动力定位概述
- 格式:doc
- 大小:176.00 KB
- 文档页数:4
动力定位系统行业概述 ..................................................... 错误!未定义书签。
第一节动力定位系统定义 (2)第二节动力定位系统分类 (2)第三节动力定位系统应用领域 (2)第四节动力定位系统产业链结构 (3)第五节动力定位系统行业新闻动态分析 (3)12第一节 动力定位系统定义动力定位系统(Dynamic Positioning System )是一种闭环的控制系统,其采用推力器来提供抵抗风、浪、流等作用在船上的环境力,从而使船尽可能地保持在海平面上要求的位置上,其定位成本不会随着水深增加而增加,并且操作也比较方便。
第二节 动力定位系统分类国际海事组织(IMO )根据历代动力定位系统的功能和冗余度,将其划分为1级、2级和3级,其中3级动力定位系统的级别最高,性能最先进。
图表- 1:各级动力定位系统对比第三节 动力定位系统应用领域动力定位系统不仅应用于停船定位,而且还能应用于船与船间的航距固定。
尤其是海上补给船在航行中进行补给作业时,需要保持操纵安全可靠的航行距离,动力定位系统通过对船舶各推进器的自动精确控制,使船舶在海上航行中进行补给不再成为难事。
动力定位系统还应用于海底电缆铺设、检修,海底管线铺设,倾倒岩石,采沙挖泥,海底管线挖沟,潜水,ROV ,海上打捞救生,以及深海石油开采等海洋作业的平台定位。
第四节动力定位系统产业链结构动力定位系统产业链由上游原材料、零部件供应,中游生产制造企业,下游应用市场组成。
动力定位系统行业上游是核心零部件,主要的是传感器、船舶推进器、控制台、人机界面、动力系统等,下游主要应用于海洋钻井船、平台支持船、潜水器支持船、管道和电缆敷设船、科学考察船等水上作业平台。
图表- 2:动力定位系统产业链分析****整理第五节动力定位系统行业新闻动态分析中船航海科技有限责任公司与荷兰Praxis公司于2015年在中国国际海事会展期间举行了动力定位系统合作签约仪式。
动力定位的名词解释动力定位是一种技术手段,通过使用推进系统组合和姿态控制系统,使船舶、深潜器或无人潜水器能够在海洋中精确地定位并保持合适的位置。
它是一项关键的海洋工程技术,广泛应用在海洋科研、海洋石油勘探、海底管道铺设、海底救援等领域,为人类在海洋环境中开展各种活动提供了重要的支持。
一、动力定位的基本原理动力定位的基本原理是通过利用船舶或潜水器上的推进系统和姿态控制系统,根据外部环境的变化实时调整,以保持船舶或潜水器的位置和方向稳定。
推进系统能控制船舶或潜水器的位置和运动速度,常用的推进系统包括船舶的推进螺旋桨和潜水器的水动力推进器。
当环境变化导致船舶或潜水器偏离目标位置时,推进系统会相应地调整船舶或潜水器的推进力,使其回到目标位置。
姿态控制系统用于控制船舶或潜水器的姿态,包括船舶的舵机和潜水器的姿态控制锚。
当环境变化导致船舶或潜水器产生偏航、横倾或纵倾等姿态变化时,姿态控制系统会相应地通过调整舵角或改变锚点位置来保持船舶或潜水器的稳定姿态。
二、动力定位的关键技术1. 定位系统动力定位依赖于先进的定位系统来获取船舶或潜水器的当前位置信息。
常用的定位系统包括全球定位系统(GPS)、惯性导航系统(INS)、声纳测距系统和激光测距系统等。
借助这些系统,船舶或潜水器可以获取准确的位置信息,并通过与目标位置进行比对,实现精确的定位和控制。
2. 船舶或潜水器的动力系统动力定位需要可靠、高效的动力系统来提供推进力。
船舶常使用内燃机、电动机或涡轮机等推进设备,而潜水器则通常采用水动力推进器。
这些动力系统能够根据实时的环境变化,精确地调整推进力,使船舶或潜水器能够保持目标位置的稳定性。
3. 自适应控制算法自适应控制算法是动力定位的核心技术之一。
通过传感器监测环境变化和目标位置信息,控制算法可以实时调整推进系统和姿态控制系统,以实现船舶或潜水器的精确定位。
自适应控制算法能够根据环境的复杂性和实时需求,快速响应并调整系统参数,以适应不同情况下的定位需求。
