淀粉酶基因的构建及其在大肠杆菌实验实验报告
- 格式:doc
- 大小:119.00 KB
- 文档页数:27
地衣芽孢杆菌耐高温α-淀粉酶基因在大肠杆菌中的克隆及表
达
蔡恒;陈忠军;路福平;杜连祥
【期刊名称】《食品与发酵工业》
【年(卷),期】2004(030)012
【摘要】用PCR方法从地衣芽孢杆菌中扩增了耐高温α-淀粉酶基因,将扩增的DNA片段插入到大肠杆菌载体pUC19中,构建重组分泌型表达载体
pUAM.pUAM中的耐高温α-淀粉酶基因在大肠杆菌JM109中得到表达.经SDS-PAGE分析显示,蛋白表达产物的分子量为55 ku,同核酸序列测定所推导的值相符.【总页数】4页(P15-18)
【作者】蔡恒;陈忠军;路福平;杜连祥
【作者单位】天津科技大学食品科学与生物工程学院,天津,300222;天津科技大学食品科学与生物工程学院,天津,300222;天津科技大学食品科学与生物工程学院,天津,300222;天津科技大学食品科学与生物工程学院,天津,300222
【正文语种】中文
【中图分类】TS2
【相关文献】
1.地衣芽孢杆菌α-耐高温淀粉酶基因的克隆及在大肠杆菌中的表达 [J], 潘风光;宋德群;任洪林;艾永兴;柳增善
2.地衣芽孢杆菌耐高温α-淀粉酶基因在大肠杆菌中的克隆、表达及其产物的分泌
[J], 李金霞;蔡恒;路福平;杜连祥
3.地衣芽孢杆菌α-耐高温淀粉酶基因的克隆及原核表达 [J], 潘风光;任洪林;刘海学;柳增善
4.地衣芽孢杆菌2709和6816碱性蛋白酶基因在大肠杆菌中的克隆、表达及序列分析 [J], 唐雪明;邵蔚蓝;沈微;王正祥;方惠英;诸葛健
5.芽孢杆菌β-淀粉酶基因在大肠杆菌中的克隆与表达 [J], 王为先;张沁;申同健因版权原因,仅展示原文概要,查看原文内容请购买。
实验五 探索淀粉酶对淀粉和蔗糖的作用
实验原理:
1.淀粉麦芽糖(或葡萄糖) (非还原糖) (还原糖)
蔗糖 ――→酶
葡萄糖+果糖
(非还原糖) (还原糖) (还原糖) 2. ⎭⎪⎬⎪⎫淀粉――→淀粉酶蔗糖――→淀粉酶――→斐林试剂水浴⎩⎪⎨⎪⎧ 有砖红色沉淀→有还原糖 →酶起作用无砖红色沉淀→无还原糖 →酶不起作用
实验过程
1.蔗糖
(1)实验用的蔗糖必须保持纯净,实验前先用斐林试剂检验一下,如无砖红色沉淀产生,则可供学生实验用。
(2)蔗糖溶液应现用现配,以免时间过长后被微生物分解成还原糖,影响实验效果。
2.质量分数为2%的新鲜的淀粉酶溶液
考虑酶所需要的特定条件,在使用时,要保证其适宜的温度和pH ,不要因实验之外的因素影响酶活性的发挥。
3.斐林试剂
(1)组成
①质量浓度为0.1 g/mL 的NaOH 溶液。
②质量浓度为0.05 g/mL 的CuSO 4溶液。
(2)使用方法:①现用现配。
②混合均匀后使用。
(3)作用:检验还原糖的存在。
一、对实验步骤的理解
1.实验步骤的顺序性
用淀粉酶分别催化淀粉和蔗糖反应后,再用斐林试剂鉴定,根据是否有砖红色沉淀来判断淀粉酶是否对二者都有催化作用,从而探究酶的专一性。
二、注意事项
1.水浴煮沸用的开水,需提前备好,以缩短实验时间。
2.制备的可溶性淀粉溶液,必须完全冷却后才能使用。
如果用刚煮沸的可溶性淀粉溶液进行实验,就会因温度过高而破坏淀粉酶的活性。
3.两支试管保温时应控制在37 ℃左右,低于50 ℃或高于75 ℃,都会降低反应速
率。
淀粉酶活性的测定一、实验目的酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。
酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到。
淀粉酶是水解淀粉的糖苷键的一类酶的总称。
α-淀粉酶是一种典型的内切型淀粉酶,主要作用于淀粉水解的液化阶段,因此又叫液化酶。
作为一种最重要的工业酶制剂,α-淀粉酶广泛存在于动物,植物和微生物中。
其中,微生物α-淀粉酶以其经济易得成为工业生产主要来源。
目前,关于α-淀粉酶活性的测定方法很多种。
本实验采用杨氏改良法测定α-淀粉酶;掌握测定α-淀粉酶活性大小与温度关系的方法,通过分析得出酶的最适温度范围。
二、实验原理酶促反应中,反应速度达到最大值时的温度和pH值称为某种酶作用时的最适温度和pH值。
温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低,其变化趋势呈钟形曲线变化。
不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。
α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。
α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。
本实验通过淀粉遇碘显蓝色,淀粉含量越高,颜色越深。
用分管光度计检测显色效应大小,通过分管光度值计算酶活力注意:实验中为了消除非酶促反应引起的淀粉水解带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。
