液压与气压传动在加工中的应用
- 格式:doc
- 大小:163.01 KB
- 文档页数:18
液压传动与气压传动班级:112090102学号:11209010205姓名:侯晓婷课题名称:《在书海中翱翔》在书海中翱翔——————翱翔于《液压传动》摘要:液压传动与气压传动技术以其可靠性高,传递功率大等特点在动力传动与控制技术方面无可替代,广泛应用于工业自动化工程中。
随着科技技术的发展,液压传动与液压传动与我们的生活息息相关,若想液压传动与气压传动在未来有更大,更好的发展,我们就必须了解掌握液压与气压传动技术的相关内容。
在本篇文章中,我们主要讲液压传动。
关键词:液压传动,发展前景,机械能转换,机电一体化。
一.液压传动的概述。
液压传动是指以流体为介质,来实现能量的转换,传递及控制的科学。
液压传动是利用各种元件(液压元件或气压元件)组成具有不同控制功能基本贿赂,再由若干个基本回路组成传动系统来进行能量转换、传递和控制。
我们本学期学习的教材,是21世纪高等学校机械设计制造及其自动化专业系列教材,这本书的内容主要包括:液压流体力学基础,液压元件(泵、马达、缸、开关控制阀、比例阀、数字阀、伺服阀和辅助元件)的结构原理,液压基本回路,典型液压系统,液压系统的设计计算等。
这本教材的特色在于,它紧密的结合“机械类专业人才培养方案及教学内容体系改革的研究与实践”与“工程制图与机械基础系列课程教学内容和课程体系改革的研究与实践”两个重大的教学改革项目,集中反映了在改革机械类人才培养模式和课程内容体系方面所取得的成果。
如果要想好好的学习这门课,就必须好好的研究这门学科,要掌握液压流体力学和气体力学的基础知识,需要熟悉组成系统的各类元件的结构、工作原理、工作性能及由这些元件所组成的各种基本控制回路的性能特点,并在此基础上根据主机负载的需要进行液压与气压的设计。
二.液压系统的设计计算。
液压系统的设计计算步骤大致如下:i.明确系统设计要求。
ii.分析系统工况,确定主要参数。
iii.理定液压系统原理图。
iv.液压元件的计算与选择。
气压传动中的气压控制系统气压传动是一种基于气体压力调节来传递力和运动的技术,广泛应用于工业自动化和机械传动领域。
气压控制系统作为气压传动的重要组成部分,起到调节和控制气压的作用,确保系统的正常运行。
本文将介绍气压控制系统的工作原理、组成结构以及应用领域。
一、气压控制系统的工作原理气压控制系统的工作原理基于气体的压缩性和可控性。
当气体被压缩时,其压力会升高,而释放压缩气体则会降低压力。
气压控制系统利用这一原理,通过调节气体的压力来实现力和运动的传递。
气压控制系统一般由压缩机、储气罐、压力调节器、执行机构和控制元件等组成。
其中,压缩机负责将外部气体压缩,储存在储气罐中;压力调节器用于调节储气罐中气体的压力,以满足系统的需求;执行机构则根据控制信号,将气体压力转化为力或者运动。
二、气压控制系统的组成结构1. 压缩机:压缩机是气压控制系统的核心部件,主要功能是将外部空气压缩,提高其压力。
常见的压缩机包括活塞式压缩机、螺杆压缩机和涡旋式压缩机等。
2. 储气罐:储气罐用于储存被压缩的气体,以平稳输出气体压力。
储气罐一般由压力容器制成,具有一定的强度和密封性能。
3. 压力调节器:压力调节器常用来调节和稳定储气罐中气体的压力。
其内部结构包括调节阀、传感器和控制电路等,能够根据系统需求自动调节气体的输出压力。
4. 执行机构:执行机构是气压传动中负责将气体压力转换为力或者运动的部件。
常见的执行机构有气缸、阀门和驱动器等,根据不同的应用需求选择不同的执行机构。
5. 控制元件:控制元件用于控制气压传动系统的工作状态和参数。
包括传感器、开关和调节阀等,能够感知周围环境变化并进行控制。
三、气压控制系统的应用领域气压控制系统广泛应用于工业自动化和机械传动领域,其具有以下优点:1. 高效性:气压控制系统具有快速响应、高密度传能和高速运动等特点,能够在短时间内完成力和运动的传递,提高生产效率。
2. 稳定性:气压控制系统通过压力调节器来稳定输出气体压力,能够在一定范围内保持压力恒定,提高系统的稳定性。
气压传动、液压传动和液力传动基础知识一、气压传动篇气压传动以压缩气体为工作介质,靠气体的压力传递动力或信息的流体传动。
传递动力的系统是将压缩气体经由管道和控制阀输送给气动执行元件,把压缩气体的压力能转换为机械能而作功;传递信息的系统是利用气动逻辑元件或射流元件以实现逻辑运算等功能,亦称气动控制系统。
1、气压传动的特点工作压力低,一般为0.3~0.8兆帕,气体粘度小,管道阻力损失小,便于集中供气和中距离输送,使用安全,无爆炸和电击危险,有过载保护能力;但气压传动速度低,需要气源。
2、气压传动的组成气压传动由气源、气动执行元件、气动控制阀和气动辅件组成。
气源一般由压缩机提供。
气动执行元件把压缩气体的压力能转换为机械能,用来驱动工作部件,包括气缸和气动马达。
气动控制阀用来调节气流的方向、压力和流量,相应地分为方向控制阀、压力控制阀和流量控制阀。
气动辅件包括:净化空气用的分水滤气器,改善空气润滑性能的油雾器,消除噪声的消声器,管子联接件等。
在气压传动中还有用来感受和传递各种信息的气动传感器。
3、气压传动的优点•用空气做介质,取之不尽,来源方便,用后直接排放,不污染环境,不需要回气管路因此管路不复杂;•空气粘度小,管路流动能量损耗小,适合集中供气远距离输送;•安全可靠,不需要防火防爆问题,能在高温,辐射,潮湿,灰尘等环境中工作;•气压传动反应迅速;•气压元件结构简单,易加工,使用寿命长,维护方便,管路不容易堵塞,介质不存在变质更换等问题;4、气压传动的缺点•空气可压缩性大,因此气动系统动作稳定性差,负载变化时对工作速度的影响大;•气动系统压力低,不易做大输出力度和力矩;•气控信号传递速度慢于电子及光速,不适应高速复杂传递系统;•排气噪音大;二、液压传动篇液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
1、液压传动的基本原理利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。