动力定位系统介绍1、动力定位系统的产生和发展动力定位系统于上世纪70年代后期由美国海军研制成功,起初主要应用于潜水艇支持船、军用海底电缆铺设等作业。
从上世纪80年代初开始,随着北海油田、墨西哥湾油田的大规模开发,动力定位系统被广泛应用于油田守护、平台避碰、水下工程施工、海底管线检修、水下机器人(ROV)跟踪等作业。
尤其是90年代以来,随着海上勘探开发逐步向深水(500m~1500m)和超深水(1500m以上)发展,几乎所有的深水钻井船、油田守护船都装备了动力定位系统。
据初步估计,目前全世界装备动力定位系统的各类船只已超过1 000艘。
2、动力定位系统简述海洋中的船舶因不可避免的受到风、波浪与水流产生的力的影响,船舶在这些环境外力的干扰作用下,将产生六个自由度(纵荡、横荡、升沉、纵摇、横摇、艏摇)运动,而对于定位船舶而言,需要控制的只是水平面内的三个运动,即纵荡(Surge)、横荡(Sway)和艏摇(Yaw)运动。
使用动力定位控制系统能够抵消那些作用在船体上不断变化的阻力,维持操作员指定的位置与航向,或者使船舶沿着需要的轨迹移动。
动力定位控制系统使用来自一个或多个电罗经的数据来控制船舶航向;至少使用一个位置参考系统(如DGPS或声纳)的数据来控制船舶位置,从而进行船舶定位。
风传感可以测量船舶受到的风阻力的大小和方向,但是海流力和波浪力不是测量出来的,而是由船舶数学模型计算得出。
动力定位中的船舶数学模型是由扩展卡尔曼滤波算法建立的,该算法用于估计船舶航向、位置以及在各个方向运动的自由度:纵荡,横荡与艏摇,它合并了估计海洋水流与波浪影响的算法。
但是该数学模型是无法100%准确代表真正的船舶,因此根据位置参考系与传感器的测量值来不断修正该船舶数学模型,这是一个闭环控制过程。
下图是动力定位系统的控制原理图:动力定位系统可以检测与显示船舶的实际航向和位置与期望的航向和位置之间发生偏离的情况,控制器基于这些信息来控制船舶。
概述海上钻井平台的动力定位系统动力定位(Dynamic Positioning)系统已经广泛应用于海洋作业船、海洋科考船、深海半潜式钻井平台以及为钻井平台服务的穿梭油轮、储油加工等船舶,目前建造的海洋工程船如风车安装船、穿梭油轮、MPF1000FDPSO和半潜式钻井平台如Sevan650、GM4000等都装备了动力定位系统,这些船根据用途装备的动力定位设备等级不同,因此设备的配置和入级标志也不同,下面作个简单的介绍。
1 动力定位功能及系统组成1.1 动力定位功能动力定位(以下简称DP)是完全依靠推进力方式而不是锚泊方式保持船位(固定位置或预定航线)。
其基本工作原理是利用计算机对接收的卫星定位信号(DGPS)、环境参数(风、浪、流)以及船舶传感器输入的船舶位置信号,自动地与计算机中模拟的预定船位进行比较,推算出保持这一位置需要的各推进器的推力、速度和方向,自动控制推进器工作。
反复地进行比较判断计算和执行控制,使船舶在规定的环境条件下,位置保持在精度允许的范围内。
1.2 DP系统组成DP主要有3大系统组成:电力系统;控制系统;推进系统。
1.2.1 DP电力系统:发电机组;配电系统;功率管理系统。
1.2.2 DP控制系统:计算机及自动控制系统;独立操纵杆系统(手动控制);传感器系统[电罗经、移动参照传感器(MRU)、风向风速传感器];位置参照系统[卫星参照系统GPS、激光参照系统(Laser)、雷达参照系统、无线电参照系统、水声参照系统、张紧索参照系统(Tautwire)]。
2 DP设备等级国际海事组织(IMO)通过的《海上移动式钻井平台构造和设备规则1989修正案》中详细地规定了DP设备等级,其文Msc./Cire.645《采用动力定位系统船舶导则》中规定了DP系统的设备等级分别为3级,即:Class1、Class2、Class3(为叙述方便,本文用DP1、DP2、DP3代表3个动力定位设备等级)。
深海油气固井撬(船)的动力定位与航行控制研究概述:深海油气固井撬(船)是用于在深海区域进行石油和天然气固井作业的特殊船只。
其动力定位和航行控制系统很关键,对于保证作业的安全、高效进行起着重要的作用。
