上海市中考数学二模题整理
- 格式:doc
- 大小:184.00 KB
- 文档页数:3
2023学年第二学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1. 下列实数中,有理数是( )A.B.C.D.【答案】B 【解析】【分析】本题主要考查实数的分类及算术平方根,熟练掌握实数的分类及算术平方根是解题的关键;根据实数的分类可进行排除选项.,是无理数;故选B .2. 下列单项式中,与单项式是同类项的是( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查了同类项的定义,根据字母相同,字母的指数也相同的项叫做同类项,进行判断即可.【详解】解:与单项式是同类项的是;故选C .3. 已知直线经过第一、二、四象限,则直线经过( )2=232a b 4ab -322a b 323b a 222a b c-232a b 323b a y kx b +=y bx k +=A. 第一、三、四象限B. 第一、二、四象限C. 第一、二、三象限D. 第二、三、四象限【答案】A 【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:已知直线经过第一、二、四象限,则得到,那么直线经过第一、三、四象限.故选:A .【点睛】此题考查一次函数图象与系数关系.解题关键在于注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm )185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )A. 甲 B. 乙 C. 丙 D. 丁【答案】A 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A .【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.的y kx b =+0,0k b <>y kx b =+x 甲x 丙x 乙x 丁2S 甲2S 乙2S 丙2S 丁5. 如图,的对角线、相交于点,如果添加一个条件使得是矩形,那么下列添加的条件中正确的是( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查了矩形的判定,菱形的判定,根据判定定理逐项判断即可.【详解】∵,∴,∴,∴平行四边形是菱形.则A 不符合题意;∵,∴,∴平行四边形菱形.则B 不符合题意;∵,∴.∵,∴,∴,∴平行四边形是菱形.则C 不符合题意;∵,∴.∵,∴,是 ABCD AC BD O ABCD 90DAO ADO ∠+∠=︒DAC ACD ∠=∠DAC BAC ∠=∠DAB ABC∠=∠90DAO ADO ∠+∠=︒90AOD ∠=︒AC BD ⊥ABCD DAC ACD ∠=∠AD CD =ABCD AB CD ACD BAC ∠=∠DAC BAC ∠=∠ACD DAC ∠=∠AD CD =ABCD AD BC ∥180BAD ABC ∠+∠=︒DAB ABC ∠=∠=90B A D ∠︒∴平行四边形是矩形.则D 正确.故选:D .6. 如图,一个半径为的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是( )A. cmB. cmC. cmD. cm【答案】B 【解析】【分析】本题考查了弧长公式.利用题意得到重物上升的高度为定滑轮中所对应的弧长,然后根据弧长公式计算即可.【详解】解:根据题意,重物上升的高度为.故选:B .二、填空题(本大题共12题,每题4分,满分48分)7.的解是________.【答案】【解析】【分析】根据一元二次方程和二次根式的性质求解即可;【详解】,∴,∴,∴,∵,ABCD 9cm 120︒5π6π7π8π120︒()12096cm 180ππ⨯⨯==x 1x ==x 221x x -=()210x -=121x x ==210x -≥∴,∴;故答案是.【点睛】本题主要考查了一元二次方程的求解和二次根式的性质,准确计算是解题的关键.8. 不等式组的解集是________.【答案】【解析】【分析】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.详解】解:,解①得:,解②得:,∴不等式组的解集是.9. 方程组的解是__________.【答案】或【解析】【分析】本题考查解二元二次方程组,一元二次方程,代入消元法,将方程组先转化为一元二次方程,再进行求解即可.【详解】解:由②得:③;把③代入①,得:,解得:,∴,∴方程组的解为:或;【12x ≥1x =1x =()2133231x x x ->⎧⎨-->⎩2x >()2133231x x x ->⎧⎪⎨-->⎪⎩①②2x >5x >-2x >22520x y x y ⎧+=⎨-=⎩21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩22520x y x y ⎧+=⎨-=⎩①②2x y =()2225y y +=1y =±22x y ==±21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩故答案为:或10. 关于的一元二次方程根的情况是:原方程______实数根.【答案】有两个不相等的【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根,据此求解即可.【详解】解:由题意得,,∴原方程有两个不相等的实数根,故答案为:有两个不相等的.11. 如果二次函数的图像的一部分是上升的,那么的取值范围是____________.【答案】【解析】【分析】本题主要考查二次函数的性质,掌握二次函数的性质是解题的关键.根据函数解析式可得抛物线开口向上,则当在对称轴右侧时,函数图像上升,所以求出函数的对称轴即可求解.【详解】解:,又抛物线开口向上,当时,随的增大而减小,图像下降;当时,随的增大而增大,图像上升;二次函数的图像的一部分是上升的,,故答案为:.12. 如果反比例函数的图像经过点,那么的值是______.【答案】【解析】【分析】本题考查反比例函数图像上的点,将点代入函数解析式,求解即可.【详解】解:由题意,得:,21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩x 210x mx --=()200ax bx c a ++=≠240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-()()2241140m m ∆=--⨯⨯-=+>2241y x x =-+x 1x ≥x ()22241211y x x x =-+=--∴1x <y x 1x ≥y x 2241yx x =-+∴1x ≥1x ≥4y x=-(,2)A t t -t (,2)A t t -()24t t ⋅-=-解得:;故答案为:.13. 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是_______.【答案】【解析】【分析】根据构成三角形的条件:两边之和大于第三边,两边之差小于第三边进行判断即可.【详解】∵从长度分别为2、4、6、7的四条线段中随机抽取三条线段∴可能有:2、4、6;2、6、7;4、6、7;2、4、7四种可能性又∵构成三角形的条件:两边之和大于第三边,两边之差小于第三边∴符合条件的有:2、6、7;4、6、7两种故概率为:故答案为:【点睛】本题考查构成三角形的条件以及概率的计算,掌握构成三角形的三边之间的关系是解题关键.14. 小杰沿着坡比的斜坡,从坡底向上步行了米,那么他上升的高度是______米.【答案】【解析】【分析】本题考查了解直角三角形的应用,解题的关键是掌握坡比的定义.设坡度的高为米,根据勾股定理列方程求解.【详解】解:设坡度的高为米,则水平距离为米,,解得:,故答案为:.15. 某校为了了解学生家长对孩子用手机的态度问题,随机抽取了名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这名家长的问卷真实有效),将这份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有名学生,那么可以估计该校对手机持“严格管理”态度的家长____人.t =1221=42121:2.4i =13050x x 2.4x ∴()2222.4130x x +=50x =501001*********【答案】【解析】【分析】本题考查了条形统计图,扇形统计图,用样本估计总体,解题的关键是数形结合.先根据条形统计图计算出稍加询问的百分比,进而结合扇形统计图求出严格管理的百分比,最后利用样本估计总体即可求解.【详解】解:稍加询问的百分比:,严格管理的百分比:,持“严格管理”态度家长人数:(人),故答案为:.16. 如图,梯形中, ,,平分,如果,,,那么是_______(用向量、表示). 【答案】【解析】【分析】本题主要考查了角平分线的定义,平行线的性质,向量的运算,解题的关键是熟练掌握这些知识.根据角平分线的定义,平行线的性质,推出,结合,可得,最后根据,即可求解.【详解】解:设,的400551000.5555%÷==155%25%20%--=200020%400⨯=400ABCD BC AD ∥AB CD =AC BAD ∠2=AD AB AB a = AD b = AC a b12a b +AB BC =2AD BC =12BC AD =12AC AB BC a AD =+=+BAC α∠=平分,,,,,,,,,,故答案为:.17. 如图,在中,,. 已知点是边的中点,将沿直线翻折,点落在点处,联结,那么的长是_______.【解析】【分析】本题考查勾股定理与折叠问题,平行线分线段成比例,如图,为点关于的对称点,过点作,过点作,则,联结,可知,得,进而根据勾股定理可得,,得结合,,可知,再根据勾股定理即可求解,根据折叠的性质得是解决问题的关键.【详解】解:如图,为点关于的对称点,过点作,过点作,则,联结,∴,AC BAD ∠∴BAC CAD α∠=∠= BC AD ∥∴BCA DAC α∠=∠=∴BCA BAC ∠=∠∴AB BC = 2=AD AB ∴2AD BC =∴12BC AD =∴1122AC AB BC a AD a b =+=+=+ 12a b +ABC 6AB AC ==4BC =D AC ABC BD C E AE AE E C BD A AM BC ⊥D DN BC ⊥AM DN ∥AE 1AD MNCD CN==1CN MN ==DN =BD =1122BCD S BC DN BD OC =⋅=⋅△2CE OC ==DE DC =AD CD =AE CE ⊥AE CE ⊥E C BD A AM BC ⊥D DN BC ⊥AM DN ∥AE 122BM CM BC ===∵点是边的中点,即,∴,则为的中点,即,∴,,∵为点关于的对称点,∴,且,,则,∴,则∵,,∴,,又∵,∴,即,∴.18. 如图,点是函数图象上一点,连接交函数图象于点,点是轴负半轴上一点,且,连接,那么的面积是_______.【答案】##【解析】D AC 132AD CD AC ===1ADMNCD CN==N CM 1CN MN==DN ==BD ==E C BD CE BD ⊥OC OE =DE DC =1122BCD S BC DN BD OC =⋅=⋅△DN BC OC BD ⋅===2CE OC ==DE DC =AD CD =DAE DEA ∠=∠DEC DCE ∠=∠180DAE DEA DEC DCE ∠+∠+∠+∠=︒90DEA DEC ∠+∠=︒AE CE ⊥AE ==A 8(0)y x x =-<OA 1(0)y x x=-<B C x AC AO =BC ABC 8-8-【分析】过点,分别作轴的垂线,垂足分别为,,反比例函数比例系数的几何意义得,,证得,由此得,证得 ,然后根据等腰三角形的性质得,则,由此得得,进而可得的面积.【详解】解:过点,分别作轴的垂线,垂足分别为,,如下图所示:点是函数图象上一点,点是反比例函数图象上的点,根据反比例函数比例系数的几何意义得:,,轴,轴,,,,,,,即,,,,轴,,,A B x D E 4OAD S = 0.5OBE S = OAD OBE ∽2()OAD OBE S OA SOB= OA =1)ABC OBC S S = 28AOC OAD S S == 8ABC OBC S S += OBC S = ABC A B x D E A 8(0)y x x =-<B 1(0)y x x=-<1842OAD S =⨯= 110.52OBE S =⨯= AD x ⊥ BE x ⊥AD BE ∴∥OAD OBE ∴ ∽∴2OAD OBE S OA S OB ⎛⎫= ⎪⎝⎭∴2480.5OA OB ⎛⎫== ⎪⎝⎭OA ∴=1)AB OA OB OB OB ∴=-=-=-1AB OB = 1ABC OBC S AB S OB==- ()1ABC OBC S S ∴= AC AO = AD x ⊥OD CD ∴=28AOC OAD S S ∴==,即,.