在实验中要严格控制温度及时间,以减小误差。
并且在酶的作用过程中,三支测定管及空白管不要混淆。
三、材料、试剂与仪器实验材料:α-淀粉酶仪器:分光光度计、电热恒温水浴锅、小台秤、研钵、玻璃仪器若干试剂:①0.4M NaOH/0.4M CH3COOH及0.1M HCl:②0.005%工作碘液:0.5克I2和5.0克KI水中研磨,定容至1000mL;③1%糊化淀粉溶液:称取1.0克淀粉,加入25mL0.4M NaOH,60℃5min,冷却后加25mL0.4M CH3COOH,定容至100mL;④稀释α-淀粉酶溶液:待测样品四、实验步骤①10mL1%淀粉溶液加入试管中,室温25/45/65℃保温10min②于每管中各加酶稀释液1mL,在室温25/45/65℃恒温水浴中(水浴温度的变化不应超过±0.5℃)准确加热10min,冷却。
淀粉酶活性的测定实验报告淀粉酶活性的测定实验报告引言淀粉酶是一种重要的酶类,能够催化淀粉的降解为葡萄糖。
淀粉酶活性的测定对于了解酶的特性以及其在生物化学过程中的作用具有重要意义。
本实验旨在通过测定淀粉酶的活性,探究其受到不同因素的影响,为进一步研究酶的功能提供基础数据。
材料与方法1. 实验材料:淀粉酶溶液、淀粉溶液、缓冲液、I2-KI试剂、洗涤液。
2. 实验仪器:比色皿、移液管、离心机、恒温水浴。
实验步骤:1. 预热水浴至37°C。
2. 准备不同浓度的淀粉溶液(0.2%、0.4%、0.6%、0.8%、1.0%),并分别加入比色皿中。
3. 向每个比色皿中加入相同体积的淀粉酶溶液,混匀后立即放入预热的水浴中。
4. 在反应开始后的不同时间点(如0、5、10、15、20分钟),取出一个比色皿,立即加入I2-KI试剂,形成蓝色淀粉-碘复合物。
5. 使用比色计测定各比色皿中的吸光度,并记录下实验数据。
6. 重复实验步骤2-5,以获得可靠的结果。
结果与讨论通过实验测定得到各个时间点下不同淀粉浓度的吸光度值,进而计算出淀粉酶的活性。
实验结果显示,随着淀粉浓度的增加,淀粉酶的活性也随之增加。
这是因为淀粉浓度的增加会提供更多的底物供淀粉酶催化反应,从而增加反应速率。
然而,当淀粉浓度超过一定范围时,淀粉酶的活性开始饱和,即使再增加淀粉浓度,反应速率也不再显著增加。
此外,实验结果还显示,随着反应时间的增加,淀粉酶的活性逐渐增加,但增加速率逐渐减缓。
这是因为淀粉酶需要一定的时间来结合底物,并催化反应发生。
随着反应进行,底物逐渐减少,淀粉酶与底物的结合也变得更加困难,从而导致反应速率的下降。
此外,实验还可以探究其他因素对淀粉酶活性的影响,如温度、pH值等。
通过调节这些因素,可以进一步了解淀粉酶的特性以及其在生物体内的作用机制。
结论通过本实验的测定,我们得出了淀粉酶活性与淀粉浓度和反应时间的关系。
实验结果表明,淀粉酶活性随着淀粉浓度的增加而增加,并随着反应时间的增加而逐渐饱和。
自然界中产淀粉酶菌株分离纯化及酶活测定淀粉酶(Amylase )又称糖化酶,是指能使淀粉和糖原水解成糊精、麦芽糖和葡萄糖的酶的总称。
淀粉酶一般作用于可溶性淀粉、直链淀粉、糖元等α-1, 4-葡聚糖,水解α-1, 4-糖苷键的酶。
根据作用的方式可分为α-淀粉酶(EC 3. 2. 1. 1.)与β-淀粉酶(EC 3. 2. 1. 2. )。
α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物;β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1, 4-葡聚糖链。
主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。
淀粉酶是一种用途极广的生物催化剂,广泛应用于造纸、食品、医药工业。
如饴糖、啤酒、黄酒、葡萄糖、味精、抗生素等行业;用于高质量的丝绸、人造棉、化学纤维退浆;制成不同品种的工业酶、医用酶、诊断酶等;在洗涤剂工业中,作为洗涤剂酶与碱性蛋白酶、脂肪酶一起添加于洗衣粉中制成多酶洗衣粉等具有极广泛的用途。
随着社会需求的增大,工业生产对淀粉酶的需求量越来越大,其在各领域应用广泛,急需寻找更高酶活的产酶菌株满足生产需要。
生淀粉酶是指对不经过蒸煮糊化的生淀粉颗粒能够表现出强水解活性的酶类。
70年代由于两次石油危机,引起各国学者从节能和有效利用天然资源出发,重视对生淀粉酶的研究。
研究大致分两个方面:一是探讨对生淀粉不经蒸煮,直接用于酒精发酵的可能性;另一则是从自然界中分离筛选能产生生淀粉酶的微生物,并进而研究生淀粉酶的酶学特性及其产生菌的徽生物学特性[1, 2]。
除动物自身的消化道可分泌一些淀粉酶外,淀粉酶的另外两大来源是植物和微生物能产生生淀粉酶的微生物较多。
Ueda [3, 4],Mizokami [5],Tamiguchi [6],Kainuma [7]先后报道了Aspergillus awaraori,Rbizopus . sp.,Strepiococcus boris,Bacillus circulans,Chalara paradoxa等菌种均有产淀粉酶能力。