本文将研究深海油气固井撬(船)的动力定位与航行控制,并探讨相关技术和方法。
一、动力定位技术1.1 动力定位原理动力定位(DP)是指通过船舶自身动力系统,利用定位设备和控制系统,在不依赖锚链的情况下保持船舶在目标位置上的稳定。
深海油气固井撬(船)的动力定位系统需要具备定位准确、实时性强、抗风浪、抗潮流等特点。
1.2 动力定位设备动力定位设备包括定位传感器、船舶动力系统和控制系统。
定位传感器主要包括全球卫星导航系统(GNSS)、惯性导航系统(INS)和声纳等,船舶动力系统则需要满足船舶各个方向上的推力需求。
控制系统负责接收传感器数据,计算控制指令,驱动船舶动力系统调整姿态。
1.3 动力定位精度评估深海油气固井作业对动力定位精度要求较高,需要评估系统的定位精度。
评估方法包括船舶GPD(Global Positioning System Differential)系统的差分定位、相对定位技术和误差分析等。
二、航行控制系统2.1 航迹规划与路径跟踪深海油气固井撬(船)的航行控制系统需要具备航迹规划和路径跟踪的功能。
航迹规划是指根据任务需求和环境条件,通过制定航行计划确定最佳路线;路径跟踪是指通过控制船舶的航向和航速,使其按照规定的航迹进行航行。
2.2 环境感知与避碰技术深海油气固井撬(船)在复杂的海上环境中进行作业,需要具备环境感知和避碰技术。
环境感知通过雷达、摄像头等传感器获取海上障碍物和其他船只的信息,避碰技术则根据这些信息做出智能决策,以避免碰撞和危险。
2.3 船舶姿态控制船舶姿态控制是指控制船舶的航向、纵倾、横摇和增仰等。
在深海油气固井作业中,船舶姿态控制对于保证固井操作的准确性和稳定性至关重要。
姿态控制技术包括舵机系统、艏推进器、减摇装置等。
动力定位系统在海上作业中的应用引言:海洋是人类探索和开发的宝贵资源,而海上作业是海洋开发中必不可少的一项重要工作。
为了确保海上作业的顺利进行,提高作业效率和安全性,动力定位系统在海上作业中得到了广泛应用。
本文将重点探讨动力定位系统在海上作业中的应用,并分析其在提高作业效率和减少事故发生方面的优势。
一、动力定位系统的基本原理和组成动力定位系统是一种通过操纵船舶的推力和方向来维持船舶在指定位置及方向上的系统。
它由定位传感器、控制系统和推进器组成。
定位传感器一般采用全球定位系统(GPS)、激光测距、惯性导航系统等技术,用于测量船舶的位置和姿态;控制系统根据定位传感器的数据实时计算出推力和方向,并通过推进器调整船舶的运动;推进器负责为船舶提供动力和操控。
二、动力定位系统在海上作业中的应用1. 海上测量和科学考察动力定位系统在海洋测量和科学考察中发挥着重要作用。
科研船需要在海上进行测量和采样,传统的锚泊方式可能使得科研设备偏移,造成数据不准确;而动力定位系统可以实时控制船舶的位置,确保仪器采集数据的准确性。
此外,科研船在海上进行长时间的考察时,动力定位系统可以根据海况和气象变化自动调整船舶的位置和姿态,为科学考察提供更稳定和安全的工作平台。
2. 海上钻井和海底施工在海上进行钻井和海底施工工作时,动力定位系统提供了关键的定位和维持船舶姿态的功能。
钻井平台需要确保井口与目标位置保持一致,动力定位系统可以实时调整船舶的位置和姿态,减少因波浪和海流引起的位置偏移。
此外,动力定位系统还可以确保钻井平台与油井保持稳定的连接状态,防止钻井过程中发生危险事故。
3. 海上风电场建设和维护随着海上风电场的发展,动力定位系统在海上风电场的建设和维护中扮演着重要角色。
海上风电场的风机需要准确地定位在指定的位置,动力定位系统可以及时调整船舶的位置和姿态,保持风机与电缆的连接稳定。
同时,动力定位系统可以增加风机维修人员的作业舒适性和安全性,减少事故发生的风险。
船舶动力定位概况一、船舶为什么需要“动力定位系统”?长期以来,船舶在近浅海和内陆水域里,人们都是采用抛锚技术来保持船位在水面上相对稳定。
这种定位技术的最大特点就是:锚必须牢固地抓住水下的固定物体(陆基),并且一旦锚通过锚链将船舶的位置固定后,船上的推进设备及其辅助设施和相应的控制系统便停止运行,完全处于停电(电力推进)和停油、停气(柴油机推进)工况。