故答案为:.【点睛】此题主要考查了反比例函数比例系数的几何意义,相似三角形的判定和性质,理解反比例函数比例系数的几何意义,熟练掌握相似三角形的判定和性质是解决问题的关键.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19..【答案】【解析】【分析】本题考查了实数的混合运算,解题的关键是掌握实数的混合运算法则.先计算零指数幂、化简二次根式、绝对值,再算加减即可.【详解】解:原式.20.解方程:【答案】【解析】【分析】本题考查了解分式方程和解一元二次方程,解题的关键是熟练掌握解分式方程和解一元二次方程的方法和步骤.先去分母,将分式方程化为整式方程,再进行求解即可.详解】解:,,,【8ABC OBC S S ∴+= 1)8OBC OBC S S -+= OBC S ∴= 8ABC AOC OBC S S S ∴=-=- 8-10212π---21)1=--+11=+2=22161242x x x x +-=--+5x =-22161242x x x x +-=--+()22162x x +-=-244162x x x ++-=-,,,,检验,当时,,∴是原方程的解,当时,,∴不是原方程的解.21. 如图,和⊙相交于点、,连接、、,已知,,.(1)求的半径长;(2)试判断以为直径的是否经过点,并说明理由.【答案】(1)(2)以为直径的经过点,见解析【解析】【分析】本题主要考查了圆的相关性质,相似三角形的判定与性质,线段垂直平分线的性质等知识,解题的关键是灵活运用这些知识.(1)连接,设与的交点为,根据题意可得,,在中,根据勾股定理求出,进而求出,在中,根据勾股定理求出,即可求解;(2)根据题意并结合(1)可得,可证明,得到23100x x +-=()()520x x +-=50,20x x +=-=115,2x x =-=5x =-240x -≠5x =-2x =240x -=2x =1O 2O A B AB 12O O 2AO 48AB =1250O O =230AO =1O 12O O P B 4012O O P B 1AO 12O O AB G 1242AG AB ==12O O AB ⊥2Rt AGO 2GO 1GO 1Rt AGO 1AO 22122AO GO O O AO =122O AO AGO ∽,取的中点,连接、,推出,结合垂直平分,即可求解.【小问1详解】解:连接,设与的交点为.和⊙相交于点、,,,,在中,,;,在中,,;即的半径长为;【小问2详解】以为直径的经过点.,,,又,,,取的中点,连接、,,12290O AO AGO ∠=∠=︒12O O P AP BP 1AP PO =12O O AB 1AO 12O O AB G 1O 2O A B 48AB =∴1242AG AB ==12O O AB ⊥2Rt AGO 290AGO ∠=︒∴218GO ===∴1122501832GO O O GO =-=-=1Rt AGO 190AGO ∠=︒∴140AO ===1O 4012O O P B 212303505AO O O ==22183305GO AO ==∴22122AO GO O O AO =212AO O O A G ∠=∠∴122O AO AGO ∽∴12290O AO AGO ∠=∠=︒12O O P AP BP ∴1AP PO =又垂直平分,,以为直径的经过点.22. A 市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送名学生到比赛场地参加运动会,每辆小汽车限坐人(不包括司机),其中一辆小汽车在距离比赛场地千米的地方出现故障,此时离截止进场的时刻还有分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时千米,人步行的平均速度是每小时千米(上、下车时间忽略不计).(1)如果该小汽车先送名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由.【答案】(1)不能,见解析(2)见解析【解析】【分析】本题主要考查一元一次方程的应用,解题的关键是理解题意;(1)根据题意分别求出单程送达比赛场地的时间和另外送4名学生的时间,进而问题可求解;(2)设汽车与另外名学生相遇所用时间为小时,根据题意可得,进而求解即可.【小问1详解】解:他们不能在截止进场的时刻前到达比赛场地.∵单程送达比赛场地的时间是:(小时)(分钟);∴送完另名学生的时间是:(分钟)(分钟);∴他们不能在截止进场的时刻前到达比赛场地.【小问2详解】解:先将名学生用车送达比赛场地,另外名学生同时步行前往比赛场地,汽车到比赛场地后返回到与另外名学生的相遇处再载他们到比赛场地.(用这种方案送这名学生到达比赛场地共需时间约为分钟).理由如下:先将名学生用车送达比赛场地的时间是:(小时)(分钟),12O O AB 1BP AP PO ==∴12O O P B 84154260544t 56015 1.25t t +=-15600.25÷=15=415345⨯=42>444840.4415600.25÷=15=此时另外名学生步行路程是:(千米);设汽车与另外名学生相遇所用时间为小时.则;解得(小时)(分钟);从相遇处返回比赛场地所需的时间也是(分钟);所以,送这名学生到达比赛场地共需时间为:(分钟);又;所以,用这种方案送这名学生能在截止进场的时刻前到达比赛场地.23. 如图,在菱形中,点、、、分别在边、、、上,,,.(1)求证:;(2)分别连接、,求证:四边形是等腰梯形.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查了菱形的性质,等腰梯形的判定(1)连结,可得,,进而即可得到结论;(2)欲证明四边形是等腰梯形,只需推知,,即可.【小问1详解】证明:连结.450.25 1.25⨯=4t 56015 1.25t t +=-1152t =16513=16513816515240.413+⨯≈40.442<8ABCD E G H F AB BC CD DA AE AF =CG CH =CG AE ≠EF GH ∥EG FH EGHF BD AE AF AB AD =CG CH CB CD=EGHF EF GH ≠EF GH ∥EG FH =BD∵四边形是菱形,∴;又,,∴,;∴,;∴.【小问2详解】证明:连接∵,∴;∵,∴;又,∴;又,∴四边形是梯形;∵,即;又∵,即;∵四边形是菱形,ABCD AB AD BC CD ===AE AF =CG CH =AE AF AB AD=CG CH CB CD =EF BD ∥GH BD ∥EF GH ∥,EG FHEF BD ∥EF AE BD AB=GH BD ∥GH CG BD BC =CG AE ≠EF GH ≠EF GH ∥EGHF AB AE AD AF -=-BE DF =BC CG CD CH -=-BG DH =ABCD∴;∴;∴;∴梯形是等腰梯形.24. 如图,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点.(1)求该抛物线的表达式及点的坐标;(2)已知点,联结,过点作,垂足为,点是轴上的动点,分别联结、,以、为边作平行四边形.① 当时,且的顶点正好落在轴上,求点的坐标;② 当时,且点在运动过程中存在唯一的位置,使得是矩形,求的值.【答案】(1);点 (2)①;②的值为或【解析】【分析】(1)把点A 的坐标代入表达式求出a 的值即可得到函数表达式,进而根据对称性求出点B 的坐标;(2)①在中,,则;得到;过点作,垂足为.在中,,;证明四边形是矩形,则;即可得到答案;②根据m 的取值分三种情况分别进行解答即可.【小问1详解】解:把代入,得,B D ∠=∠()SAS BGE DHF ≅ EG FH =EGHF xOy 244(0)y ax ax a =-+>x (1,0)A B yC B (0,)M m BC M MG BC ⊥GD x GD MD GD MD GDMN 32m =GDMN N y D 0m ≥D GDMN m 2416433y x x =-+(3,0)B 6(,0)5D m 037Rt CGM △90CGM ∠=︒cos CG MCG CM ∠=54cos 225CG CM MCG =⋅∠=⨯=G GH OC ⊥H Rt CGH △90CHG ∠=︒36sin 255GH CG HCG =⋅∠=⨯=GDOH 65OD GH ==(1,0)A 244(0)y ax ax a =-+>440a a -+=解得;∴抛物线的表达式为;∵抛物线的对称轴是直线,抛物线与轴交于点和点,∴点.【小问2详解】①由题意,得,,∴;∵四边形是平行四边形,∴;又点在轴上,∴,∴,在中,,∴,∴,;在中,,∴;∴;过点作,垂足为.43a =2416433y x x =-+1632423x -=-=⨯244(0)y ax ax a =-+>x (1,0)A B (3,0)B (0,4)C 3(0,)2M 52CM =GDMN GD NM ∥N y NM OD ⊥GD OD ⊥Rt BOC 90BOC ∠=︒5BC ==4cos 5OC OCB BC ∠==3sin 5OB OCB BC ∠==Rt CGM △90CGM ∠=︒cos CG MCG CM∠=54cos 225CG CM MCG =⋅∠=⨯=G GH OC ⊥H在中,,;∵,∴四边形是矩形,∴;∴.②当时,根据不同取值分三种情况讨论: 当时,即点与点重合时,符合题意;当时,如图情况符合题意,取的中点P ,以为直径作圆P ,则在圆上,此时圆P 和x 轴有唯一切点D ,符合题设条件,则,∵,由①知, ,则,则,∵,,∴,解得;当时,可得,所以符合题意的不存在;综合、、,符合题意的的值为或.【点睛】此题考查了二次函数的综合题,考查了解直角三角形,切线的性质、勾股定理、矩形的判定和性质、平行四边形的性质等知识,分类讨论是解题的关键.25. 如图,在扇形中,,,点、是弧上的动点(点在点的上方,点不与点重合,点不与点重合),且.Rt CGH △90CHG ∠=︒36sin 255GH CG HCG =⋅∠=⨯=90GDO DOH GHO ∠=∠=∠=︒GDOH 65OD GH ==6(,0)5D 0m ≥m i 0m =M O ii 04m <<MG MG ,N D OH PD PM ==()3sin 425MG MC OCB m PM =⋅∠=-=CMG OCB ∠=∠sin sin CMG OCB ∠=∠()9sin 450MH PM OCB m =∠=-OH MH OM MH m =+=+PM OH =93(4)(4)5010m m m -+=-37m =iii 4m ≥OH PM >m i ii iii m 037OAB OA OB ==90AOB ∠=︒C D AB C D C A D B 45COD ∠=︒(1)①请直接写出弧、弧和弧之间的数量关系;②分别连接、和,试比较和的大小关系,并证明你的结论;(2)分别交、于点、.①当点在弧上运动过程中,的值是否变化,若变化请说明理由;若不变,请求的值;②当时,求圆心角的正切值.【答案】(1)①;②,证明见解析;(2)①的值不变,;②或.【解析】【分析】(1)①根据“同圆或等圆中,相等的圆心角所对的弧相等”即可得到答案;②在弧上取点连接,使得,可得,根据角的和差关系可得,则,即可得到答案;(2)①证明,即可得到答案;②过点在下方作,截取,连接、,证得,可得,进一步证得,则可得,由勾股定理和线段的和差关系可得,联立解得,过点N 作于点F ,则,利用勾股定理求得,,根据正切的概念计算即可.【小问1详解】解:①,,,;②.证明如下:AC CD BD AC CD BD AC BD +CD AB OC OD M N C AB AN BM ⋅AN BM ⋅5MN =DOB ∠ AC C BD D +=AC BD CD +>AN BM ⋅72AN BM ⋅=1tan 3DOB =∠1tan 2DOB ∠=CD E OE COE AOC ∠=∠AC CE =DOE BOD ∠=∠BD DE =BMO AON ∽△△O OB BOM AOM ∠=∠'OM OM '=BM 'NM '()SAS OBM OAM ' ≌90NBM OBA OBM '∠=∠+∠='︒()SAS ONM OMN ' ≌22225MN AM BN ==+7AM BN +=BN NF OB ⊥NF BF =NF OF 90AOB ∠=︒Q 45COD ∠=︒904545AOC BOD AOB COD ∴∠+∠=∠-∠=︒-︒=︒ D B AC C D +∴=AC BD CD +>在弧上取点连接,使得,;、可得;,,;;.