实验题06 实验设计思路及预期结果类考点01 细胞代谢1.(2023·全国甲卷·29T)某同学将从菠菜叶中分离到的叶绿体悬浮于缓冲液中,给该叶绿体悬浮液照光后糖产生。
回答下列问题。
(1)叶片是分离制备叶绿体的常用材料,若要将叶肉细胞中的叶绿体与线粒体等其他细胞器分离,可以采用的方法是_____(答出1种即可)。
叶绿体中光合色素分布_____上,其中类胡萝卜素主要吸收_____(填“蓝紫光”“红光”或“绿光”)。
(2)将叶绿体的内膜和外膜破坏后,加入缓冲液形成悬浮液,发现黑暗条件下悬浮液中不能产生糖,原因是_____。
(3)叶片进行光合作用时,叶绿体中会产生淀粉。
请设计实验证明叶绿体中有淀粉存在,简要写出实验思路和预期结果。
_____考点02 植物生命调节2.(2023·海南卷·16T)海南是我国火龙果的主要种植区之一、由于火龙果是长日照植物,冬季日照时间不足导致其不能正常开花,在生产实践中需要夜间补光,使火龙果提前开花,提早上市。
某团队研究了同一光照强度下,不同补光光源和补光时间对火龙果成花的影响,结果如图。
回答下列问题。
(1)光合作用时,火龙果植株能同时吸收红光和蓝光的光合色素是_____;用纸层析法分离叶绿体色素获得的4条色素带中,以滤液细线为基准,按照自下而上的次序,该光合色素的色素带位于第_____条。
(2)本次实验结果表明,三种补光光源中最佳的是_____,该光源的最佳补光时间是_____小时/天,判断该光源是最佳补光光源的依据是_____。
(3)现有可促进火龙果增产的三种不同光照强度的白色光源,设计实验方案探究成花诱导完成后提高火龙果产量的最适光照强度(简要写出实验思路)。
_____考点03 发酵工程3.(2023·北京卷·16T)自然界中不同微生物之间存在着复杂的相互作用。
有些细菌具有溶菌特性,能够破坏其他细菌的结构使细胞内容物释出。
生技大实验实验报告淀粉酶的测定结果受方法的影响较大,不同方法参考值亦有所不同,临床所用方法也较多,因此必须了解所用测定方法和其参考值,才能作出正确的诊断。
1.2 基因克隆1.2.1 PCR 技术PCR技术类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。
PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA 扩增量可用Y=(1+)n计算。
Y代表DNA片段扩增后的拷贝数,表示平(Y)均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。
大多数情况下,平台期的到来是不可避免的。
PCR扩增产物可分为长产物片段和短产物片段两部分。
短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。
第1篇一、实验目的1. 了解细菌酶试验的基本原理和方法;2. 掌握通过细菌酶试验来鉴定细菌种类的基本操作步骤;3. 熟悉实验过程中所需仪器和试剂的使用方法;4. 通过实验,提高对微生物学实验技能的掌握。
二、实验原理细菌酶试验是利用细菌所具有的特定酶类来鉴定细菌种类的一种方法。
不同种类的细菌具有不同的酶活性,通过检测细菌对特定底物的酶解作用,可以区分不同种类的细菌。
三、实验材料与仪器1. 实验材料:(1)菌种:大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌等;(2)试剂:葡萄糖、乳糖、蔗糖、淀粉、蛋白质、吲哚试剂、甲基红试剂等;(3)培养基:葡萄糖蛋白胨水培养基、蛋白胨水培养基、糖发酵培养基等。
2. 实验仪器:(1)酒精灯;(2)接种环;(3)超净工作台;(4)恒温培养箱;(5)高压灭菌锅;(6)试管、试管架、烧杯、量筒等。
四、实验步骤1. 菌种接种(1)将菌种接种于葡萄糖蛋白胨水培养基;(2)将接种好的培养基放入恒温培养箱中培养18-24小时。
2. 酶试验(1)分别取一定量的葡萄糖、乳糖、蔗糖、淀粉、蛋白质等底物;(2)将菌液接种于底物中,观察酶解现象;(3)根据酶解现象,判断细菌种类。
3. 鉴定试验(1)吲哚试验:将菌液接种于吲哚试剂中,观察颜色变化;(2)甲基红试验:将菌液接种于甲基红试剂中,观察颜色变化。
五、实验结果与分析1. 酶试验结果(1)大肠杆菌:能分解葡萄糖、乳糖、蔗糖、淀粉、蛋白质等底物;(2)金黄色葡萄球菌:能分解葡萄糖、乳糖、蔗糖等底物;(3)枯草芽孢杆菌:能分解葡萄糖、乳糖、蔗糖等底物。
2. 鉴定试验结果(1)吲哚试验:大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌均为阳性;(2)甲基红试验:大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌均为阳性。
根据实验结果,可以判断出所测试的菌种分别为大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌。
六、实验总结1. 本实验通过细菌酶试验,成功鉴定了所测试的菌种;2. 通过实验,掌握了细菌酶试验的基本原理和方法,提高了对微生物学实验技能的掌握;3. 在实验过程中,注意无菌操作,确保实验结果的准确性。