但是,随着地球上人口的急剧增加,科学技术的飞速发展,人们的生活水平日益提高,世界对能源的需求量越来越大。
陆地上资源的开采和供应日趋极限,甚至出现紧缺的态势。
这就迫使世界各国必须把经济发展的重点转移到海洋上。
因为占地球总面积2/3以上的浩瀚大海里,有极其丰富的海水化学资源、海底矿产资源、海洋大量资源和海洋生物资源。
可以预料,21世纪将是人类全面步入海洋经济的时代,人们对海洋的探索和开发的范围将越来越广,对海洋的探索和开发的手段也越来越先进,对海洋探索和开发的领域由近海浅海日趋向远海深海发展。
目的只有一个,就是将浩瀚大海里的资源开发出来,供人类充分使用。
因而,世界各国便随之研究开发出各式各样的、不同类型的深远海作业的浮式生产系统,诸如半潜式钻井平台、多用途石油钻井平台供应船、科学考察船和海洋资源调查船等等。
这些浮式生产作业系统有一个共同的特点:就是在浩瀚深邃的大海上,能够按照人们的要求将其位置稳定在地球的某个坐标范围里;就像抛锚定位那样,将这些浮动的作业体牢牢地锁定在人们期望的浩瀚深邃的大海的某个位置上。
这便进一步诱发了世界各国对深远海作业的浮式生产系统的定位技术和系泊方式的研究。
在一般的近浅海水深情况下,浮式生产系统的系泊定位主要采用锚泊系统。
但是,随着水深的增加,锚泊系统的抓底力减小,抛锚的困难程度增加。
同时,锚泊系统的锚链长度和强度都要增加,进而使其重量剧增,这必然使海上布链抛锚作业变得更加复杂,其定位功能也会受到很大的限制,定位的效果也不尽人意。
动力定位系统的原理与应用研究动力定位系统(Dynamic Positioning System,简称DP系统)是一种利用船舶自身的动力装置,通过控制船舶的推进器和转向装置,以保持船舶在特定位置或沿特定航线中的姿态和位置的船舶控制技术。
该系统通过引入先进的传感器、计算机和自动控制技术,实现了船舶的自动定位和控制,具有广泛的应用范围,包括海洋工程、油气勘探和海上施工等领域。
本文将围绕动力定位系统的原理和应用进行研究,探讨其工作原理、关键技术以及在不同领域中的应用情况。
动力定位系统的基本原理是通过精密控制船舶的动力装置和转向装置,使船舶能够保持指定的位置或姿态。
系统通过多个传感器,包括全球定位系统(GPS)、惯性导航系统(INS)、罗盘等,获取船舶的姿态和位置信息。
船舶的动力传动系统包含主推进器、侧推进器和横向推进器,通过调整各个推进器的转速和推力,使得船舶能够在海上保持稳定的位置和方向。
此外,动力定位系统还包括中央控制室和自动控制软件,用于处理传感器数据和控制推进器的工作状态。
动力定位系统的关键技术主要包括传感器融合、控制算法和动力装置。
传感器融合是指将不同类型的传感器数据进行融合,通过算法得到更准确的位置和姿态信息。
控制算法则是根据传感器数据和预设目标,通过动态调整推进器的工作状态,使船舶保持稳定的位置和姿态。
动力装置包括主推进器、侧推进器和横向推进器,这些推进器通过电动机、液压系统和传动装置等实现动力输出,并通过控制系统调整输出的推力和转速。
动力定位系统在海洋工程领域有着广泛的应用。
在海底油气勘探和开采过程中,船舶需要靠近井口进行作业,因此精确的定位至关重要。
动力定位系统能够通过控制船舶的位置和姿态,使其保持在井口附近,从而实现安全和高效的作业。
此外,动力定位系统还能够应用于海上风电场建设、海洋石油平台维修等领域,在这些领域中,船舶需要稳定地停留在特定的位置进行作业,而动力定位系统能够实现船舶的准确定位和控制。
第1篇一、前言动力定位系统(Dynamic Positioning System,简称DPS)是一种用于船舶在海上保持预定位置的自动化控制系统。
它通过使用推进器和动力定位计算机,根据船舶的实时位置和外部环境信息,自动调整推进器的输出,使船舶能够在各种海况下保持或移动到指定的位置。
本规程旨在规范动力定位系统的操作流程,确保操作人员能够安全、有效地进行动力定位作业。