【小问2详解】解:①的值不变,.,,;,,;;;.②如图,CD E OE COE AOC ∠=∠∴AC CE =CE DE CE DE CD +> 45COE DOE ∠+∠=︒∴904545AOC BOD ∠+∠=︒-︒=︒∴DOE BOD ∠=∠∴BD DE =∴AC BD CD +>AN BM ⋅72AN BM ⋅= OA OB =90AOB ∠=︒∴45OAB OBA ∠=∠=︒ 45OMB OAB AOM AOM ∠=∠+∠=︒+∠45AON COD AOM AOM ∠=∠+∠=︒+∠∴OMB AON ∠=∠∴BMO AON ∽△△∴BM BO AO AN=∴72AN BM AO BO ⋅=⋅==过点在下方作,截取,连接、,,,,,;又,,,,;,;解得或;过点N 作于点F ,则,,,,设,则,当时,在中,,即,解得:O OB BOM AOM ∠=∠'OM OM '=BM 'NM ' AO BO =∴()SAS OBM OAM ' ≌∴BM AM '=45OBM OAB ∠=∠='︒∴90NBM OBA OBM '∠=∠+∠='︒45M ON COD ∠=︒=∠'ON ON =∴()SAS ONM OMN ' ≌∴M N MN '=∴222222MN M N BM BN AM BN =='+=+' 551257AM BN AB MN +=-=-==-=2225AM BN +=3BN =4BN =NF OB ⊥90NFB ∠=︒45ABO ∠=︒ 45BNF ∴∠=︒NF BF ∴=BF x =OF x =3BN =Rt NFB △222BF NF BN +=229x x +=x =OF ∴==;当时,在中,,即,解得:,.【点睛】本题考查了弧、弦、圆心角的关系,全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形,熟练掌握知识点并灵活运用是解题的关键.1tan 3NF O O F D B ∴==∠=4BN =Rt NFB △222BF NF BN +=2216x x +=x=OF ∴==1tan 2NF O O D F B ===∠∴。
专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形二、填空题5.(2023·上海黄浦A的对应点是点6.(2023·上海静安处,点A落在点7.(2023·上海金山·统考二模)已知线段AC上,如果点E关于直线8.(2023·上海闵行三角形为特征三角形.9.(2023·上海浦东新·于点F.如果2AD AB=10.(2023·上海徐汇·统考二模)如图,抛物线“月牙线”,抛物线1C和抛物线=,那么抛物线果BD CD11.(2023·上海宝山·统考二模)13.(2023·上海闵行·统考二模)如图,在菱形ABCD 中,6AB =,80A ∠=︒,如果将菱形ABCD 绕着点D 逆时针旋转后,点A 恰好落在菱形ABCD 的初始边AB 上的点E 处,那么点E 到直线BD 的距离为___________.14.(2023·上海嘉定·统考二模)如图,在Rt ABC 中,90C ∠=︒,4AC =,2BC =,点D 、E 分别是边BC 、BA 的中点,连接DE .将BDE 绕点B 顺时针方向旋转,点D 、E 的对应点分别是点1D 、1E .如果点1E 落在线段AC 上,那么线段1CD =____.三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点()1,0A 、点()3,0B ,与y 轴交于点C ,连接BC ,点P 在线段BC 上,设点P 的横坐标为m .(1)求直线BC 的表达式;(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.17.(2023·上海徐汇·统考二模)如图,已知抛物线2y x bx c =++经过点()2,7A -,与x 轴交于点B 、()5,0C .(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于x 轴的上方,将BCE 沿直线BE 翻折,如果点C 的对应点F 恰好落在抛物线的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点Q 是抛物线上位于第四象限内的点,当CPQ 为等边三角形时,求直线BQ 的表达式.18.(2023·上海松江·统考二模)在平面直角坐标系xOy 中(如图),已知直线2y x =-+与y 轴交于点A ,抛物线()21(0)y x t t =-->的顶点为B .(1)若抛物线经过点A ,求抛物线解析式;(2)将线段OB 绕点B 顺时针旋转90︒,点O 落在点C 处,如果点C 在抛物线上,求点C 的坐标;(3)设抛物线的对称轴与直线2y x =-+交于点D ,且点D 位于x 轴上方,如果45BOD ∠=︒,求t 的值.专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆【答案】D【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【详解】解:等边三角形有3条对称轴,菱形有2条对称轴,等腰梯形有1条对称轴,圆形有无数条对称轴,圆的对称轴条数最多,故选:D.【点睛】此题主要考查如何确定轴对称图形的对称轴条数及位置,解题的关键是掌握轴对称的概念.2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形【答案】C【分析】根据轴对称图形的定义、中心对称图形的定义逐项判断即可.【详解】A选项:等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B选项:等腰梯形是轴对称图形,不是中心对称图形.故本选项不合题意;C选项:矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D选项:正五边形是轴对称图形,不是中心对称图形,故本选项不合题意.故选C.【点睛】本题考查轴对称图形、中心对称图形,理解定义,会根据定义判断轴对称图形和中心对称图形是解答的关键.二、填空题在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.116OG BG BC ===⨯=在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.∴11622OG BG BC ===⨯【答案】20【分析】根据旋转可得根据AA B '∠【详解】解:∵∴180ACB ∠=∵将ABC 绕点∴30B A C BAC ∠=∠=''︒,∴(11802CAA CA A ''∠=∠=︒∴AA B CA A B A C '''''∠=∠-∠故答案为:20︒.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等知识,掌握旋转的性质是关键.A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是()20-,,那么点1B 的坐标是________.【答案】()12,【分析】各对应点之间的关系是横坐标减3,纵坐标加3,那么让点B 的横坐标减3,纵坐标加3即为点1B 的坐标.【详解】解:∵()13A -,平移后对应点1A 的坐标为()20-,,∴A 点的平移方法是:先向左平移3个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴()41B -,平移后的坐标是:()4313--+,即()12,.故答案为:()12,.【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.6.(2023·上海静安·统考二模)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是______.【答案】108︒/108度【分析】设A x ∠=,由AB AC =,BE BF =得ABC C ∠∠=,BEF BFE ∠∠=,再由旋转的性质得DEB C ABC DBE ∠∠∠∠===,BE BC =,从而有CBE A x ∠∠==,同理可证:EBF A x ∠∠==,利用三角形的内角和定理构造方程即可求解.【详解】解:设A x ∠=,∵AB AC =,BE BF =,∴ABC C ∠∠=,BEF BFE ∠∠=,∵将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,∴DEB C ABC DBE ∠∠∠∠===,BE BC =,∵180BEC C CBE ABC C A ∠∠∠∠∠∠++=++=︒,∴CBE A x ∠∠==,同理可证:EBF A x ∠∠==,【点睛】本题考查解直角三角形,轴对称的性质,掌握垂线段最短是解题的关键.8.(2023·上海闵行·统考二模)阅读理解:如果一个三角形中有两个内角三角形为特征三角形.问题解决:如图,在ABC 中,【答案】253【分析】由题意可分:,A B βα∠=∠=,过点∴A ADC ∠=∠,∵4tan 3A =,∴4tan 3ADC ∠=,∵ABC 是特征三角形,即∴2ABE ABC ∠=∠,∴BC 平分ABE ∠,【答案】35【分析】通过证明AEF △得出边之间的关系,即可求解.【详解】解:∵2=AD AB ∴设,2AB a AD a ==,【点睛】本题主要考查了矩形的折叠问题,以及解直角三角形的方法和步骤.10.(2023·上海徐汇·统考二模)如图,抛物线则tan tan DAC ∠=∠∴t n a CD DAC AC ∠==∴165CD =∴1695BD =-=;作DE AB ⊥于E ,则∵AD AD =,∴Rt △∵,90ACB ∠=︒,设BD x =,则CD DE =【答案】3372-【分析】利用含30度角的直角三角形的性质,分别求出出90DBE ∠=︒,在Rt【答案】3【分析】如图,旋转、菱形的性质可知,180ADE DEA ∠=︒-∠-∠由旋转、菱形的性质可知,∴80DEA A ∠=∠=︒,ABD ∠∴180ADE DEA ∠=︒-∠-∠【答案】355【分析】根据勾股定理求得AB ,根据旋转的性质得出根据相似三角形的性质即可求解.设旋转角为α,∴11ABE CBD ∠=∠,旋转,∴115,1BE BE BD BD ====,三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点(1)求直线BC 的表达式;(2)如果以P 为顶点的新抛物线经过原点,且与①求新抛物线的表达式(用含②过点P 向x 轴作垂线,交原抛物线于点【答案】(1)3y x =-+(2)①()2233m y x m m m-=--+,【分析】(1)先利用待定系数法求出抛物线解析式,进而求出点式即可;(2)①先求出()3P m m -+,,设新抛物线解析式为抛物线解析式,再根据点P 在线段称时,当四边形AEDP 关于PE 【详解】(1)解:把()1,0A 、B ∴13a c =⎧⎨=⎩,∴抛物线解析式为24y x x =-+在243y x x =-+中,令0x =,则∴()0,3C ;设直线BC 的解析式为y kx b =+∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线BC 的解析式为y x =-+(2)解:①∵点P 在线段BC【点睛】本题主要考查了待定系数法求二次函数解析式,轴对称的性质,求一次函数解析式等等,灵活运用所学知识是解题的关键.16.(2023·上海松江·统考二模)如图,(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.【答案】(1)见解析(2)24(3)97OF =或95OF =.