中度嗜盐菌a-淀粉酶特性研究与a-淀粉酶基因的克隆表达的开题报告一、问题背景和研究意义中度嗜盐菌是一类生存在高盐环境中的细菌,由于其适应能力强,对生物产业和药物开发具有重要意义。
其中,淀粉酶在生产高浓度盐环境下的生物化工和制药中有着广泛应用。
本研究旨在探究中度嗜盐菌分离株中α-淀粉酶的特性及其基因结构,在理解中度嗜盐菌淀粉酶发展机制方面具有重要意义。
二、研究内容和研究方法1.研究内容:(1)通过淀粉板法进行中度嗜盐菌的分离和筛选;(2)利用α-淀粉酶活性测定、酶学性质测定和电泳鉴定等方法对中度嗜盐菌α-淀粉酶的特性和性质进行研究;(3)通过PCR扩增和克隆表达对中度嗜盐菌α-淀粉酶基因进行克隆表达的研究。
2.研究方法:(1)中度嗜盐菌分离:利用淀粉板法分离中度嗜盐菌,并筛选出能够分泌α-淀粉酶的菌株;(2)酶学性质测定:利用α-淀粉酶活性测定方法和电泳鉴定等方法对中度嗜盐菌α-淀粉酶的特性和性质进行测定,例如酶活性、pH值、温度等;(3)克隆表达:通过PCR扩增中度嗜盐菌α-淀粉酶基因,构建克隆表达载体,将其转化到大肠杆菌中进行表达,并进行酶活性和电泳鉴定等实验,得出α-淀粉酶基因的表达情况。
三、预期成果本研究预期通过对中度嗜盐菌α-淀粉酶特性的研究和α-淀粉酶基因的克隆表达,得出以下研究成果:(1)中度嗜盐菌α-淀粉酶的酶学特性,如酶活性、pH值、温度等;(2)中度嗜盐菌α-淀粉酶基因的克隆表达情况,并评估基因的表达量和酶活性;(3)探究中度嗜盐菌淀粉酶发展的机制和调控过程。
四、研究意义和应用价值本研究对于加深对中度嗜盐菌淀粉酶特性的认识,拓宽淀粉酶生产领域的应用范围,优化生物化学生产工艺,具有重要的科学研究意义和技术应用价值。
报告编号:YT-FS-2637-32淀粉酶活性测定实验报告(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity淀粉酶活性测定实验报告(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。
文档可根据实际情况进行修改和使用。
淀粉酶活性的测定一、研究背景及目的酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。
酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。
酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到淀粉酶是水解淀粉的糖苷键的一类酶的总称,按照其水解淀粉的作用方式,可分为α-淀粉酶和β-淀粉酶等。
α-淀粉酶和β-淀粉酶是其中最主要的两种,存在于禾谷类的种子中。
β-淀粉酶存在于休眠的种子中,而α-淀粉酶是在种子萌发过程中形成的。
α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,α-淀粉酶活性低的品种抗穗发芽,反之则易穗发芽。
目前,关于α-淀粉酶活性的测定方法很多种,活力单位的定义也各不相同,国内外测定α-淀粉酶活性的方法常用的有凝胶扩散法、3 ,5-二硝基水杨酸比色法和降落值法。
这3 种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的α-淀粉酶活性应该分别是延二、实验原理萌发的种子中存在两种淀粉酶,分别是α-淀粉酶和β-淀粉酶,β-淀粉酶不耐热,在高温下易钝化,而α-淀粉酶不耐酸,在pH3.6下则发生钝化。
一、实验目的1. 了解淀粉酶的生物学特性及其在生物体内的作用。
2. 掌握淀粉酶活性的测定方法。
3. 分析淀粉酶活性受温度、pH值等因素的影响。
二、实验原理淀粉酶是一种水解淀粉的酶,可以将淀粉分解为麦芽糖和葡萄糖。
淀粉酶活性是指单位时间内淀粉酶催化淀粉分解的速率。
本实验采用DNS法测定淀粉酶活性,DNS 法是一种灵敏、准确、精确度高的测定方法,适用于测定小样品淀粉酶活性。
三、实验材料与仪器1. 实验材料:淀粉酶、淀粉、DNS试剂、标准葡萄糖溶液、pH缓冲液、蒸馏水、试管、恒温水浴锅、移液器、量筒、滴定管等。
2. 实验仪器:pH计、电子天平、电子显微镜、分光光度计等。
四、实验步骤1. 配制淀粉酶溶液:称取适量淀粉酶,用蒸馏水溶解,配制成一定浓度的淀粉酶溶液。
2. 配制淀粉溶液:称取适量淀粉,用蒸馏水溶解,配制成一定浓度的淀粉溶液。
3. 测定淀粉酶活性:取一定量的淀粉溶液于试管中,加入适量淀粉酶溶液,置于恒温水浴锅中,在一定温度下反应一定时间。
4. 测定DNS反应液:取一定量的反应液,加入DNS试剂,置于沸水浴中反应一定时间。
5. 比色:用分光光度计在特定波长下测定DNS反应液的吸光度。
6. 计算淀粉酶活性:根据标准葡萄糖溶液的吸光度值,绘制标准曲线,计算反应液中葡萄糖的浓度,进而计算淀粉酶活性。
五、结果与分析1. 淀粉酶活性随温度升高而增加,在一定温度范围内达到最大值,之后随温度升高而降低。
