。
电机转动惯量的计算公式可以帮助设计人员更好地了解电机的特性,帮助他们设计出更加合适的电机。
电机转动惯量的计算公式也可以帮助维修人员预测电机的表现,诊断电机的故障。
总的来说,电机转动惯量的计算公式是一个重要的工具,可以帮助设计人员更好地了解电机的特性,也可以帮助维修人员预测电机的
表现,诊断电机的故障。
说明:本文《转动惯量的计算》特地收集贡献出来供各位工程技术人员在参阅本人劣作《风机动平衡调试方法》时参考。
深圳华晶玻璃瓶有限公司工程部(动力车间)李宜斌编辑2010-10-21转动惯量的计算转动惯量应用于刚体各种运动的动力学计算中。
单个质点的转动惯量:I = m× r2.质点系的转动惯量:I = Σ m i×r i2.质量连续分布的刚体的转动惯量:I = ∫m r2dm。
以上各式中的r理解为质点到转轴的距离。
刚体绕轴转动惯性的度量。
其数值为J=∑ mi*ri^2,式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。
求和号(或积分号)遍及整个刚体。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。
规则形状的均质刚体,其转动惯量可直接计得。
不规则刚体或非均质刚体的转动惯量,一般用实验法测定。
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。
由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
垂直轴定理:一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
表达式:Iz=Ix+Iy刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。
由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。
刚体绕某一点转动的惯性由更普遍的惯量张量描述。
惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。
补充对转动惯量的详细解释及其物理意义:先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
转动惯量扭矩计算转动惯量是描述物体对转动运动的惯性特性的物理量。
在物理中,转动惯量可以理解为物体对绕其轴转动的难易程度,类似于质点的质量对物体做直线运动的难易程度。
转动惯量的计算可以通过不同的方法进行,以下将介绍两种常用的计算转动惯量的方法:几何法和积分法。
1.几何法:几何法是一种简单且直观的计算转动惯量的方法,它基于物体的几何形状和尺寸进行计算。
对于一些常见的几何体,可以使用已有的公式进行计算。
以下是一些常见几何体的转动惯量的计算公式:-线段:I=mL^2/12,其中m为线段的质量,L为线段的长度。
-圆弧:I=mL^2/4π,其中m为圆弧的质量,L为圆弧的弧长。
-矩形板:I=mL^2/12,其中m为矩形板的质量,L为矩形板的边长。
-圆柱体:I=mR^2/2,其中m为圆柱体的质量,R为圆柱体的半径。
-球体:I=2mR^2/5,其中m为球体的质量,R为球体的半径。
对于复杂的几何体,可以将其分解为简单的几何体进行计算,然后将各个几何体的转动惯量求和即可得到整个物体的转动惯量。
2.积分法:积分法是一种更加普遍和精确的计算转动惯量的方法,它基于物体的密度分布进行计算。
通过将物体分成无穷小的微元,分别计算微元的质量和转动惯量,然后将所有微元的转动惯量进行积分求和,即可得到整个物体的转动惯量。
对于一维情况下的转动惯量计算其中r为离转轴的距离,dm为微元的质量。
对于二维或三维情况下的转动惯量计算,需要使用对应的体积元。
积分法需要对物体的密度分布进行具体的分析和计算,因此适用于更加复杂和多变的情况。
不过,使用积分法计算转动惯量需要较高的数学和物理基础,可能会较为繁琐。
不论使用几何法还是积分法计算转动惯量,都需要清楚地了解物体的几何形状、质量分布和转轴位置等信息。
在实际应用中,转动惯量的计算可以帮助解决一系列与转动运动相关的问题,例如物体的旋转稳定性、旋转惯量的变化等。
总结起来,转动惯量是描述物体对转动运动惯性特性的重要物理量,可以通过几何法和积分法进行计算。