【分析】(1)如图:连接,OC O C ',先根据圆的性质和对称的性质说明OAO ' 是等边三角形,明60COO BOC '∠=∠=︒即可证明结论;(2)设圆O 的半径为2a ,则2O A OA a '==,如图:作ON AD ⊥于N ;先根据对称的性质和等腰三角形的性质可得,30120ODA OAD AOD ︒︒∠=∠=∠=,然后解直角三角形可得()232O D a '=-、EF OE ==∵点O '恰好落在半圆O 上,∴OO OA '=,∵点O '与点O 关于直线AC 对称∴AO OA CO CO ==='',O AC '∠∵,30OA OD OAD =∠=︒,∴,30120ODA OAD AOD ︒∠=∠=∠=在Rt AON △中,sin 30ON OA =⋅︒∵ON AD ⊥,∴FN FM=∴1212AFD OFA AD FM S AD S AO AO FN ⨯==⨯ ,又∵AFD S DF S OF = ,∴FN FM =,∴1212AFD OFA AD FM S AD S AO AO FN ∆∆⨯==⨯,又∵AFD OFA S DF S OF ∆∆=,(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点式.【答案】(1)245y x x =--,顶点坐标为:(2)点E 的坐标为()2,3;(3)直线BQ 的函数表达式为【分析】(1)利用待定系数法求解抛物线的解析式,再化为顶点式,即可得到顶点坐标;(2)先求解抛物线与x 轴交于轴与x 轴交于点H ,则H 点的坐标为2233FH FB BH =-=,(3)连接CF ,证明FCB 于点K ,可得点K 的坐标为【详解】(1)解:∵抛物线∵抛物线与x 轴交于(1,0B -∴6BC =,抛物线的对称轴为直线设抛物线的对称轴与x 轴交于点由翻折得6CB FB ==,由勾股定理,得FH FB =∴点F 的坐标为()2,33,∴60FBH ∠=︒,∴CP CQ =,CB CF =,∠∴FCP BCQ ∠=∠,∴BCQ FCP ≌,∴CBQ CFH ∠=∠,∵BCF △为等边三角形,∴30CFH CBQ ∠=︒=∠,设BP 与x 轴相交于点K ,∴3tan 303OK OB =︒= .(1)若抛物线经过点A ,求抛物线解析式;∵旋转,∴,90OB OC OBC =∠=∴BEO OBC BDC ∠=∠=∠∴90OBE CBD ∠=︒-∠由2y x =-+,令0y =,得∴2OA OH ==,AH =∴OAH △是等腰直角三角形∵BD y ∥轴,。
2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.在下列图形中,为中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正五边形 D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合; 是中心对称图形的只有B . 故选B .2.下列方程有实数根的是A .4x 20+=B 1=−C .2x +2x −1=0D .x 1x 1x 1=−− 【答案】C【详解】A .∵x4>0,∴x4+2=0B .,无解,故本选项不符合题意;C .∵x2+2x−1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1xx −=11x −,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA +=( ) A .AB ; B .BA ;C .0;D .0.【答案】C【分析】根据零向量的定义即可判断. 【详解】AB BA +=0. 故选C .4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7 B .5<OB <7C .4<OB <9D .2<OB <7【答案】A【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D , ∴AD OP ⊥,∵∠POQ=30°,⊙A 半径长为2,即2AD =, ∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+−=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<. 故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分) 7.分解因式:2218m −= .【答案】()()233m m +−/()()233m m −+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m −=2(m2-9) =2(m+3)(m -3).故答案为:2(m+3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 8.x −的解是 . 【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验. 【详解】把方程两边平方得x+2=x2, 整理得(x ﹣2)(x+1)=0, 解得:x =2或﹣1,经检验,x =﹣1是原方程的解. 故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根. 9.函数y =x 的取值范围是 . 【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨−≠⎩,解得:0x ≥且2x ≠, 故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b ==,那么BG = (用a b 、表示). 【答案】23a b−+. 【详解】试题分析: ∵在△ABC 中,点G 是重心,AD b =,∴23AG b=,又∵BG AG AB =−,AB a =,∴2233BG b a a b =−=−+;故答案为23a b −+.考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是 . 【答案】13【详解】解: 列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程2234404x x x x+−+=−中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是 .【答案】2430y y ++=【分析】先把方程整理出含有x2-4x 的形式,然后换成y 再去分母即可得解. 【详解】方程2234404x x x x +−+=−可变形为x2-4x+214x x −+4=0,因为24y x x =−,所以340y y ++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是 . 【答案】7r >/7r <【分析】由题意,⊙O1与⊙O2内含,则可知两圆圆心距d r r <−小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r−>,解得7r>.故答案为:7r>.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x,那么可列方程是.【答案】100(1+x)2=200【分析】根据题意,设平均每月的增长率为x,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x的一元二次方程.故答案为:100(1+x)2=200【详解】设平均每月的增长率为x,根据题意可得:100(1+x)2=200.故答案为:100(1+x)2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD中,已知AB=4,∠B:∠C=1:2,那么BD的长是.【答案】【分析】根据题意画出示意图(见详解),由菱形的性质可得BO=12BD,BD⊥AC,在Rt△ABO中,由cos∠ABO即可求得BO,继而得到BD的长.【详解】解:如图,∵四边形ABCD为菱形,∴AB CD∥,∴∠ABC+∠BCD=180°,∵∠ABC:∠BCD=1:2,∴∠ABC=60°,∴∠ABD=12∠ABC=30°,BO=12BD,BD⊥AC.在Rt△ABO中,cos∠ABO=BOAB=,∴BO=AB⋅cos∠ABO=4×=∴BD=2BO=故答案为:【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC = .【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD 中,10AB =,12BC =,5CD =,3tan 4B =,那么边AD 的长为 .【答案】9【分析】连接AC ,作AE BC ⊥交BC 于E 点,由3tan 4B =,10AB =,可得AE=6,BE=8,并求出AC 的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果. 【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点, 3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB+=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8, 又12BC =,∴CE=BC -BE=4,∴AC ==作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又5CD =,∴同理可得DF=3,CF=4,∴6AF ==,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt∆ABC中,∠ACB=90°,BC=4,AC=3,⊙O是以BC为直径的圆,如果⊙O与⊙A相切,那么⊙A的半径长为.2=+可得结论;【分析】分两种情况:①如图,A与O内切,连接AO并延长交A于E,根据AE AO OE=−可得结论.②如图,A与O外切时,连接AO交A于E,同理根据AE OA OE【详解】解:有两种情况,分类讨论如下:①如图1,A与O内切时,连接AO并延长交O于E,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒,根据勾股定理得:OA ,2AE OA OE ∴=+;即A 2;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得2AE AO OE =−,即A 2,综上,A 22.2.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()202201cot 453sin 30π−−︒+−−︒ .【答案】【分析】先化简各式,然后再进行计算即可解答.202201(cot 45)(3)(sin30)π−−︒++−−︒202211(1)1()2−=−+−112=−=【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE .【答案】解:(1);(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积; (2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB=AC=6,cosB=23,AH 是△ABC 的高,∴BH=4,∴BC=2BH=8,=∴△ABC 的面积是;2BC AH ⋅=(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CHAB HB DE HF ==,.∵AD :DB=1:2,BH=CH ,∴AD :AB=1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE=3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =kx的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =kx的图象于点B (点B 与点A 不是同一点).(1)求k 的值; (2)求点B 的坐标. 【答案】(1)2(2)(4,12)【分析】(1)根据题意得到22k k =,解方程求得k =2; (2)先求得A 的坐标,根据正比例函数的解析式设直线AB 的解析式为y12=−x+b ,把A 的坐标代入解得b 52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B 的坐标. 【详解】(1)解:∵点A 是反比例函数y kx =的图象与正比例函数y =kx 的图象在第一象限内的交点,点A的纵坐标为2, ∴22kk =, ∴2k =4,解得k =±2, ∵k >0, ∴k =2; (2)∵k =2, ∴反比例函数为y2x =,正比例函数为y =2x ,把y =2代入y =2x 得,x =1, ∴A (1,2), ∵AB ⊥OA ,∴设直线AB 的解析式为y12=−x+b ,把A 的坐标代入得2112=−⨯+b , 解得b52=,解21522y xy x ⎧=⎪⎪⎨⎪=−+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴点B 的坐标为(4,12).