2. 淀粉酶活性随pH值升高而增加,在一定pH范围内达到最大值,之后随pH值升高而降低。
3. 淀粉酶活性受激活剂和抑制剂的影响,其中激活剂可以增强淀粉酶活性,抑制剂可以抑制淀粉酶活性。
六、实验结论1. 淀粉酶是一种水解淀粉的酶,在生物体内具有重要作用。
2. DNS法是一种灵敏、准确、精确度高的测定淀粉酶活性的方法。
3. 淀粉酶活性受温度、pH值、激活剂和抑制剂等因素的影响。
七、实验讨论1. 实验过程中,淀粉酶溶液和淀粉溶液的浓度对实验结果有较大影响,需要严格控制浓度。
《生物工程大实验》基因工程生物工程大实验项目一览表《生物工程大实验》基因工程教案实验一 PCR技术扩增产淀粉酶的细菌16SrDNA序列一、实验目的和内容目的.学习PCR 扩增细菌16SrDNA序列方法掌握PCR基本操作技术,以及琼脂糖凝胶电泳技术内容:1)细菌基因组DNA的提取2)16S rDNA 序列pcr扩增3)琼脂糖凝胶电泳二、实验原理1985年美国Cetus公司的Kary Mullis等人设计并研究成功的一种体外核酸扩增技术(polymerase chain reaction PCR),这是一种类似于DNA的天然复制过程,以待增的DNA为模板,在体外由引物介导的酶促合成特异DNA片段的方法。
将目的基因DNA在高温(94℃)下解链成为单链模板;人工合成的一对与目的基因两侧序列相互补的寡聚核苷酸引物在低温(30-60℃)下分别与变性的目的的基因片段两侧的两条链的部分序列互补结合;在中等温度(65-75℃)下由耐热DNA聚合酶(Taq酶)将dNTP中的脱氧单核苷酸加到引物3’-OH末端,并以此为起点,沿着模板以5’→ 3’方向延伸,合成一条新的互补链。
新合成的DNA链的起点是加入的引物在模板DNA链两端的退火位点决定的。
图2-1-1PCR的原理由于PCR反应中,双链DNA高温变性成单链,引物与模板单链DNA低温退火(配对)适温下引物延伸三个步骤反复循环,每一循环所形成的DNA分子均能成为下一循环的模板,所以PCR的特定靶DNA产物以指数方式递增,在数小时内,经过30个循环后,理论上可使DNA 扩增至109倍。
原来对单拷贝基因进行探测和分析时需用10ul基因组DNA,现在可以减少到ng水平。
1、设汁和选择高效而特异性强的引物是PCR成败关键。
引物(primer)是指两段与待扩增靶DNA序列侧翼片段具有互补碱基特异性的的寡核苷酸(单链DNA片段)。
引物包括引物1和引物2两种。
引物1是5’端与正义链互补的寡核菅酸,用于扩增编码链或mRNA链;引物2是3’端与反义链互补的寡核苷酸,用于扩增DNA模板涟或反密码链。
实验名称:基因构造分析实验目的:通过基因克隆、序列分析等方法,研究特定基因的结构和功能,为基因工程和分子生物学研究提供基础数据。
实验时间:2023年3月15日至2023年4月15日实验地点:XX大学分子生物学实验室实验材料:1. 模板DNA:人类基因组DNA2. 引物:针对目标基因设计的引物3. Taq DNA聚合酶4. dNTPs5. 纯化DNA模板6. PCR产物纯化试剂盒7. DNA测序试剂盒8. DNA测序仪实验方法:1. 基因克隆(1)设计引物:根据目标基因的序列,设计一对引物,分别位于目标基因的上下游。
(2)PCR扩增:将纯化后的DNA模板与引物混合,进行PCR扩增,得到目标基因的片段。
(3)克隆载体构建:将PCR产物纯化后,与克隆载体连接,转化大肠杆菌,筛选阳性克隆。
(4)测序:将阳性克隆进行测序,获得目标基因的全序列。
2. 基因序列分析(1)生物信息学分析:将测序结果与已知基因数据库进行比对,分析基因的同源性、保守性等信息。
(2)基因结构分析:根据测序结果,绘制基因结构图,分析基因的编码区、启动子、内含子等结构。
(3)基因表达分析:通过实时荧光定量PCR或RNA测序等方法,检测目标基因在不同组织或细胞中的表达水平。
实验结果:1. 基因克隆通过PCR扩增,成功得到目标基因的片段,长度与预期相符。
将PCR产物与克隆载体连接,转化大肠杆菌,筛选到阳性克隆。
2. 基因序列分析(1)生物信息学分析:将测序结果与NCBI数据库进行比对,发现目标基因与人类基因组中一个已知基因的同源性达到90%。
(2)基因结构分析:通过分析测序结果,绘制出目标基因的结构图,发现该基因包含一个编码区、一个启动子、一个内含子和一个终止子。
(3)基因表达分析:通过实时荧光定量PCR,检测到目标基因在正常组织中高表达,而在肿瘤组织中表达水平显著降低。
实验讨论:1. 本实验通过基因克隆和序列分析,成功研究了一个与人类基因组同源性较高的基因的结构和功能。
淀粉酶活性测定实验标准报告酶活力测定方法的研究一研究背景及目的酶是高效催化有机体新陈代谢各步反应的活性蛋白几乎所有的生化反应都离不开酶的催化所以酶在生物体内扮演着极其重要的角色因此对酶的研究有着非常重要的意义。
酶的活力是酶的重要参数反映的是酶的催化能力因此测定酶活力是研究酶的基础。
酶活力由酶活力单位表征通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到。