二、适用范围本规程适用于所有使用动力定位系统的船舶,包括但不限于油轮、钻井平台、工程船等。
三、操作规程1. 动力定位系统检查(1)在启动动力定位系统前,操作人员应全面检查系统各部分,包括推进器、传感器、控制系统、通信设备等,确保所有设备均处于正常工作状态。
(2)检查动力定位系统的电源、液压系统、控制系统等,确保供电充足、液压系统无泄漏、控制系统运行正常。
(3)检查通信设备,确保与船舶其他系统的通信畅通。
2. 动力定位系统启动(1)启动动力定位系统前,操作人员应确保船舶处于安全状态,并通知船员做好应急准备。
(2)按照动力定位系统的操作手册,依次启动动力定位系统的各个部分,包括推进器、传感器、控制系统等。
(3)启动动力定位计算机,输入船舶的初始位置和目标位置,设置定位精度和速度。
3. 动力定位系统操作(1)在动力定位系统运行过程中,操作人员应密切观察系统状态,包括推进器输出、传感器数据、控制系统指示等。
(2)根据动力定位计算机的指示,调整推进器的输出,使船舶保持在预定位置。
(3)在特殊情况下,如遇到强风、大浪等恶劣海况,操作人员应根据实际情况调整定位精度和速度,确保船舶安全。
4. 动力定位系统维护(1)定期对动力定位系统进行检查和维护,确保系统设备处于良好状态。
(2)定期更换动力定位系统的易损件,如传感器、推进器等。
(3)对动力定位系统的软件进行升级,确保系统性能符合要求。
5. 动力定位系统故障处理(1)在动力定位系统出现故障时,操作人员应立即停止系统运行,并通知相关人员。
船舶动力定位技术简述船舶动力定位技术简介动力定位技术背景随着船舶作业任务的复杂化,动力定位技术逐渐成为船舶自动化控制领域的研究热点。
目前,国际上主要的动力定位系统制造商有___、___、___等。
动力定位控制系统测量系统是指动力定位系统的位置参考系统和传感器。
位置参考系统主要采用DGPS,水声位置参考系统主要选择超短基线或长基线声呐,微波位置参考系统可选择Artemis Mk 4,张紧索位置参考系统可选择LTW Mk,激光位置参考系统可选择Fanbeam Mk 4,雷达位置参考系统可选择RADius 500X。
罗经、风传感器、运动参考单元等同样选择各专业生产厂家的产品。
控制技术动力定位系统的第一代产品采用经典控制理论来设计控制器,通常采用常规的PID控制规律。
第二代动力定位控制方法是以现代控制理论为基础的控制技术-最优控制和卡尔曼滤波理论相结合。
近年来出现的第三代动力定位系统采用了智能控制理论和方法,使动力定位控制进一步向智能化的方向发展。
智能控制方法主要体现在鲁棒控制、模糊控制、非线性模型预测控制等方面。
2001年5月份,挪威的___推出了一项新产品—绿色动力定位系统(Green DP),将非线性模型预测控制技术成功地引入到动力定位系统中。
Green DP控制器由环境补偿器和模型预测控制器组成。
环境补偿器的设计是为了提供一个缓慢变化的推力指令来补偿一般的环境作用力。
模型预测控制器是通过不断求解一个精确的船舶非线性动态数学模型,用以预测船舶的预期行为。
模型预测控制算法的计算比一般用于动力定位传统的控制器设计更加复杂且更为耗时,主要有三个步骤:1.从非线性船舶模型预测运动;2.寻找阶跃响应曲线;3.求解最佳推力。
控制器结构如图所示:在20世纪80年代初期,荷兰的Marin确定了推进器和动力定位的研究计划,并进行了动力定位的模型实验。
这些实验包括推进器和推进器之间的相互作用、推进器和船体之间的相互作用以及环境力和船舶的低频运动等内容。
动力定位系统简介船舶的动力定位系统从70 年代逐渐发展起来,在海洋工程、科学考察等领域有着重要的用途。
随着船舶电力推进的成熟和自动控制理论的发展,动力定位系统的性能也不断提高。
动力定位系统的组成:动力定位系统包括3 个分系统:动力系统、推力器系统和动力定位控制系统。
1.动力系统动力系统一般来说是给整个动力定位系统提供电力的。
一般的船舶电站可兼作动力系统,但应满足一些特殊要求。
输入(船位、控制器推力器; 输出(船位、推力器系统2.推力器系统作为动力定位系统执行部分,常用电动机或柴油机驱动的推进器。