待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP上,且不能影响到古树的圆形保护区.已知点N距离地面的高度为0.9m,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即AE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B ''的坡度为1:4,即B E A E ''=1:4,∴A 'E =5×4=20(m ), ∴A A '=20﹣9.6=11.4(m ),A 'G =4NG =4×0.9=3.6(m ),∴AG =11.4﹣3.6=7.8(m ),点M 到点G 的最多距离MG =25﹣7.8﹣3=14.2(m ), ∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F .(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形. 【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE=CE .即可以利用“AAS”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE ADCB AC =.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠. 又∵E 是AC 中点, ∴AE=CE ,∴在AED △和CEF △中,ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌, ∴AD CF =,∴四边形AFCD 是平行四边形. (2)∵//AD BC , ∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅, ∴AE ADCB AC =, ∴ADE CAB ∽△△, ∴90AED ABC ∠=∠=︒,即DF AC ⊥. ∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =−++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式; (2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标. 【答案】(1)2312355y x x =−++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2−.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,DF =E 作EK DF ⊥于K,根据等腰直角三角形的性质可得KF KE =DK DF KF =−=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c=−++,得:15503b c c −++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =−++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE =,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==, (4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =−++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒,45DFH ∴∠=︒,DF =过点E 作EK DF ⊥于K ,312EF =−=,KF KE ∴=,DK DF KF ∴=−=在Rt DKE ∆中,cot 2DK EDF KE ∠=;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF EDED EP =,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =−,又2EF =,ED102(1)y ∴=−,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DPPD FP =,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =−,3FP y =−,DP ,29(1)(3)y y y ∴+=−−,解得32y =−,∴点P 的坐标为3(4,)2−; 综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2−. 【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质. 25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时, ①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;② (2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA ABAP OA =,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH x ,利用勾股定理列方程求出OH 的长,从而得出AH ,即可求得面积; (2)联结OC ,AC ,利用圆心角与圆周角的关系得∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,再利用SSS 说明△OAP ≌△OCP ,得∠OAP =∠OCP ,从而解决问题. 【详解】(1)①证明:∵OA =OB , ∴∠OAB =∠OBA , ∵PA =PO , ∴∠BAO =∠POA , ∴∠OAB =∠OBA =∠AOP , ∴∠AOB =∠APO ;②解:∵∠AOB =∠APO ,∠OAB =∠PAO ,∴△AOB ∽△APO , ∴OA AB AP OA =, ∴OA2=AB•AP =1,∵点B 是线段AP 的中点,∴AP作AH ⊥PO 于点H ,设OH =x ,则PH x ,由勾股定理得,12﹣x22x )2,解得x =,∴OH =4,由勾股定理得,AH ,∴△AOP 的面积为1122OP AH ⨯⨯==; (2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP=β+α,∵OA=OC,AP=PC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=β+α,在△OAP中,2(α+β)+β=180°,∴β=60°﹣23.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
2024年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列实数中,有理数是()A.B.C.D.2.(4分)下列单项式中,与单项式2a2b3是同类项的是()A.﹣ab4B.2a3b2C.3b3a2D.﹣2a2b2c 3.(4分)已知一次函数y=kx+b的图象经过第一、二、四象限,那么直线y=bx+k经过()A.第二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第一、三、四象限4.(4分)如表,记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差.甲乙丙丁平均数(cm)185180180185方差 3.6 3.68.17.4根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.(4分)如图,▱ABCD的对角线AC、BD相交于点O,如果添加一个条件使得▱ABCD 是矩形,那么下列添加的条件中正确的是()A.∠DAO+∠ADO=90°B.∠DAC=∠ACDC.∠DAC=∠BAC D.∠DAB=∠ABC6.(4分)如图,一个半径为9cm的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了120°,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是()A.5πcm B.6πcm C.7πcm D.8πcm二、填空题(本大题共12题,每题4分,满分48分)7.(4分)方程﹣x=0的根是.8.(4分)不等式组的解集是.9.(4分)方程组的解是.10.(4分)关于x的一元二次方程x2﹣mx﹣1=0根的情况是:原方程实数根.11.(4分)如果二次函数y=2x2﹣4x+1的图象的一部分是上升的,那么x的取值范围是.12.(4分)如果反比例函数y=的图象经过点A(t,﹣2t),那么t的值是.13.(4分)如果从长度分别为2、4、6、7的四条线段中任意取出三条,那么取出的三条线段能构成三角形的概率是.14.(4分)小杰沿着坡比i=1:2.4的斜坡,从坡底向上步行了130米,那么他上升的高度是米.15.(4分)某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有2000名学生,那么可以估计该校对手机持“严格管理”态度的家长有人.16.(4分)如图,梯形ABCD中,BC∥AD,AB=CD,AC平分∠BAD,如果AD=2AB,=,=,那么是(用向量、表示).17.(4分)如图,在△ABC中,AB=AC=6,BC=4.已知点D是边AC的中点,将△ABC 沿直线BD翻折,点C落在点E处,联结AE,那么AE的长是.18.(4分)如图,点A是函数y=(x<0)图象上一点,联结OA交函数y=﹣(x<0)图象于点B,点C是x轴负半轴上一点,且AC=AO,联结BC,那么△ABC的面积是.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(10分)计算:﹣|1﹣|+π0﹣.20.(10分)解方程:.21.(10分)如图,⊙O1和⊙O2相交于点A、B,联结AB、O1O2、AO2,已知AB=48,O1O2=50,AO2=30.(1)求⊙O1的半径长;(2)试判断以O1O2为直径的⊙P是否经过点B,并说明理由.22.(10分)A市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送8名学生到比赛场地参加运动会,每辆小汽车限坐4人(不包括司机),其中一辆小汽车在距离比赛场地15千米的地方出现故障,此时离截止进场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时60千米,人步行的平均速度是每小时5千米(上、下车时间忽略不计).(1)如果该小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由.23.(12分)如图,在菱形ABCD中,点E、G、H、F分别在边AB、BC、CD、DA上,AE =AF,CG=CH,CG≠AE.(1)求证:EF∥GH;(2)分别联结EG、FH,求证:四边形EGHF是等腰梯形.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a>0)与x轴交于点A(1,0)和点B,与y轴交于点C.(1)求该抛物线的表达式及点B的坐标;(2)已知点M(0,m),联结BC,过点M作MG⊥BC,垂足为G,点D是x轴上的动点,分别联结GD、MD,以GD、MD为边作平行四边形GDMN.①当m=时,且▱GDMN的顶点N正好落在y轴上,求点D的坐标;②当m≥0时,且点D在运动过程中存在唯一的位置,使得▱GDMN是矩形,求m的值.25.(14分)如图,在扇形OAB中,OA=OB=6,∠AOB=90°,点C、D是弧AB上的动点(点C在点D的上方,点C不与点A重合,点D不与点B重合),且∠COD=45°.(1)①请直接写出弧AC、弧CD和弧BD之间的数量关系;②分别联结AC、CD和BD,试比较AC+BD和CD的大小关系,并证明你的结论;(2)联结AB分别交OC、OD于点M、N.