本实验选取萌发的禾谷类种子为材料通过对其所含两种淀粉酶活力的测定来研究酶活力测定的方法。
二实验原理萌发的种子中存在两种淀粉酶分别是α淀粉酶和β淀粉酶β淀粉酶不耐热在高温下易钝化而α淀粉酶不耐酸在pH3.6下则发生钝化1。
本实验的设计利用β淀粉酶不耐热的特性在高温下70℃下处理使得β淀粉酶钝化而测定α淀粉酶的酶活性1。
酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的麦芽糖的浓度利用比色法可以很容易测得。
然后利用同样的原理测得两种淀粉酶的总活性拟将总活性与α淀粉酶的活性的差值看作β淀粉酶的活性再做进一步分析。
实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差每组实验都做了相应的对照实验在最终计算酶的活性时以测量组的值减去对照组的值加以校正。
三材料、试剂与仪器材料萌发的小麦种子试剂① 1淀粉溶液称取1克可溶性淀粉加入80ml蒸馏水加热熔解冷却后定容至100ml ②pH5.6的柠檬缓冲液A液称取柠檬酸20.01克溶解后定容至1L B液称取柠檬酸钠29.41克溶解后定容至1L取A液5.5ml、B液14.5ml混匀即可③ 35-二硝基水杨酸溶液称取35-二硝基水杨酸1.00克溶于20ml 1M氢氧化钠中加入50ml蒸馏水再加入30克酒石酸钠待溶解后用蒸馏水稀释至100ml盖紧瓶盖保存④麦芽糖标准液称取0.100克麦芽糖溶于少量蒸馏水中小心移入100ml容量瓶中定容⑤ 0.4M NaOH 仪器722光栅分光光度计编号990695 DK-S24型电热恒温水浴锅编号L-304056 离心机TDL-40B 配平天平药物天平电热锅100ml容量瓶50ml容量瓶移液管试管研钵烧杯洗瓶四实验方法本实验按照下列表格的中的操作步骤进行1.酶液的制备①称取2克萌发的小麦种子与研钵中加少量石英砂研磨至匀浆。
淀粉酶活力测定实验报告淀粉酶活力测定实验报告实验三、淀粉酶活性的测定实验报告实验四、淀粉酶活性的测定一、实验目的:1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义;2、学会比色法测定淀粉酶活性的原理及操作要点。
二、实验原理:淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。
根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70? 15min 则被钝化。
测定时,使其中一种酶失活,即可测出另一种酶的活性。
淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。
三、实验用具:1、实验设备研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热恒温水浴锅,离心机,电磁炉。
2、实验材料与试剂(1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。
(2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6的柠檬酸缓冲液;(3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入;(4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中;(5)pH 6.8的磷酸缓冲液: 取磷酸二氢钾6.8g,加水500ml使溶解,用0.1mol/L氢氧化钠溶液调节pH值至6.8,加水稀释至1000ml即得。
(6)0.4mol/L的NaOH溶液;(7)1%NaCl溶液。
(8)实验材料:萌发的谷物种子(芽长约1cm)四、操作步骤1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。
淀粉酶活力的测定实验报告淀粉酶活力的测定实验报告引言:淀粉酶是一种重要的酶类,广泛存在于生物体内。
它能够催化淀粉的水解反应,将淀粉分解为可溶性糖类。
淀粉酶活力的测定对于了解酶的功能和特性具有重要意义。
本实验旨在通过测定淀粉酶活力的方法,探究酶的催化作用以及影响酶活力的因素。
实验材料与方法:材料:- 淀粉溶液- 淀粉酶溶液- 盐酸溶液- 碘液- 试管- 恒温水浴方法:1. 准备一系列浓度不同的淀粉溶液,如0.1%、0.2%、0.3%等。
2. 将试管标记为不同的浓度,并分别加入相应浓度的淀粉溶液。
3. 在每个试管中加入相同体积的淀粉酶溶液,并迅速混合。
4. 将试管放入恒温水浴中,保持恒定的温度。
5. 在一定时间间隔内,取出一定体积的反应液,加入碘液停止反应。
6. 通过比色法测定淀粉的浓度,进而计算淀粉酶的活力。
结果与讨论:实验结果显示,淀粉酶活力随着淀粉溶液浓度的增加而增加。
这是因为淀粉酶需要与淀粉分子结合才能发挥催化作用,高浓度的淀粉溶液提供了更多的底物供给,从而增加了酶的活性。
另外,我们还观察到淀粉酶活力随着反应时间的延长而增加,但在一定时间后趋于稳定。