液压与气压传动教案第一章绪论一、液压与气压传动的研究对象要研究液压与压传动及其控制技术;要了解传动介质的基本物理性能及其静力学、运动学和动力学特性;要了解组成系统的各类液压元件的结构、工作原理、工作性能以及有这些元件所组成的各种回路的性能和特点,并在此基础上进行液压与气压传动系统的设计.二、液压与气压传动的工作原理液压传动的工作原理,可以用一个液压千斤顶的工作原理来说明.图0-1a液压千斤顶工作原理图1—杠杆手柄2—小油缸3—小活塞4,7—单向阀5—吸油管6,10—管道8—大活塞9—大油缸11—截止阀12—油箱图0-1a是液压千斤顶的工作原理图.大油缸9和大活塞8组成举升液压缸.杠杆手柄1、小油缸2、小活塞3、单向阀4和7组成手动液压泵.如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这时单向阀4打开,通过吸油管5从油箱12中吸油;用力压下手柄,小活塞下移,小活塞下腔压力升高,单向阀4关闭,单向阀7打开,下腔的油液经管道6输入举升油缸9的下腔,迫使大活塞8向上移动,顶起重物.再次提起手柄吸油时,单向阀7自动关闭,使油液不能倒流,从而保证了重物不会自行下落.不断地往复扳动手柄,就能不断地把油液压入举升缸下腔,使重物逐渐地升起.如果打开截止阀11,举升缸下腔的油液通过管道10、截止阀11流回油箱,重物就向下移动.这就是液压千斤顶的工作原理.通过对上面液压千斤顶工作过程的分析,可以初步了解到液压传动的基本工作原理.液压传动是利用有压力的油液作为传递动力的工作介质.压下杠杆时,小油缸2输出压力油,是将机械能转换成油液的压力能,压力油经过管道6及单向阀7,推动大活塞8举起重物,是将油液的压力能又转换成机械能.大活塞8举升的速度取决于单位时间内流入大油缸9中油容积的多少.由此可见,液压传动是一个不同能量的转换过程.图0-1b液压千斤顶的简化模型由图0-1b可分析两活塞之间的力比例关系、运动比例关系统和功率关系.1) 力比例关系液压传动区别于其它传动方式的基本特征一: 力(或力矩)的传递是靠液体压力来实现的,或者说,力(或力矩)的传递是按帕斯卡原理(即静压传递原理)进行的. 因此,有人把液压传动称为"静压传动" . 帕斯卡原理(即静压传递原理): "在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点".结论:在液压传动中工作压力取决于负载,而与流入的液体多少无关.注意:负载包括:有效负载、无效负载(如摩擦力)以及液体的流动阻力.2) 运动关系液压传动区别于其它传动方式的基本特征二: 运动速度(或转速)的传递是按照"容积变化相等"的原则进行的.基于此,有人把液压传动成为"容积式液体传动".在流体力学中,把单位时间内流过某一通流截面A的流体体积称为流量,则流量q = v·A结论:①活塞移动速度正比于流入液压缸中油液流量q,与负载无关.也就是说,活塞的运动速度可以通过改变流量的方式进行调节.基于这一点,液压传动可以实现无级调速.②活塞的运动速度反比于活塞面积,可以通过对活塞面积的控制来控制速度.3) 功率关系由前述可得P=Fv=Wv=pq上式说明,在不计各种功率损失的条件下,液压传动系统的输出功率Wv等于输入功率Fv,并且液压传动中的功率可以用压力p和流量q的乘积来表示. 总结上述: 在液压传动中压力p 和流量q是最基本、最重要的两个参数.三、液压与气压传动系统的组成液压千斤顶是一种简单的液压传动装置.下面分析一种驱动工作台的液压传动系统.如图1-2所示,它由油箱、滤油器、液压泵、溢流阀、开停阀、节流阀、图0-2机床工作台液压系统工作原理图1—工作台2—液压缸3—活塞4—换向手柄5—换向阀6,8,16—回油管7—节流阀9—开停手柄10—开停阀11—压力管12—压力支管13—溢流阀14—钢球15—弹簧17—液压泵18—滤油器19—油箱换向阀、液压缸以及连接这些元件的油管、接头组成.其工作原理如下:液压泵由电动机驱动后,从油箱中吸油.油液经滤油器进入液压泵,油液在泵腔中从入口低压到泵出口高压,在图1-2(a)所示状态下,通过开停阀、节流阀、换向阀进入液压缸左腔,推动活塞使工作台向右移动.这时,液压缸右腔的油经换向阀和回油管6排回油箱.如果将换向阀手柄转换成图1-2(b)所示状态,则压力管中的油将经过开停阀、节流阀和换向阀进入液压缸右腔、推动活塞使工作台向左移动,并使液压缸左腔的油经换向阀和回油管6排回油箱.工作台的移动速度是通过节流阀来调节的.当节流阀开大时,进入液压缸的油量增多,工作台的移动速度增大;当节流阀关小时,进入液压缸的油量减小,工作台的移动速度减小.为了克服移动工作台时所受到的各种阻力,液压缸必须产生一个足够大的推力,这个推力是由液压缸中的油液压力所产生的.要克服的阻力越大,缸中的油液压力越高;反之压力就越低.这种现象正说明了液压传动的一个基本原理——压力决定于负载.从机床工作台液压系统的工作过程可以看出,一个完整的、能够正常工作的液压系统,应该由以下五个主要部分来组成:1.能源装置它是供给液压系统压力油,把机械能转换成液压能的装置.最常见的形式是液压泵.2.执行装置它是把液压能转换成机械能的装置.其形式有作直线运动的液压缸,有作回转运动的液压马达,它们又称为液压系统的执行元件.3.控制调节装置它是对系统中的压力、流量或流动方向进行控制或调节的装置.如溢流阀、节流阀、换向阀、开停阀等.4.辅助装置上述三部分之外的其他装置,例如油箱,滤油器,油管等.它们对保证系统正常工作是必不可少的.5.工作介质传递能量的流体,即液压油等.四液压与气压传动的优缺点1、液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点:(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方.例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点.由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方.