主推进装置(包括其舵系统)可兼作动力定位系统的推力器,在船舶进入动力定位运作模式时,由动力定位系统的控制器进行控制。
为提高定位能力,主推进装置可设计为全回转推进器,例如Z 型推进、SSP 推进等。
一般各推力器的工作组合应产生横向、纵向推力及回转力矩。
3.动力定位控制系统包括控制器和测量系统。
a控制器指的是动力定位系统总的控制部分,一般采用计算机控制的方法。
b测量系统包括位置参照系统、电罗经、风向风速仪、倾角仪等,测量船舶的船位、艏向、纵倾横倾角等船舶状态,以及风向、风力、流速等环境条件,通过接口输入到控制器中。
控制器根据人工输入的船位和艏向,对测量系统提供的数据进行分析和运算,给出推力器的控制指令。
动力定位控制系统执行的功能可总结如下:(1)给出推力器的控制指令。
(2)测量船舶的船位、艏向等船舶状态。
(3)测量风向、风力等环境条件。
(4)接收各种操纵指令的人工输入。
(5)动力定位系统的故障检测及报警。
(6)动力定位系统工作状态的显示。
动力定位系统的系泊试验动力定位系统在进行系泊试验之前,应确认已取得本社颁发的产品证书,并确认布置和安装已严格按本社审批的图纸进行,采用的工艺满足本社有关规定。
动力系统系泊试验动力系统的各组成部分,如发电机、发电机原动机、主配电板等,应满足船舶建造检验的一般要求。
另外还应进行下列检验:a发电机组:一台发电机组不投入运行,并联运行其他发电机组,逐个启动几台功率较大的推力器电动机。
动力定位DP(Dynamically positioned)的定义是一种可以不用锚系而自动保持海上浮动装置的定位方法。
动力定位系统由船位显示仪、电子计算机控制机构和推进器等部件组成。
工作时,电子计算机随时可根据船位仪所测定的船位数值,自动地发出控制信号,改变推进器的运转方向、转速或叶片的螺矩,以调节船位。
有的动力定位系统,还可根据风力的变化,提前发出信号来抵消风力的影响。
采用动力定位的海上浮动装置,在海上钻探作业时不需要抛锚,这不仅减少了复杂的抛锚工序,而且工作的水深亦不受锚系长度的限制,甚至可以在水深大于1000米以上的深度进行工作。
DP3是动力定位的等级,3级是最高的一种.不过各船级设对动力的定位等级的名称描述不全相同,像DNV的就叫的比较另类~~DP3是最高等级的了,冗余多,安全好,一般平台上采用,钻井船的话DP2多点。
动力定位需要接收GPS,,卫星信号,电罗经的信号等信号,并且点罗经要配备多个,还要配备参照设备,并将这些信号送到动力定位系统,然后动力定位系统的计算机根据这些信息计算怎样控制推进器的动作。
动力定位系统设计时要根据船舶的服务海域,假设出船所受的浪高,浪的周期,风速,洋流速,并且要不同角度计算,才能设计出一个合理的动力定位系统。
DP控制系统1 ,一般来说,DP控制系统布置在DP控制站里,在该控制站操作人员可以清楚看到船的外形轮廓及周边区域。
DP控制站应该显示来自动力、推进和DP控制系统的信息,以确保这些系统正常运行。
对安全操作DP系统必需的信息必须一致可见。
其它信息应该基于操作员要求可用。
3 ,特别地,显示系统和DP控制站应该基于声环境学原理。
DP控制系统应该提供控制模式的简单选择,比如手动、操纵杆、或推进的电脑控制,并且应该清楚地显示出现运行的模式。
4,对配备2和3级的,操作控制必须设计为没有单个误操作可能导致临界条件。
5 ,相关接口的系统和/或DP控制系统控制的系统的错误报警必须是声光报警。
动力定位系统研究报告一、综述动力定位系统是一种在船舶、潜艇等舰艇上采用的关键技术,其作用是让船体在激烈环境下保持稳定并能够保持所需的位置。
在海上作业、海洋科学研究中,动力定位系统是一项重要的设备,尤其是在深海勘探、海底油气开发以及大规模海洋建设等方面充分发挥着作用。
本次研究主要是针对动力定位系统做出介绍和分析,探讨动力定位系统的工作原理和应用价值,为相关领域的好奇者和专业人士提供参考以及启示。
二、工作原理动力定位系统是一种利用推进器控制和可调节舵来维持所需位置的系统。