①当点C在弧AB上运动过程中,AN•BM的值是否变化,若变化请说明理由;若不变,请求AN•BM的值;②当MN=5时,求圆心角∠DOB的正切值.2024年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.【分析】整数和分数统称为有理数,据此进行判断即可.【解答】解:、、是无理数,=2,是有理数.故选:B.【点评】本题考查有理数的识别,熟练掌握其定义是解题的关键.2.【分析】所含字母相同,并且相同字母的指数也相同的项叫做同类项,由此判断即可.【解答】解:与单项式2a2b3是同类项的是3b3a2,故选:C.【点评】本题考查了同类项,熟知同类项的定义是解题的关键,注意同类项与系数无关,与字母的顺序无关.3.【分析】先根据题意判断出k,b的符号,进而可得出结论.【解答】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴y=bx+k经过一、三、四象限.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解题的关键.4.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员甲和乙的方差最小,但队员乙平均数小,所以甲的成绩好,所以队员甲成绩好又发挥稳定.故选:A.【点评】本题考查方差与算术平方根,解答本题的关键是掌握它们的定义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠DAO+∠ADO=90°,∴∠AOD=90°,∴AC⊥BD,∴▱ABCD是菱形,故选项A不符合题意;B、∵∠DAC=∠ACD,∴AD=CD,∴▱ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DCA=∠DAC,∴AD=CD,∴▱ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴AD∥CB,∴∠DAB+∠ABC=180°,∵∠DAB=∠ABC,∴∠DAB=∠ABC=90°,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定,平行四边形的性质,掌握矩形的判定是解题的关键.6.【分析】根据弧长的计算方法计算半径为9cm,圆心角为120°的弧长即可.【解答】解:由题意得,重物上升的距离是半径为9cm,圆心角为120°所对应的弧长,即=6π(cm).故选:B.【点评】本题考查弧长的计算,掌握弧长的计算方法是正确解答的前提.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】移项后方程两边平方得出2x﹣1=x2,求出方程的解,再进行检验即可.【解答】解:﹣x=0,移项,得=x,方程两边平方,得2x﹣1=x2,x2﹣2x+1=0,(x﹣1)2=0,x﹣1=0,x=1,经检验:x=1是原方程的解.故答案为:x=1.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.8.【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:,解不等式①得:x>2,解不等式②得:x>﹣5,∴原不等式组的解集为:x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.9.【分析】方程组化为一元二次方程可解得答案.【解答】解:由x﹣2y=0得x=2y,代入x2+y2=5得:5y2=5,解得y=1或y=﹣1,∴原方程组的解为或.故答案为:或.【点评】本题考查解高次方程,解题的关键是把方程组化为一元二次方程.10.【分析】先计算出Δ的值得到Δ>0,然后根据根的判别式的意义判断方程根的情况即可.【解答】解:∵Δ=(﹣m)2﹣4×(﹣1)=m2+4>0,∴方程有两个不相等的实数根.故答案为:有两个不相等的实数根.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.11.【分析】依据题意,由y=2x2﹣4x+1=2(x﹣1)2﹣1,又抛物线开口向上,从而当x<1时,y随x的增大而减小,图象逐渐下降,当x≥1时,y随x的增大而增大,图象逐渐上升,再结合二次函数y=2x2﹣4x+1的图象的一部分是上升的,进而可以判断得解.【解答】解:由题意,∵y=2x2﹣4x+1=2(x2﹣2x+1)﹣1=2(x﹣1)2﹣1,又抛物线开口向上,∴当x<1时,y随x的增大而减小,图象逐渐下降,当x≥1时,y随x的增大而增大,图象逐渐上升.∵二次函数y=2x2﹣4x+1的图象的一部分是上升的,∴x≥1.故答案为:x≥1.【点评】本题主要考查了二次函数的性质,解题时要熟练掌握并能灵活运用是关键.12.【分析】根据反比例函数图象上点的坐标特征解答本题即可.【解答】解:∵反比例函数y=的图象经过点A(t,﹣2t),∴t×(﹣2t)=﹣4,解得t=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握这一特征是关键.13.【分析】利用列举法展示所有4种等可能的结果,根据三角形三边的关系可判断三条线段能构成三角形的结果数,然后根据概率求解.【解答】解:从长度分别为2、4、6、7的四条线段中随机抽取三条线段,它们为2、4、6;2、4、7;2,6,7;4,6,7,共有4种等可能的结果,其中三条线段能构成三角形的结果数为2,所以三条线段能构成三角形的概率==,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.14.【分析】设上升的高度为x米,根据坡比和勾股定理列方程即可求解.【解答】解:设上升的高度为x米,坡比i=1:2.4,根据题意得x2+(2.4x)2=1302,解得x=50,故答案为:50.【点评】本题考查解直角三角形的应用,解题的关键是理解坡比的定义.15.【分析】先用总人数乘以从来不管对应的百分比求出其人数,再根据三个类别人数之和等于总人数求出严格管理的人数,最后用总人数乘以样本中严格管理人数所占比例即可.【解答】解:由题意知,从来不管的人数为100×25%=25(人),则严格管理的人数为100﹣25﹣55=20(人),所以估计该校对手机持“严格管理”态度的家长有2000×=400(人),故答案为:400.【点评】本题考查了条形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了利用样本估计总体.16.【分析】首先判定△ABC是等腰三角形;如图,过点C作CE∥AB交AD于E,构造平行四边形ABCE,则BC=AE.所以在△ABC中,利用三角形法则求解即可.【解答】解:∵BC∥AD,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD.∴∠BAC=∠BCA.∴AB=BC.如图,过点C作CE∥AB交AD于E,则四边形ABCE是平行四边形.∴BC=AE.∵AD=2AB,∴AD=2BC.∵=,∴==.∵=,=+.∴=.故答案为:.【点评】本题主要考查了平面向量,等腰三角形的判定与性质,梯形.解题的巧妙之处在于作出辅助线,构造平行四边形.将所求的向量置于△ABC中,利用三角形法则作答.17.【分析】过A作AM⊥BC,过D作DN⊥BC,连接AE,连接CE交BD于O,根据等腰三角形的性质以及平行线分线段成比例可以求出CN,BN的长,然后根据勾股定理求出DN和BD的长,根据轴对称的性质可得,CE⊥BD,OC=OE,DE=DC,根据等积变换可以求出OC,从而求得CE,再根据AD=CD=DE可以判断△ACE为直角三角形,最后根据勾股定理求出AE的长即可.【解答】解:如图,过A作AM⊥BC,过D作DN⊥BC,连接AE,连接CE交BD于O,∴AM∥DN,∵D为AC中点,AB=AC,∴AD=CD=3,BM=CM=2,∴CN=MN=1,∴DN==2,∴BD==,∵E和C关于BD对称,∴CE⊥BD,OC=OE,DE=DC,=BC•DN=BD•OC,∵S△BCD∴OC=,∴CE=,∵AD=CD=DE,∴△ACE为直角三角形,∴AE==.故答案为:.【点评】本题主要考查了翻折问题,合理运用平行线分线段成比例、勾股定理以及直角三角形的判定是本题解题的关键.18.【分析】过点A,B分别作x轴的垂线,垂足分别为D,E,反比例函数比例系数的几何=4,S△OBE=0.5,证△OAD∽△OBE得,由此得OA=意义得S△OADOB,则AB=(OB,再由得S△ABC=(S,然后根据等腰三角形的性质得S△AOC=2S△OAD=8,则S△ABC+S△OBC=8,由此得△OBC=,进而可得△ABC的面积.得S△OBC【解答】解:过点A,B分别作x轴的垂线,垂足分别为D,E,如下图所示:∵点A是函数(x<0)图象上一点,点B是反比例函数(x<0)图象上的点,=×8=4,S△OBE=×1=0.5,根据反比例函数比例系数的几何意义得:S△OAD∵AD⊥x轴,BE⊥x轴,∴AD∥BE,∴△OAD∽△OBE,∴,∴=8,∴OA=OB,∴AB=OA﹣OB=OB﹣OB=()OB,即,∵,=()S△OBC,∴S△ABC∵AC=AO,AD⊥x轴,∴OD=CD,=2S△OAD=8,∴S△AOC+S△OBC=8,∴S△ABC+S△OBC=8,即()S△OBC=,∴S△OBC=S△AOC﹣S△OBC=.∴S△ABC故答案为:.【点评】此题主要考查了反比例函数比例系数的几何意义,相似三角形的判定和性质,理解反比例函数比例系数的几何意义,熟练掌握相似三角形的判定和性质是解决问题的关键.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.【分析】利用二次根式的性质、绝对值的性质以及零指数幂分别化简得出答案.【解答】解:﹣|1﹣|+π0﹣=2﹣+1+1﹣=2.【点评】本题考查了实数的运算,掌握正确化简各数是关键.20.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+2)2﹣16=x﹣2,整理得:x2+4x+4﹣16=x﹣2,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,检验:当x=2时,(x+2)(x﹣2)=0,当x=﹣5时,(x+2)(x﹣2)≠0,∴x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】(1)连接AO1,由勾股定理求出CO2,再求出CO1,再由勾股定理求出AO1即可;(2)由勾股定理逆定理判断∠O1BO2是否为直角即可.【解答】解:(1)连接AO1,AB和O1O2交于点C,如图:∵AB是⊙O1和⊙O2的公共弦,∴AB⊥O1O2,AC=BC=24,∴CO2==18,∴CO1=O1O2﹣CO2=32,∴AO1==40.(2)经过.证明:∵BO1=AO1=40,BO2=AO2=30,O1O2=50,∴+=O1,∴∠O1BO2=90°,∴B在以O1O2为直径的圆上.【点评】本题主要考查了相交圆的性质,合理运用勾股定理及其逆定理是本题解题的关键.22.【分析】(1)根据题意,若小汽车送4人到达考场,然后再回到出故障处接其他人,则根据故障地点距考场的距离即可求出小汽车运动的总路程,又已知小汽车的平均速度,即可求得小汽车运动的总时间,随后与距截止进考场的时间进行比较,即可判断能否在截止进考场的时刻前到达考场;(2)由(1)知,若停留在原地等待则无法在截止进考场的时刻前到达考场,所以让在小汽车运送4人去考场的同时,留下的4人需步行前往考场,可节省一些时间,根据路程与速度的关系可分别求出小汽车运送第一批4人到达考场的时间、小汽车接到步行的4人的时间、小汽车从接到第二批4人到运送至考场的时间,三个时间相加后与距截止进考场的时间进行比较,即可判断方案的可行性.【解答】解:(1)他们不能在截止进场的时刻前到达比赛场地,小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,总路程为:15×3=45(千米),第二次到达考场所需时间为:45÷60=0.75(小时),0.75小时=45分钟,∵45>42,∴他们不能在截止进场的时刻前到达比赛场地;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回接到步行的4人的后再载他们前往考场,先将4人用车送到考场所需时间为15÷60=0.25(h)=15(分钟),5×0.25=1.25(km),∴此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与步行的4人相遇,则:5t十60t=13.75,解得t=,此时汽车与考场的距离为13.75﹣5×==(km),∴汽车由相遇点再去考场所需时间为(h),用这一方案送这8人到考场共需15≈40.4(分钟).