这是因为酶的活性在反应初期较高,但随着反应进行,底物浓度逐渐减少,酶的活性也会逐渐降低。
此外,实验结果还显示淀粉酶活力受到温度的影响。
在较低温度下,酶的活性较低,而在适宜的温度范围内,酶的活性最高。
然而,当温度过高时,酶会发生变性,活性会显著下降。
结论:通过本实验,我们成功测定了淀粉酶的活力,并探究了影响酶活力的因素。
实验结果表明,淀粉酶活力受到淀粉溶液浓度、反应时间和温度的影响。
深入了解酶的催化作用和特性,有助于我们更好地理解生物体内的代谢过程,并为工业生产中的酶应用提供理论依据。
然而,本实验还存在一些局限性。
首先,我们仅仅测定了淀粉酶活力的影响因素,对于其他酶的活力测定仍需进一步研究。
其次,实验结果受到实验条件和操作的影响,仍需要进一步优化实验方法和控制实验条件。
(此文档为word格式,下载后您可任意编辑修改!) 实验报告:淀粉酶基因的构建及其在大肠杆菌(amp+)中的表达目录相关背景目前研究情况简略研究步骤相关实验详细介绍实验结果与讨论参考文献1、相关背景1、1淀粉酶1、1、1 淀粉酶的发现和分类淀粉酶是较早发现的酶类之一,早在1833年Payen和Persoz已首次从麦芽的水抽提物中用酒精沉淀分离到淀粉酶。
1894年高峰让吉从米曲霉(Aspergillus oryzae)中提取出作为消化剂的酶,即高峰淀粉酶。
1919年法国Boidin和Effront首次用枯草杆菌生产淀粉酶。
淀粉酶(amylase,AMY,AMS)是作用于可溶性淀粉、直链淀粉、糖元等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶类的总称。
现在淀粉酶大致可分为四大类。
第一类α-淀粉酶,广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。
微生物的酶几乎都是分泌性的。
此酶以钙离子为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。
因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。
另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。
一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。
按照使用条件α-淀粉酶可以分为中温型,高温型,耐酸耐碱型。
按产生菌不同又可分为细菌、真菌、植物和动物淀粉酶。
第二类β-淀粉酶(EC3.2.1.2)从底物非还原性末端顺次水解每隔一个α-1,4糖苷键,切下的是麦芽糖单位。
β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。
主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。
对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。
作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。
第三类葡萄糖淀粉酶(EC3.2.1.3),习惯上简称糖化酶,从底物的非还原性末端顺次水解α-1,4糖苷键和分支的α-1,6键生成葡萄糖。
第四类解枝酶或异淀粉酶(EC3.2.1.9)只水解糖原或支链淀粉分支点α-1,6糖苷键,切下整个侧枝。
还有淀粉α-1,6葡萄糖酶是在分支点的葡萄糖单位仅一个时起作用。
1、1、2 淀粉酶的工业应用淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。
淀粉酶的种类很多,根据织物不同,设备组合不同,工艺流程也不同,目前所用的退浆方法有浸渍法、堆置法、卷染法、连续洗等,由于淀粉酶退浆机械作用小,水的用量少,可以在低温条件下达到退浆效果,具有鲜明的环保特色。
除此之外,不同性质的α-淀粉酶还具有许多不同的用途。
耐热性α-淀粉酶,由于使用时温度提高,液化完全,用酶量少,操作比较容易,自1973年问世以来,使双酶糖化发生产葡萄糖真正在工业上得到应用。
耐热性α-淀粉酶也适用于棉布退浆及石油压裂液处理等。
米曲霉α-淀粉酶耐热性差,应用面包工业,可避免应用高温α-淀粉酶而使面包过度液化,口感变差的现象,黑曲霉酸性α-粉酶适用于消化药物制造,糖化性细菌淀粉酶具有较多的麦芽糖,可以制造糖浆,α-淀粉酶在工农业生产中有许多用途,祥见表一中。
β-淀粉酶也是一种应用广泛的淀粉酶。
作为一种糖化剂,β-淀粉酶在食品工业中主要用于制造麦芽糖浆、啤酒、面包、酱油等。
在制醋工业中,常用β-淀粉酶代替部分麸曲节省成本,在白酒和其他工业中也可以用其作糖化剂。
在医药工业上,β-淀粉酶的一个重要用途是制造麦芽糖,医学上常用该酶和α-淀粉酶一道作为消化剂使用。
1、1、3 淀粉酶的临床意义增高:见于胰腺肿瘤引起的胰腺导管阻塞、胰腺脓肿、胰腺损伤、肠梗阻、胃溃疡穿孔、流行性腮腺炎、腹膜炎、胆道疾病、急性阑尾炎、胆囊炎、消化性溃疡穿孔、肾功能衰竭或肾功能不全、输卵管炎、创伤性休克、大手术后、肺炎、肺癌、急性酒精中毒、吗啡注射后,以及口服避孕药、磺胺、噻嗪类利尿剂、鸦片类药物(可待因、吗啡)。