(2)液压传动装置的重量轻、结构紧凑、惯性小.例如,相同功率液压马达的体积为电动机的12%~13%.液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W(牛/瓦),发电机和电动机则约为0.03N/W.(3)可在大范围内实现无级调速.借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1∶2000,并可在液压装置运行的过程中进行调速.(4)传递运动均匀平稳,负载变化时速度较稳定.正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动.(5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长.(6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控.(7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用.液压传动的缺点是:(1)液压系统中的漏油等因素,影响运动的平稳性和正确性,使得液压传动不能保证严格的传动比.(2)液压传动对油温的变化比较敏感,温度变化时,液体粘性变化,引起运动特性的变化,使得工作的稳定性受到影响,所以它不宜在温度变化很大的环境条件下工作.(3)为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造精度要求较高,加工工艺较复杂.(4)液压传动要求有单独的能源,不像电源那样使用方便.(5)液压系统发生故障不易检查和排除.总之,液压传动的优点是主要的,随着设计制造和使用水平的不断提高,有些缺点正在逐步加以克服.液压传动有着广泛的发展前景.2、气压传动的优点(1)空气随处可取,取之不尽,节省了购买、贮存、运输介质的费用和麻烦;用后的空气直接排入大气,对环境无污染,处理方便.不必设置回收管路,因而也不存在介质变质、补充相更换等问题.(2)因空气粘度小(约为液压油的万分之一),在管内流动阻力小.压力损失小,便于集中供气和远距离输送.即使有泄漏,也不会像液压油一样污染环境.(3)与液压相比,气动反应快,动作迅速,维护简单,管路不易堵塞.(4)气动元件结构简单、制造容易,适于标准化、系列化、通用化.(5)气动系统对工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射、振动等恶劣工作环境中工作时,安全可靠性优于液压、电子和电气系统.(6)空气具有可压缩性,使气动系统能够实现过载自动保护,也便于贮气罐贮存能量,以备急需.(7)排气时气体因膨胀而温度降低,因而气动设备可以自动降温,长期运行也不会发生过热现象.五液压与气压传动在机械中的应用驱动机械运动的机构以及各种传动和操纵装置有多种形式.根据所用的部件和零件,可分为机械的、电气的、气动的、液压的传动装置.经常还将不同的形式组合起来运用——四位一体.由于液压传动具有很多优点,使这种新技术发展得很快.液压传动应用于金属切削机床也不过四五十年的历史.航空工业在1930年以后才开始采用.特别是最近二三十年以来液压技术在各种工业中的应用越来越广泛.在机床上,液压传动常应用在以下的一些装置中:1.进给运动传动装置磨床砂轮架和工作台的进给运动大部分采用液压传动;车床、六角车床、自动车床的刀架或转塔刀架;铣床、刨床、组合机床的工作台等的进给运动也都采用液压传动.这些部件有的要求快速移动,有的要求慢速移动.有的则既要求快速移动,也要求慢速移动.这些运动多半要求有较大的调速范围,要求在工作中无级调速;有的要求持续进给,有的要求间歇进给;有的要求在负载变化下速度恒定,有的要求有良好的换向性能等等.所有这些要求都是可以用液压传动来实现的.2.往复主体运动传动装置龙门刨床的工作台、牛头刨床或插床的滑枕,由于要求作高速往复直线运动,并且要求换向冲击小、换向时间短、能耗低,因此都可以采用液压传动.3.仿形装置车床、铣床、刨床上的仿形加工可以采用液压伺服系统来完成. 其精度可达0.01~0.02mm.此外,磨床上的成形砂轮修正装置亦可采用这种系统.4.辅助装置机床上的夹紧装置、齿轮箱变速操纵装置、丝杆螺母间隙消除装置、垂直移动部件平衡装置、分度装置、工件和刀具装卸装置、工件输送装置等,采用液压传动后,有利于简化机床结构,提高机床自动化程度.5.静压支承重型机床、高速机床、高精度机床上的轴承、导轨、丝杠螺母机构等处采用液体静压支承后,可以提高工作平稳性和运动精度.液压传动在其他机械工业部门的应用情况见表0-1所示.表0-1 液压传动在各类机械行业中的应用实例行业名称应用场所举例工程机械挖掘机、装载机、推土机、压路机、铲运机等起重运输机械汽车吊、港口龙门吊、叉车、装卸机械、皮带运输机等矿山机械凿岩机、开掘机、开采机、破碎机、提升机、液压支架等建筑机械打桩机、液压千斤顶、平地机等农业机械联合收割机、拖拉机、农具悬挂系统等冶金机械电炉炉顶及电极升降机、轧钢机、压力机等轻工机械打包机、注塑机、校直机、橡胶硫化机、造纸机等汽车工业自卸式汽车、平板车、高空作业车、汽车中的转向器、减振器等智能机械折臂式小汽车装卸器、数字式体育锻炼机、模拟驾驶舱、机器人等。
《液压与气压传动论文》——液压传动技术的应用和发展学院:机械工程学院班级:模具一班姓名:***学号:************目录一、摘要 (1)二、引言 (1)三、正文 (1)1、液压系统的发展史与我国液压的发展 (2)2、液压系统的工作原理 (2)3、液压系统的应用 (4)4、液压系统的优缺点 (4)四、结语 (5)五、参考文献 (5)一、摘要本论文主要介绍液压系统的发展历程和我国液压的发展历程、液压系统的工作原理、液压系统的应用及在应用过程中体现出的优缺点,简单介绍了液压传动传动方式、组成以及容积式液压泵组成的相关内容。
关键词:液压传动发展组成二、引言为使我们在学习液压与气动基本原理的基础上,掌握常用液压与气动元件的功用、组成、工作原理和应用,熟悉典型设备液压与气压传动系统的组成、工作原理和应用场合,了解国内外先进技术成果在机械设备中的应用。