其工作原理是通过推进器、配有受控电动机的可调节舵、全向推进器、动态定位系统和传感器等设备,实现动力与控制的平衡,以保持艇体在所需位置或相对稳定区域内的姿态、位置和运动状态。
此外,动力定位系统还采用了惯性导航系统、GPS导航接收器、声纳和雷达等系统以及压力传感器等传感器技术,通过联网和协调来收集、存储和处理有关气象、流体动力学、船舶状态和运动状态等方面的数据,以维持较高水平的精度和控制能力。
三、应用价值动力定位系统在助航、海洋调查和海底和海面工作中具有广泛的应用。
首先,它能提高作业安全并减少人为误差。
在油田勘探、修井和维护方面,动力定位系统可以帮助平台的稳定和水平管理,让维修工人能够更好地控制下降,以达到快速高效的工作目标。
此外,动力定位系统还是深海勘探的重要工具。
当船只在海上时,这个系统可以帮助确定船只的位置,快速反应海流和不良天气状况,以避免不必要的风险。
而在海底工程领域,包括海底油气管道和电缆维护中,动力定位系统则能够精确地掌握设备位置和深度,以确保相应的作业顺利完成,并有效地解决技术难题。
四、未来发展趋势随着技术的高速发展,未来的动力定位系统将更加智能化、精简化。
例如,全年级向量推进器、新型传感器以及本体规划控制等技术的创新将进一步提高动力定位系统的控制能力和响应速度。
同时,会有很多相关的项目研究,例如使用无人机的智能动力定位系统,据称这对海底油气勘探和无人潜艇探测也有很大帮助。
桥梁施工中的动力定位技术桥梁是连接两个地点的重要交通工具,关乎着人们的安全和便利。
在桥梁施工中,如何准确地定位动力是一项至关重要的技术。
本文将通过探讨桥梁施工中的动力定位技术,以及其在工程中的应用和创新,来说明其重要性和发展趋势。
一、动力定位技术概述动力定位技术是指利用精确的动力控制系统,通过对船舶、工程机械等的位置和姿态进行控制,实现特定位置的准确定位。
在桥梁施工中,动力定位技术可以通过控制工程机械的位置和姿态来准确地定位施工点,保证施工的顺利进行。
二、动力定位技术在桥梁施工中的应用1. 桥墩定位在桥梁施工中,桥墩是非常关键的部分,决定了桥梁的整体结构和稳定性。
动力定位技术可以通过控制工程机械的位置和姿态,使其准确地定位于桥墩的预定位置,避免了传统方法中用大量人力和设备进行调整的繁琐过程。
2. 浮式施工对于大型桥梁的施工中,有时需要使用浮式施工的方式。
动力定位技术可以通过控制浮船的位置和姿态来实现浮式施工的准确定位。
这种方法不仅提高了施工效率,还减少了对环境的影响,为保护生态环境做出了贡献。
3. 施工过程监控桥梁施工过程中,动力定位技术可以实时监控施工机械的位置和姿态,通过传感器和控制系统,对施工过程进行实时数据采集和分析。
这为施工管理人员提供了准确的施工状态信息,能够及时发现和解决施工中的问题,确保施工质量和安全。
三、动力定位技术的发展趋势1. 自主化随着人工智能和自动化技术的不断发展,动力定位技术将越来越趋向于自主化。
未来的动力定位系统将更加智能高效,可以通过人工智能算法进行自主决策和实时调整,极大地提高施工效率和准确度。
2. 高精度定位随着卫星导航技术的发展,动力定位技术将实现更高的定位精度。
将来的动力定位系统将能够实现厘米级的高精度定位,为施工提供更准确的定位服务。
3. 多机协同动力定位技术将与其他相关技术进行深度融合,实现多机协同施工。
通过不同工程机械之间的数据交互和协同作业,实现更高效的施工方式,提升工程质量和效益。
动力定位概述
1. 动力定位系统原理
船舶动力定位系统就是依据所要求的船舶定位或运动指令,根据测量所得船舶的运动信息与环境信息,利用计算机进行复杂的实时计算,控制船舶主副推力装置产生一定推力与力矩,以实现预定的船舶姿态控制、定位控制或运动控制。
船舶在海上除了受到本身推进器的推力以外,还受到风力、波浪与海流的外界作用力,从而产生6个自由度的运动,即纵荡、横荡、升沉、纵摇、横摇与艏遥。
动力定位系统利用位置测量设备测出本身位置的变化,利用各类传感器测出船艏、纵横摇以及风力风向,再采用现代控制理论,建立船舶与推力器的数学模型,并采用多种控制方法,同多对船舶6个自由度运动风量以及风力风向的计算,对船舶各主副推力器的推力进行分配,从而控制船舶3个自由度的运动,即纵荡、横荡与艏摇。