1.圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)之蔡仲巾千创作对钢材:M-圆柱体质量(kg);D-圆柱体直径(cm);L-圆柱体长度或厚度(cm);r-资料比重(gf /cm3).2.丝杠折算到马达轴上的转动惯量:(kgf·cm·s2)Js–丝杠转动惯量(kgf·cm·s2);i-降速比,3.工作台折算到丝杠上的转动惯量(kgf·cm·s2)v-工作台移动速度(cm/min);n-丝杠转速(r/min);w-工作台重量(kgf);g-重力加速度,g=980cm/s2;s-丝杠螺距(cm)2.丝杠传动时传动系统折算到驱轴上的总转动惯量:J1-齿轮z1及其轴的转动惯量;J2-齿轮z2的转动惯量(kgf·cm·s2);Js-丝杠转动惯量(kgf·cm·s2);s-丝杠螺距,(cm);w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量(kgf·cm·s2)R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量J1,J2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf·cm·s2);R-齿轮z分度圆半径(cm);w-工件及工作台重量(kgf).马达力矩计算(1) 快速空载时所需力矩:(2) 最年夜切削负载时所需力矩:(3) 快速进给时所需力矩:式中Mamax—空载启动时折算到马达轴上的加速力矩(kgf·m);Mf—折算到马达轴上的摩擦力矩(kgf·m);M0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m);Mat—切削时折算到马达轴上的加速力矩(kgf·m);Mt—折算到马达轴上的切削负载力矩(kgf·m).在采纳滚动丝杠螺母传动时,Ma、Mf、M0、Mt的计算公式如下:(4) 加速力矩:(kgf·m)Jr—折算到马达轴上的总惯量;T—系统时间常数(s);n—马达转速(r/min);当n=nmax时,计算Mamaxn=nt时,计算Matnt—切削时的转速(r/min)(5) 摩擦力矩:(kgf·m)F0—导轨摩擦力(kgf);s—丝杠螺距(cm);i—齿轮降速比;η—传动链总效率;一般η=0.7~0.85.(6) 附加摩擦力矩:(kgf·m)P0—滚珠丝杠预加载荷(kg·f);s—丝杠螺距(cm);η—传动链总效率;i —齿轮降速比;η0—滚珠丝杠未预紧式的效率,计算公式见本手册第2测第425页,一般η0≥0.9.(7)切削力矩:(kgf·m)Pt—进给方向的最年夜切削力(kg·f);s—丝杠螺距(cm);η—传动链总效率;i—齿轮降速比.。
常见几何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。
对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。
对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。
对于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。
只知道转动惯量的计算方式而不能使用是没有意义的。
下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外力矩,β为角加速度。
可以看出这个式子与牛顿第二定律是对应的。
角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。
由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
最全的转动惯量的计算(经典实用)
转动惯量是描述物体旋转惯性大小的物理量,通常用I表示。
下面是最全的转动惯量计算方法:
1. 刚体转动惯量的定义公式为:I = ∫r²dm,其中r是质点到转
轴的距离,m是质点的质量。
将质点相加得到刚体的质量分布,因此整个刚体的转动惯量可以表示为:I = ∫r²dm,其中积分是
对整个刚体的所有小质点进行的。
2. 对于均匀密度的均匀球体,转动惯量可以用公式I =
(2/5)MR²来计算,其中M是球体的质量,R是球体的半径。
3. 对于均匀密度的长直圆柱体,转动惯量可以用公式I =
(1/2)MR²来计算,其中M是圆柱体的质量,R是圆柱体的半径,同时也是圆柱体绕着垂直于轴线的质量分布半径。
4. 对于均匀密度的长直棒,转动惯量可以用公式I = (1/12)ML²来计算,其中M是棒的质量,L是棒的长度。
5. 对于精细计算,可以将物体分解为若干个小物体进行计算,然后将它们的转动惯量相加。
这种方法适用于任何形状的物体,但需要计算的小物体数量较大,具有较高的复杂度。
6. 对于不规则物体,可以使用轴绕定理求解物体绕轴转动的转动惯量。
轴绕定理指出,如果一个物体绕一个与其重心相切的轴旋转,那么它的转动惯量等于绕过绕该轴垂直于该轴的一个轴旋转时的转动惯量加上一个关于该轴的平行轴定理项。