本文从液压传动系统的基本内容出发,从发展历史到工作原理和具体应用,再到优缺点分析,带领大家认识液压传动。
三、正文液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。
尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。
液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。
因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。
液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。
液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。
液压与气压传动课程设计指导书参考文献一、引言液压与气压传动是现代工程中常用的能量传递方式之一。
它们通过利用液体和气体的性质,将能量从一个地方传递到另一个地方。
本文将针对液压与气压传动的课程设计进行指导,提供相关参考文献,以帮助学生深入了解和掌握这一领域的知识。
二、液压与气压传动的基本原理1. 液压传动液压传动是利用液体在封闭管路中传递力和能量的方式。
其基本原理是利用流体的不可压缩性和流体静力学原理,通过增大或减小流体静力作用面积来实现力的放大或减小。
常见的液压元件包括油泵、阀门、油缸等。
参考文献:•Rouse, E. (2012). Fluid power circuits and controls: fundamentals and applications. John Wiley & Sons.•Napolitano, M. (2005). Introduction to fluid power. Pearson Education.2. 气压传动气压传动是利用气体在封闭管路中传递力和能量的方式。
其基本原理是利用气体的可压缩性和气体静力学原理,通过改变气体的压力来实现力的放大或减小。
常见的气压元件包括压缩机、气缸、阀门等。
参考文献:•Johnson, C. D. (2006). Process control instrumentation technology.Pearson Education.•Esposito, A., Esposito, M., & Esposito, M. (2014). Fluid power with applications. Pearson Education.三、液压与气压传动的应用领域液压与气压传动广泛应用于各个工程领域,例如机械制造、航空航天、汽车工业等。
以下是一些常见的应用领域:1. 工程机械液压与气压传动在工程机械中起到了至关重要的作用。
液压与气压传动的优缺点1、液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点:(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。
例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。
由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
(2)液压传动装置的重量轻、结构紧凑、惯性小。
例如,相同功率液压马达的体积为电动机的12%〜13%。
液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W(牛/瓦),发电机和电动机则约为0.03N/W。
(3)可在大范围内实现无级调速。
借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1 : 2000 ,并可在液压装置运行的过程中进行调速。
(4)传递运动均匀平稳,负载变化时速度较稳定。
正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动。
(5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。
(6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控。
(7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。
液压传动的缺点是:(1)液压系统中的漏油等因素,影响运动的平稳性和正确性,使得液压传动不能保证严格的传动比。
(2)液压传动对油温的变化比较敏感,温度变化时,液体粘性变化,引起运动特性的变化,使得工作的稳定性受到影响,所以它不宜在温度变化很大的环境条件下工作。
(3)为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造精度要求较高,加工工艺较复杂。
(4)液压传动要求有单独的能源,不像电源那样使用方便。
(5)液压系统发生故障不易检查和排除。
液压与气压液压系统:液压系统的作用为通过改变压强增大作用力。
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。
液压系统可分为两类:液压传动系统和液压控制系统。
液压传动系统以传递动力和运动为主要功能。
液压控制系统则要使液压系统输出满足特定的性能要求(特别是动能),通常所说的液压系统主要指液压传动系统动力元件:动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。
液压泵的结构形式一般有齿轮泵、叶片泵、柱塞泵和螺杆泵。
执行元件:执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
控制元件;控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。