∴40.4<42,∴采取此方案能使8个人在截止进考场的时刻前到达考场.【点评】本题考查了由实际问题抽象出一元一次方程,解题的关键是找准等量关系,正确列出一元一次方程.23.【分析】(1)连接BD.根据菱形的性质得到AB=AD=BC=CD,根据平行线分线段成比例定理即可得到结论;(2)根据相似三角形的性质得到=,同理=,又CG≠AE,得到EF≠GH,根据梯形的判定定理得到四边形EGHF是梯形;根据全等三角形的性质得到EG=FH,于是得到梯形EGHF是等腰梯形.【解答】证明:(1)连接BD.∵四边形ABCD是菱形,∴AB=AD=BC=CD,∵AE=AF,CG=CH,∴=,=,∴EF∥BD,GH∥BD,∴EF∥GH;(2)∵EF∥BD,∴△AEF∽△ABD,∴=,同理=,又CG≠AE,∴EF≠GH,∵EF∥GH,∴四边形EGHF是梯形;∵AB﹣AE=AD﹣AF,即BE=DF,∴BC﹣CG=CD﹣CH,即BG=DH,∵四边形ABCD是菱形,∴∠ABC=∠ADC,∴△BGE≌△DHF(SAS),∴EG=FH,∴梯形EGHF是等腰梯形.【点评】本题考查了等腰梯形的判定,菱形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.24.【分析】(1)由待定系数法求出函数表达式,进而求解;(2)①在Rt△CGM中,cos∠MCG=,则CG=CM•cos∠MCG=×=2,在Rt △CGH中,GH=CG•sin∠HCG=2×=,即可求解;②当m=0时,即点M与点O重合时,符合题意;当0<m<4时,如图所示,取MG的中点P,以MG为直径作圆P,则点N、D在圆上,由PM=OH,即可求解;当m≥4时,可得:OH>PM,所以符合题意的m不存在.【解答】解:(1)由题意,得:a﹣4a+4=0,解得:a=,∴抛物线的表达式为y=x2﹣x+4;则抛物线的对称轴是直线x=2,∴点B(3,0);(2)①由题意,得C(0,4)、M(0,),则CM=,∵四边形GDMN是平行四边形,∴DG∥MN,又点N在y轴上,∴NM⊥OD,∴GD⊥OD,在Rt△OBC中,BC==5,则cos∠OCB==,则sin∠OCB=,在Rt△CGM中,cos∠MCG=,则CG=CM•cos∠MCG=×=2,过点G作GH⊥CO,垂足为H,在Rt△CGH中,GH=CG•sin∠HCG=2×=,则OD=GH=,故点D(,0);②当m≥0时,根据m不同取值分三种情况讨论:当m=0时,即点M与点O重合时,符合题意;当0<m<4时,如图所示,取MG的中点P,以MG为直径作圆P,则点N、D在圆上,此时圆P和x轴有唯一切点D,符合题设条件,则OH=PD=PM,∵MG=MC•sin∠OCB=(4﹣m)=2PM,由①知,∠CMG=∠OCB,则sin∠CMG=sin∠OCB,则MH=PM•sin∠OCB=(4﹣m),而OH=MH+OM=MH+m,由PM=OH得:(4﹣m)+m=(4﹣m),解得:m=;当m≥4时,可得:OH>PM,所以符合题意的m不存在,综上,符合题意的m的值为0或.【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、圆的切线的性质等知识,分类求解是解题的关键.25.【分析】(1)①根据弧长与圆心角之间的关系求解即可;②在弧CD上取点E,使得∠COE=∠AOC,然后根据圆心角、弧长、弦长之间的关系以及三角形的三边关系证明即可;(2)①利用相似三角形的判定与性质,先证明△OMB∽△AON,即可得出AN•BM的值;②过点O在OB下方作∠BOM′=∠AOM,截取OM′=OM,利用全等三角形的判定与性质,以及勾股定理可以求出BN的长,过N作OB垂线,根据三角函数的定义求解tan∠BOD即可.【解答】解:(1)①设∠AOC=α,∴∠BOD=90°﹣45°﹣α=45°﹣α,∵=•2πOA,=•2πOA,=•2πOA,∴=+;②AC+BD>CD.证明:在上取点E,连接OE,使得∠COE=∠AOC,连接CE,DE,如图:∴AC=CE,在△CDE中,CE+DE>CD,∵∠COE+∠DOE=45°,∠AOC+∠BOD=45°,∴∠DOE=∠BOD,∴BD=DE,∴AC+BD>CD.(2)①AN•BM的值不变,AN•BM=72.∵OA=OB,∴∠OAB=∠OBA,∵∠AOB=90°,∴∠OAB=∠OBA=45°,∵∠OMB=∠OAB+∠AOM=45°+∠AOM,又∵∠AON=∠COD+∠AOM=45°+∠AOM,∴∠OMB=∠AON,∴△OMB∽△AON,∴=,∴AN•BM=AO•BO=72;②过点O在OB下方作∠BOM′=∠AOM,截取OM′=OM,连接BM′,NM′,如图:∵AO=BO,∴△OBM′≌△OAM(SAS),∴BM′=AM,∠OBM′=∠OAB=45°,∴∠NBM′=90°,又∵∠M′ON=45°=∠COD,ON=ON,∴△ONM′≌△OMN(SAS),∴M′N=MN,∴MN2=M′N=BM′2+BN2=AM2+BN2,又∵AM+BN=12﹣5=7,∴BN=3或4,过N作NG⊥OB于G,当BN=3时,NG=BG=,∴OG=,∴tan∠BOD==,当BN=4时,NG=BG=2,∴OG=4,∴tan∠BOD==,∴tan∠BOD=或.【点评】本题主要考查了圆的综合题,综合运用全等三角形的判定与性质、相似三角形的判定与性质、勾股定理、圆心角与弦和弧的关系以及锐角三角函数的定义是本题解题的关键。
上海中考二模数学试题及答案一、选择题1. 若集合A = {1, 2, 3, 4, 5, 6, 7},B = {2, 4, 6, 8,10},则A ∩ B = ()A. {2, 4, 6}B. {1, 2, 3}C. {8, 10}D. {1, 3, 5, 7}2. 已知直线l与x轴交于点A,直线l与y轴交于点B,则下列说法中正确的是()A. 点(0, 0)在l上B. 点(0, 1)在l上C. A与B的横坐标之积小于0D. A、B的横坐标之积大于03. 方程(x-2)²-4 = 0的根是()A. 0B. 2C. 4D. 64. a1, a2, a3, ...是等差数列,若a1+a9=28,a5+a11=24,则该数列首项为()A. 1B. 2C. 3D. 45. 在Rt△ABC中,AB=12,AC=16,则BC的长度为()A. 4B. 8C. 12D. 16答案:1. A 2. D 3. B 4. C 5. B二、填空题1. 若a:b=2:3,且a:b:c=3:5:7,求c。
2. 设二次函数f(x)=-2x²+3x+4,若f(x)的图像与x轴交于点A、B,且AB=4,则A、B的横坐标分别为___。
3. 已知平行四边形ABCD中,AB=2a,AD=a+3,AC=4a-3,则BD 等于___。
4. 已知函数y=f(x)的图像关于原点对称,则f(-x)=___。
5. 若函数y=f(x)=ax²+x-1在区间[0, 1]上是增函数,则a的取值范围是___。
答案:1. 7 2. (-1, 3) 3. 2a-3 4. f(x) 5. a>0三、解答题1. 已知等差数列S的首项为a,公差为d,且S1 + S2 + S3 = 15,求S6的值。
解答:设等差数列的第n项是Sn,则有Sn = a + (n-1)d。
根据等差数列和公式,可以得到:S1 = aS2 = a + dS3 = a + 2dS6 = a + 5d给出条件S1 + S2 + S3 = 15,代入上面的式子可以得到:a + (a + d) + (a + 2d) = 153a + 3d = 15再考虑到S6 = a + 5d,将3a + 3d = 15带入可以得到:3a + 3d = 153(a + d) = 15a + d = 5将a + d = 5带入S6 = a + 5d:S6 = 5 + 5dS6 = 5(d + 1)所以S6的值为5(d + 1)。
2024年上海市长宁区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.(4分)下列是最简二次根式的是()A.B.C.D..2.(4分)关于一元二次方程x2+x﹣3=0根的情况,正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.有且只有一个实数根D.没有实数根3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=2x2B.C.y=﹣2x D.y=2x+14.(4分)为了解某公司的收入水平,随机挑选五人的月工资进行抽样调查,月工资(单位:元)分别是3000,4000,5000,6000,50000,那么能够较好的反映他们收入平均水平的是()A.中位数B.标准差C.平均数D.众数.5.(4分)如图,已知点A、B、C、D都在⊙O上,OB⊥AC,BC=CD,下列说法错误的是()A.B.∠AOD=3∠BOC C.AC=2CD D.OC⊥BD6.(4分)下列命题是假命题的是()A.对边之和相等的平行四边形是菱形B.一组邻边上的高相等的平行四边形是菱形C.一条对角线平分一组对角,另一条对角线平分一个内角的四边形是菱形D.被一条对角线分割成两个等腰三角形的平行四边形是菱形二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:2﹣2=.8.(4分)截至2023年底,全国高铁营业里程约为45000公里,这个数45000用科学记数法表示为.9.(4分)函数的定义域为.10.(4分)方程的解是.11.(4分)已知方程,如果设,那么原方程转化为关于y的整式方程为.12.(4分)如果二次函数y=x2+m的图象向右平移3个单位后经过原点,那么m的值为.13.(4分)在1,2,3中任取两个不重复的数字组成一个两位数,那么这个两位数是素数的概率是.14.(4分)为了解某校六年级300名学生来校的方式,随机调查了该校六年级50名学生同一天来校的方式,并绘制了如图所示的饼状图,那么估计该校六年级300名学生中这一天步行来学校的共有_____名.15.(4分)如图,在△ABC中,点D在边AB上,且BD=2AD,点E是AC的中点,联结DE,设向量,,如果用、表示,那么=.16.(4分)如图,正方形ABCD中,点E在对角线BD上,点F在边CD上(点F不与点C重合),且∠EAF=45°,那么的值为.17.(4分)在Rt△ABC中,∠ACB=90°,AC>BC,将△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,如果点A在DE的延长线上,且CE∥AB,那么∠CAE的余弦值为.18.(4分)我们把以三角形的重心为圆心的圆叫做该三角形的重心圆.如图,在△ABC中,AB=AC=10,BC=16,如果△ABC的重心圆与该三角形各边的公共点一共有4个,那么它的半径r的取值范围是.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)计算:.20.(10分)解方程组:.21.(10分)如图,⊙O经过平行四边形ABCD的顶点B,C,D,点O在边AD上,AO=3,OD=5.(1)求平行四边形ABCD的面积;(2)求∠D的正弦值.22.(10分)春节期间甲乙两家商店各自推出优惠活动商店优惠方式甲所购商品按原价打八折乙所购商品按原价每满300元减80元设顾客在甲乙两家商店购买商品的原价都为x元,请根据条件回答下列问题:(1)如果顾客在甲商店购买商品选择优惠活动后实际付款y元,求y关于x的函数解析式(不必写出函数定义域);(2)购买原价在500元以下的商品时,如果分别选择甲商店的优惠活动和乙商店的优惠活动后,实际付款金额相等,求x的值;(3)顾客购买原价在900元以下的商品时,如果选择乙商店的优惠活动比选择甲商店的优惠活动更合算,求x的取值范围.23.(12分)已知:在梯形ABCD中,AD∥BC,BD⊥AD,点E在边AD上(点E不与点A、D重合),点F在边CD上,且∠ABD=∠EBF=∠C.(1)求证:;(2)联结EF,与BD交于点G,如果BG=EG,求证:四边形BEDF为等腰梯形.24.(12分)在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与x轴分别交于点A、B(点A在点B左侧),与y轴交于点C(0,6),其对称轴为直线x=2.(1)求该抛物线的表达式;(2)点F是上述抛物线上位于第一象限的一个动点,直线AF分别与y轴、线段BC交于点D、E.①当CF=DF时,求CD的长;②联结AC,如果△ACF的面积是△CDE面积的3倍,求点F的坐标.25.(14分)已知在△ABC中,CA=CB,AB=6,cos∠CAB=,点O为边AB上一点,以点O为圆心,OA为半径作⊙O,交边AC于点D(点D不与点A、C重合).