第2章信息光学------ 二维线性系统分析
- 格式:ppt
- 大小:2.39 MB
- 文档页数:46
第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。
2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。
因此,傅立叶分析也称频谱分析。
频谱分为振幅型频谱和相位型频谱。
相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。
为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。
对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。
为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数 则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为),()(md x g x g +=),2,1,( ±±=m ++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ这里f 称为空间频率. 0f 是f 的基频.。
周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示:再回到光栅装置.由光栅方程,在近轴条件下因此透镜后焦面上频率为当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的.故傅立叶变换能达到分频的目的。
◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为简单地表示为,5,3,1,dd d f =xf i n x f i xf i x f i x p i x f i x f i n e G e e e e e e xg 25252323222 )(51)(31)(121)(000000ππππππππππ∑=++++-++=--- ,sin λθn d =),2,1,0( ±±=n ,sin 0λλθnf d n f x =='≈λf xnf f '==0从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。
第2章 标量衍射的角谱理论光的传播是光学研究的基本问题之一,也是光能够记录、存储、处理和传送信息的基础。
众所周知,几何光学的基本定律——光沿直线传播,是光的波动理论的近似。
作为电磁波的光的传播要用衍射理论才能准确说明。
衍射,按照索末菲定义是“不能用反射或折射来解释的光线对直线光路的任何偏离”。
衍射是波动传播过程的普遍属性,是光具有波动性的表现。
电磁波是矢量波,精确解决光的衍射问题,必须考虑光波的矢量性。
用矢量波处理衍射过程非常复杂,这是因为电磁场矢量的各个分量通过麦克斯韦方程联系在一起,不能单独处理。
但是在光的干涉、衍射等许多现象中,只要满足:(1)衍射孔径比波长大很多,(2)观察点离衍射孔不太靠近;不考虑电磁场矢量的各个分量之间的联系,把光作为标量处理的结果与实际极其接近。
在本书涉及的情况下这些条件基本上是满足的,因此只讨论光的标量衍射理论。
经典的标量衍射理论最初是1678年惠更斯提出的。
他设想波动所到达的面上每一点是次级子波源,每一个次级波源发出的次级球面波向四面八方扩展,所有这些次级波的包络面形成新的波前。
1818年菲涅耳引入干涉的概念补充了惠更斯原理,考虑到子波源是相干的,认为空间光场是子波干涉的结果。
而后1882年基尔霍夫利用格林定理,采用球面波作为求解波动方程的格林函数,导出了严格的标量衍射公式。
在基尔霍夫衍射理论中,球面波是传播过程的基元函数。
由于任意光波场可以展开为平面波的叠加,因此用平面波作为基元函数也可以来描述衍射现象,这就是研究衍射的角谱方法。
光学课程中已经由基尔霍夫公式出发详细讨论了菲涅耳衍射公式,本章将采用平面波角谱理论导出同样的衍射公式,说明光的传播过程作为线性系统用频谱(角谱)方法在频域中分析,与用脉冲响应(点光源传播)方法在空域中分析是等价的。
进而用角谱方法讨论菲涅耳衍射和夫琅和费衍射。
最后,本章还要介绍分数傅里叶变换以及用分数傅里叶变换来表示菲涅耳衍射的优越性。
信息光学复习提纲(自编)第一章二维线性系统1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2 .空间频率分量的定义及表达式?2 .空间频率概念光波的表示式为:j t j (x,y,z)(x, y,z,t) o(x,y,z)e ejK r j to(x,y,z)e e(1.10.2)显然,光波是时间和空间的函数,具有时间周期性与空间周期性。
对于单色光波。
时间量2 v 时间角频率空间量K 2空间角频率物理意义:①当,,900时f x, f y, f z 0 ,表示k沿正方向传播;当,,900时f x, f y, f z 0 ,表示k沿负方向传播。
f x d x /; f x d x\of cosfx②标量性,当 /时,当 \时,coscos其中:v ----时间频率T—时间周期其中: f ---空间频率-----空间周期条纹密d x\f f x/f\f/条纹疏d x /f f x\f/f\可见:条纹越密(d x小),衍射角越大条纹越疏(d x大),衍射角越小③标量性与矢量性的联系1f xd x3. 平面波的表达式①单色平面波的公式U x, y,乙tvv0 cos t k r°e j七vvjk re U x, y, z e式中复振幅为:U x, y, z v v e jk r 0 -0 ex) jk xcos ycos zcos令xcos ycos zcos c3.平面波的表达式和球面波的表达式?可见:等相面是一些平行平面②任一平面上的平面波表示式U x,y,z 0expjkzcos expjkxcos ycosoexpjkz^l co2exp jk xcos ycosU 0exp jk xcos ycos(1.10.36)令xcos ycos c可见,等位线是一些平行线4、球面波的表达式⑴单色球面波的复振幅发散波:(k与v一致)a0 jkr j t jU x, y, z,t -e e U x, y, z e r式中:U x, y,z 旦0e jkr(1.10.5)r会聚波:(k与反向)U x, y, z, t -a0 e jk r e j t U x, y, z e jr式中:U x, y,z 色e jkrr(1.10.6)r (x x))2(y y。