根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。
压力控制阀包括溢流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。
根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件:辅助元件包括油箱、滤油器、冷却器、加热器、蓄能器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位计、油温计等。
液压油;液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
气压系统:气压传动是在机械,电气,液压传动之后,近几十年才被广泛应用的一种传动方式,它是以压缩空气为工作介质来进行能量和信号的传递,以实现生产自动化。
气压传动系统组成:气源装置:获得压缩空气的设备,空气净化设备。
如空压机,空气干燥机等执行元件:将气体的压力能转换成机械能的装置,也是系统能量输出的装置。
如气缸,气马达等控制元件:用以控制压缩空气的压力,流量,流动方向以及系统执行元件工作程序的元件。
如压力阀,流量阀,方向阀和逻辑元件等辅助元件:起辅助作用,如过滤器,油雾器,消声器,散热器,冷却器,放大器及管件等。
目 录 摘 要 ..................................................................................................................................... 2 Abstract ................................................................................................................................... 2 1 绪论 ..................................................................................................................................... 3 1.1 液压与气压的简介 .................................................................................................. 3 1.2 现在液压气压的目前状况 ...................................................................................... 3 1.3 今后发展走势 .......................................................................................................... 4 2 液压与气压技术 ................................................................................................................. 6 2.1 液压传动系统 .......................................................................................................... 6 2.2 液压传动分类 .......................................................................................................... 7 2.3 液压传动元件的分类 .............................................................................................. 8 3 液压系统的优缺点 ............................................................................................................. 9 3.1 液压传动的优点 ...................................................................................................... 9 3.2 液压传动的缺点 ...................................................................................................... 9 4 液压与气压在加工中的运用 ........................................................................................... 10 4.1 液压与气压技术在农业机械领域中的运用 ........................................................ 10 4.2 液压技术在装备机械制造业中的应用 ................................................................ 11 5 气压传动系统 ................................................................................................................... 