2. 动力定位系统组成
动力定位系统通常包括两大部分:测量控制部分和推力装置部分。
测量控制部分
测量控制部分主要包括:
1) 测量传感器:
DGPS(或其他类型定位系统)-测量船位
电罗经-测量艏向
船舶垂直参考单元-测量船舶的纵摇、横摇与升沉
风向风速仪-测量影响船舶动力的主要干扰力即风力
2) 控制部分:
操作台:其台面上布置有操纵手柄、跟踪球、输入键盘、各种操纵按钮、指示灯与报警灯及显示屏,操纵台内部布置有一台高性能计算机。
控制柜:其内部布置有实时处理计算机、存储器、输入/输出接口、供电模块以及大量接线端子;动力定位系统与位置测量设备、各种传感器以及主副推力器的电气联接均通过控制柜,系统供电也经由本柜。
便携式手操终端
推力装置部分
1) 动力部分:船舶主机、发电机
2) 推力部分:主推进器、舵、辅助推力装置(多用侧推器和全回转推进器)。
3. 动力定位的等级与精度
动力定位等级
国际海事组织IMO根据动力定位系统的功能以及设备冗余度, 将动力定位系统分为三个等级:1级、2级与3级。
中国船级社根据动力定位系统不同的沉余度将动力定位等级DP1、DP2、DP3。
具体要求如下:
1) 1级动力定位系统DP-1:安装有动力定位系统的船舶,可在规定的环境条件下,自动保持船舶的位置和首向,同时还应设有独立的集中手动船位控制和自动艏向控制。
2) 2级动力定位系统DP-2:安装有动力定位系统的船舶,在出现单个故障不包括一个舱室或几个舱室的损失)后,可在规定的环境条件下,在规定的作业范围内自动保持船舶的位置和艏向。
3) 3级动力定位系统DP-3:安装有动力定位系统的船舶,在出现任一故障(包括由于失火或进水造成一个舱室的完全损失)后,可在规定的环境条件下,在规定的作业范围内自动保持船舶的位置和艏向。
动力定位等级精度
动力定位系统的精度,既与相关测量系统(如DGPS)的设备的精度有关系,也与推进器系统相关信号传输的精度有关。
4. 动力定位系统的布置要求
根据中国船级社规定,动力定位系统布置如下表所示:
5. 动力定位控制动能分类
1) 手动移位
2) 自动定位
系统能精确地按指令保持船位;也可以按操作人员的指令自动改变船舶的位置,船舶自动移位的速度可以有操纵人员设定。
3) 自动艏向
4) 自动循迹航行(高速与低速)
系统能使船舶精确的按预定轨迹低速移动、或按预定航线高速航行。
在低速航行模式下,船舶循迹精度,而且可以任意设定各航迹段的航向与船速,使船舶沿纵向、横向或斜向移动,此模式的最高船速取决于船舶与辅助推力装置的设计。
在高速循迹航行模式下,船舶艏向将由系统自动根据航线、船速与外界环境力而计算确定。
在航线转弯处,系统可以自动确定转弯半径与船速,也可以预先设定;在此模式下,侧向推进器通常不参与工作。
5) 自动操舵驾驶
6) 自动跟踪水下目标
7) 自动保持移动速度
8) 任意中心自动回转
9) 其他功能
6. 动力定位控制理论分类
以下分类大概根据其出现年代的顺序。
1. PID控制
以经典的PID控制为基础。
2. LQG控制
Kalman滤波和最优控制相结合形成了线性二次高斯型LQG控制(Linear Quadratic Guass),目前是最常用的控制理论。
3.模型参考自适应控制(DMRAC控制)
4.反步法(Backstepping)
5.模糊控制(Fuzzy Logic Control)
6.神经网络(Neural Network Control)
7. 动力定位厂家简述
⑴. 当前世界上较有名的生产动力定位产品的公司有Kongsberg Simard , Alstom和Nautronix 三家;其中Kongsberg Simard 公司的产品优势占领当前国际船舶动力定位市场。
⑵. 当前世界上生产动力定位产品的公司有:Kongsberg、Alstom 、Nautronix、PRAXIS、NORR、NAVIS、CONVERTEAM、L3 Communication Company、AutoNav 等。