麻醉止痛剂等。
减低:见于肝硬化、肝炎、肝癌、急性或慢性胆囊炎等。
胰淀粉酶由胰腺以活性状态排入消化道,是最重要的水解碳水化合物的酶,和唾液腺分泌的淀粉酶一样都属于α-淀粉酶,作用于α-1,4糖苷键,对分支上的α-1,6糖苷键无作用,故又称淀粉内切酶,其作用的最适pH 为6.9,可通过肾小球滤过,是唯一能在正常时于尿中出现的血浆酶。
人体的其他组织如卵巢、输卵管、肺、睾丸、精液、乳腺等的提取物中都发现有淀粉酶活性;血液、尿液、乳液中也含淀粉酶。
血液淀粉酶中主要来自胰腺、唾液腺,尿液中淀粉酶则来自于血液。
测定血清淀粉酶同工酶时,发现有两个主要的同工酶区带及数个次要区带。
两个主要区带中的一个和胰腺的提纯物或分泌物电泳的位置相同,因此命名为P-同工酶;另一个和唾液腺提纯物或唾液电泳在同一位置,因此命名为S-同工酶。
测定淀粉酶同工酶有助于对胰腺疾病的鉴别诊断。
参考值:限定性底物法:血清淀粉酶220U/L(37℃)尿淀粉酶1200U/L(37℃)P同工酶血清115U/L尿800U/L新生儿血清淀粉酶约为成年人的18%,主要为S-型,到5岁时达成人水平;在一岁内测不出血清P-型淀粉酶,以后缓慢上升,在10~15岁时达成人水平。
血清淀粉酶和尿淀粉酶测定是胰腺疾病最常用的实验室诊断方法,当罹患胰腺疾病,或有胰腺外分泌功能障碍时都可引起其活性升高或降低,有助于胰腺疾病的诊断。
尿淀粉酶水平波动较大,所以用血清淀粉酶检测为好,或两者同时测定。
淀粉酶活性变化亦可见于某些非胰腺疾患,因此在必要时测定淀粉酶同工酶具有其鉴别诊断意义。
1.血清淀粉酶升高:最多见于急性胰腺炎,是急性胰腺炎的重要诊断指标之一,在发病后2~12h活性开始升高,12~72h达峰值,3~4天后恢复正常。
淀粉酶活性升高的程度虽然并不一定和胰腺损伤程度相关,但其升高的程度越大,患急性胰腺炎的可能性也越大,因此虽然目前还都用淀粉酶作为急性胰腺炎诊断的首选指标,但其特异性和灵敏度都还不够高。
当怀疑急性胰腺炎时,应对患者血清和尿淀粉酶活性连续作动态观察,还可结合临床情况及其他试验,如胰脂肪酶、胰蛋白酶等测定共同分析,作出诊断。
淀粉酶测定对监测急性胰腺炎的并发症如胰腺假性囊肿,胰腺脓肿亦有价值,此种时候血淀粉酶活性多持续升高。
重症急性胰腺炎时可以引起胸腔积液或/和腹腔积液,积液中的淀粉酶活性甚至可高于血清淀粉酶活性100倍以上。
急性胰腺炎的诊断有一定的困难,因为其他急腹症也可以引起淀粉酶活性升高。
所以当怀疑急胰腺炎时,除应连续监测淀粉酶外,还应结合临床情况及其他试验,如胰脂肪酶、胰蛋白酶等测定结果共同分析,作出诊断。
慢性胰腺炎淀粉酶活性可轻度升高或降低,但没有很大的诊断意义。
胰腺癌早期淀粉酶活性可见升高。
淀粉酶活性中度或轻度升高还可见于一些非胰腺疾病,如腮腺炎、急性腹部疾病(消化性溃疡穿孔、上腹部手术后、机械性肠梗阻、肠系膜血管病变、胆道梗阻及急性胆囊炎等)、服用镇痛剂、酒精中毒、肾功能不良及巨淀粉酶血症等情况,应加以注意。
血液中淀粉酶能被肾小球滤过,所以任何原因引起的血清淀粉酶升高时,都会使尿中淀粉酶排出量增加,尤以急性胰腺炎时为多见,急性胰腺炎时肾清除淀粉酶的能力加强,其升高可早于血淀粉酶,而下降晚于血淀粉酶。
2.淀粉酶同工酶:血清淀粉酶除来源于胰腺外,还来源于唾液腺及许多其他组织,所以在淀粉酶活性升高时,同工酶的测定有助于疾病的鉴别诊断。
P-同工酶升高或降低时,说明可能有胰腺疾患;S-同工酶的变化可能是源于唾液腺或其他组织。
当血清淀粉酶活性升高而又诊断不清时,应进一步测定同工酶以助鉴别诊断。
有许多方法可以测定同工酶,琼酯糖和醋纤膜电泳法都是比较常用的方法。
淀粉酶的测定结果受方法的影响较大,不同方法参考值亦有所不同,临床所用方法也较多,因此必须了解所用测定方法和其参考值,才能作出正确的诊断。
1.2 基因克隆1.2.1 PCR 技术PCR技术类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。
PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA 扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。
大多数情况下,平台期的到来是不可避免的。
PCR扩增产物可分为长产物片段和短产物片段两部分。
短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。
短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没有固定的止点,长短不一,这就是“长产物片段”。
进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。
引物在与新链结合时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的“短产物片段”。