13 5.1 概念 ........................................................................................................................ 13 5.2 工作原理 ................................................................................................................ 13 5.3 气压传动系统组成 ................................................................................................ 13 5.4 气压传动系统的分类 ............................................................................................ 13 5.5 气压传动的优缺点 ................................................................................................ 14 5.6 应用 ........................................................................................................................ 15 结 论 ..................................................................................................................................... 16 致 谢 ..................................................................................................................................... 17 参考文献 ............................................................................................................................... 18 2
【摘 要】自2O世纪9O年代以来,工程机械进入了一个新的发展时期,新技术的广泛
应用使得新结构和新产品不断涌现。随着微电子技术向工程机械的渗透,工程机械日益向智能化和机电一体化方向发展,对工程机械行走驱动装置提出的要求也越来越苛刻。近年来,液压与气压技术迅速发展,液压元件日臻完善,使得液压传动在工程机械传动系统中的应用突飞猛进,液压与气压所具有的优势也日渐凸现。 随着世界工业水平的不断提高,各类液压气压产品的标准化、系列化和通用化也使液压传动技术得到了迅速发展,液压与气压技术开始向高压、高速、大功率、高效率、低噪声、低能耗、高度集成化等方向发展。可以预见,液压与气压技术将在现代化生产中发挥越来越重要的作用。
【关键词】 液压与气压新技术 机械工程
Hydraulicandpneumaticinprocessingtheapplication Abstract:20centurysince9Os,engineeringmachineryintoanewdevelopingperiod,wideapplic at
ionofnewtech logiesmakenewstructureandnewproductscontinuouslyemerging.Withmicroelectronicstechnologytothepenetrationofengineeringmachinery,constructionmachineryincreasinglytointelligentandeectromechanicalintegrationdevelopmentdirection,andtheengineeringmechanicaltraveldriverequestalsomoreandmoredemanding.Inrecentyears,thehydraulicandpneumatictechnologyrapiddevelopment,hydrauliccomponentsgraduallyimproved,makinghydraulictransmissioninmechanicaltransmissionsystem,theapplicationbyleapsandbounds,hydraulicandpneumatic'ssuperiorityhasalsobecomeprominent. Withtheconstantimprovementofindustry,allkindsofhydraulicpneumaticproductstandardizationandserializationandgeneralizationandhydraulictransmissiontechnologyhavedevelopedrapidly,hydraulicandpneumatictechnologyhighspeed,highvoltage,andbegantohighpower,highefficiency,lownoise,lowenergyconsumption,highlyintegrateddevelopmentdirection.Canforesee,hydraulicandpneumatictechnologyinthemodernproductionwillplaymoreandmoreimportantrole.