(1)当AD=4时,判断点B与⊙O的位置关系,并说明理由;(2)过点C作CE⊥OD,交OD延长线于点E.以点E为圆心,EC为半径作⊙E,延长CE,交⊙E 于点C′.①如图1,如果⊙O与⊙E的公共弦恰好经过线段EO的中点,求CD的长;②联结AC′、OC,如果AC′与△BOC的一条边平行,求⊙E的半径长.2024年上海市长宁区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.【分析】根据最简二次根式的定义进行解题即可.【解答】解:A、=,故不符合题意;B、==,故不符合题意;C、是最简二次根式,符合题意;D、==5,故不符合题意;故选:C.【点评】本题考查最简二次根式,熟练掌握相关的知识点是解题的关键.2.【分析】先计算出根的判别式的值,然后根据根的判别式的意义对各选项进行判断.【解答】解:∵Δ=12﹣4×(﹣3)=13>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.3.【分析】根据反比例函数的性质、一次函数的性质及正比例函数的性质、二次函数的性质对各选项进行逐一分析即可.【解答】解:A、函数y=2x2中,当x<0时y随x的增大而减小,不符合题意;B、函数y=﹣中,在每一象限内y随x的增大而增大,不符合题意;C、函数y=﹣2x中,y随x的增大而减小,不符合题意;D、函数y=2x+1中,y随x的增大而增大,符合题意.故选:D.【点评】本题考查的是反比例函数的性质、一次函数的性质及正比例函数的性质、二次函数的性质,熟知以上知识是解题的关键.4.【分析】利用平均数,中位数、众数和给出的数据分别进行分析,即可得出答案.【解答】解:根据给出的数据可得,中位数根据能够较好的反映他们收入平均水平.故选:A.【点评】此题考查了平均数、众数、中位数和标准差,众数是指一组数据中出现次数最多的数据;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.5.【分析】分别根据垂径定理,圆心角、弧、弦的关系,三角形三边的关系和线段的垂直平分线的判定判断即可.【解答】解:A、∵OB⊥AC,∴=,故不符合题意;B、∵=,∴∠AOB=∠COB,∵BC=CD,∴∠BOC=∠DOC,∴∠AOD=3∠BOC,故不符合题意;C、∵∠AOB=∠BOC=∠DOC,∴∠AOC=∠BOD,∴AC=BD,∵BD<BC+CD=2CD,∴AC<2CD,故符合题意;D、∵OB=OC,BC=DC,∴OC⊥BD,故不符合题意;故选:C.【点评】本题考查圆周角定理、垂径定理、圆心角、弧、弦的关系、三角形三边的关系和线段的垂直平分线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.6.【分析】根据菱形的判定定理判断即可.【解答】解:A、∵平行四边形的对边相等,∴对边之和相等舒,邻边线段,∴平行四边形是菱形,故本选项命题是真命题;B、根据菱形的面积公式可知:一组邻边上的高相等的平行四边形是菱形,故本选项命题是真命题;C、一条对角线平分一组对角,另一条对角线平分一个内角的四边形是菱形,是真命题,不符合题意;D、有一条对角线与一组邻边构成等腰三角形的平行四边形不一定是菱形,故被一条对角线分割成两个等腰三角形的平行四边形是菱形是假命题,符合题意;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据负整数指数幂法则进行解题即可.【解答】解:2﹣2=.故答案为:.【点评】本题考查负整数指数幂,掌握运算法则是解题的关键.8.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:45000=4.5×104.故答案为:4.5×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【分析】根据分式的分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查的是函数自变量的取值范围的确定,熟记分式的分母不为零是解题的关键.10.【分析】方程两边平方得出x﹣1=9,求出方程的解,再进行检验即可.【解答】解:,方程两边平方,得x﹣1=9,解得:x=10,经检验:x=10是原方程的解.故答案为:x=10.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.11.【分析】设,则原方程转化为y﹣=2,再方程两边都乘3y即可.【解答】解:,设,则原方程转化为:y﹣=2,方程两边都乘3y,得3y2﹣1=6y,即3y2﹣6y﹣1=0.故答案为:3y2﹣6y﹣1=0.【点评】本题考查了用换元法解分式方程,能正确换元是解此题的关键.12.【分析】求出函数图象向右平移3个单位后的函数解析式,再由函数图象过原点即可得出m的值.【解答】解:二次函数y=x2+m的图象向右平移3个单位后的解析式为y=(x﹣3)2+m,∵二次函数y=x2+m的图象向右平移3个单位后经过原点,∴(0﹣3)2+m=0,解得m=﹣9.故答案为:﹣9.【点评】本题考查的是二次函数的图象与几何变换,熟知“左加右减”的法则是解题的关键.13.【分析】列表可得出所有等可能的结果数以及这个两位数是素数的结果数,再利用概率公式可得出答案.【解答】解:列表如下:123112132212333132共有6种等可能的结果,其中这个两位数是素数的结果有:13,23,31,共3种,∴这个两位数是素数的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】总人数乘以样本中步行人数所占比例即可.【解答】解:估计该校六年级300名学生中这一天步行来学校的共有300×(1﹣12%﹣32%﹣26%)=90(名),故答案为:90.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15.【分析】首先由向量的知识,得到与的值,即可得到的值.【解答】解:在△ABC中,,,则=﹣=﹣.∵BD=2AD,点E是AC的中点,∴==,==﹣,∴=+=+﹣=﹣.故答案为:﹣.【点评】此题考查向量的知识.解题的关键是注意数形结合思想的应用.16.【分析】通过证明△BAE∽△CAF,可得.【解答】解:∵四边形ABCD是正方形,∴AC=AB,∠ABD=∠ACD=45°,∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴,故答案为:.【点评】本题考查了正方形的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.17.【分析】由△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,点A在DE的延长线上,且CE∥AB,得∠ACE=∠BAC=D=x°,得3x+90=180,得∠CAE=x=30°,得∠CAE的余弦值为.【解答】解:由△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,点A在DE的延长线上,且CE∥AB,得∠ACE=∠BAC=∠D=x°,由△ADC中,∠ACB=90°,得3x+90=180,得∠CAE=x=30°,得∠CAE的余弦值为.故答案为:.【点评】本题主要考查了旋转的性质,解题关键是正确应用旋转的性质.18.【分析】当⊙O与AB、AC相切时(切点是M、N),⊙O与△ABC的三边有4个公共点,连接OM,由△AOM∽△ABH,得到OM:BH=AO:AB,即可求出OM=3.2,当⊙O′与AB、AC分别有一个公共点,与BC有两个公共点时(⊙O′不过B、C两点),△ABC的重心圆与该三角形各边的公共点一共有4个,于是得到当4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,即可得到答案.【解答】解:如图,过A作AH⊥BC于H,∵AB=AC=10,∴HB=HC=BC=×16=8,∴AH==6,设O是△ABC的重心,∴AO=AH=4,当⊙O与AB、AC相切时(切点是M、N),⊙O与△ABC的三边有4个公共点,连接OM,∴OM⊥AB,∴∠AMO=∠AHB=90°,∵∠OAM=∠BAH,∴△AOM∽△ABH,∴OM:BH=AO:AB,∴OM=8=4:10,∴OM=3.2,∴重心圆的半径r=3.2时,△ABC的重心圆与该三角形各边的公共点一共有4个,如图,过作AK⊥BC于K,∵∵AB=AC=10,∴KB=KC=BC=×16=8,∴AK==6,设O′是△ABC的重心,∴AO′=AH=4,∴KO′=6﹣4=2,∴BO′==2,当⊙O′与AB、AC有一个公共点,与BC有两个公共点时(⊙O′不过B、C两点),△ABC的重心圆与该三角形各边的公共点一共有4个,∴当4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,∴重心圆的半径r=3.2或4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,故答案为:r=3.2或4<r<2.【点评】本题考查直线与圆的位置关系,三角形的重心,等腰三角形的性质,相似三角形的判定和性质,关键是要分两种情况讨论.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.【分析】先化简各式,然后再进行计算即可解答.【解答】解:原式=2+(﹣+3)﹣2+=2﹣=4.【点评】本题考查了实数的运算,零指数幂,准确熟练地化简各式是解题的关键.20.【分析】把②变形为(x﹣2y)(x﹣3y)=0,可得x﹣2y=0或x﹣3y=0,故原方程组相当于和,分别解两个二元一次方程组可得原方程组的解.【解答】解:由②得:(x﹣2y)(x﹣3y)=0,∴x﹣2y=0或x﹣3y=0,∴原方程组相当于和,分别解两个二元一次方程组可得原方程组的解为和.【点评】本题考查解二元二次方程组,解题的关键是用因式分解法“降次“,把二元二次方程组变形为两个二元一次方程组.21.【分析】(1)过O点作OE⊥BC,如图,先根据平行四边形的性质得到BC=AD=8,AD∥BC,再利用垂径定理得到BE=CE=4,接着利用勾股定理计算出OE=3,然后利用平行四边形的面积公式求解;(2)先证明四边形OECF为矩形得到CF=OE=3,OF=CE=4,所以DF=1,再利用勾股定理计算出CD,然后根据正弦的定义求解.【解答】解:(1)过O点作OE⊥BC,如图,∵四边形ABCD为平行四边形,∴BC=AD=3+5=8,AD∥BC,∵OE⊥BC,∴BE=CE=4,在Rt△OEC中,OE===3,∴平行四边形ABCD的面积=8×3=24;(2)∵OF∥CE,OE⊥CE,CF⊥OF,∴四边形OECF为矩形,∴CF=OE=3,OF=CE=4,∴DF=OD﹣OF=5﹣4=1,在Rt△CDF中,CD===,∴sin D===.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了平行四边形的性质、圆周角定理和解直角三角形.22.【分析】(1)根据甲商店实际付款是原价的0.8倍列出函数解析式;(2)根据题意可知300≤x<500,然后按活动价列出等式,解方程即可;(3)分当300≤x<600和600≤x<900两种情况列出不等式,解不等式即可.【解答】解:(1)根据题意得:y=0.8x,∴y关于x的函数解析式为y=0.8x;(2)若x<300,则甲商店按原价打八折,乙商店按原价,此时实际付款金额不可能相等,∴300≤x<500,∴0.8x=x﹣80,解得x=400;(3)当300≤x<600时,x﹣80<0.8x,解得x<400,∴300≤x<400;当600≤x<900时,x﹣160<0.8x,解得x<800,∴600≤x<800,综上所述,x的取值范围为300≤x<400或600≤x<800.【点评】本题考查一次函数和一元一次不等式的应用,关键是列出函数解析式和不等式.23.【分析】(1)由AD∥BC,BD⊥AD,得∠ADB=∠DBC=90°,而∠ABD=∠EBF=∠C,可推导出∠ABE=∠DBF,∠A=∠BDF,进而证明△ABE∽△DBF,则=;(2)将=,变形为=,因为∠ABD=∠EBF,所以△ABD∽△EBF,得∠ADB=∠EFB,再证明△BGF∽△EGD,得===1,则BF=ED,FG=DG,所以∠GDF=∠GFD,由∠BGE =2∠GEB=2∠GFD,证明∠GEB=∠GFD,则BE∥DF,所以四边形BEDF为等腰梯形.【解答】(1)证明:∵AD∥BC,BD⊥AD,∴∠ADB=∠DBC=90°,∵∠ABD=∠EBF=∠C,∴∠ABD﹣∠DBE=∠EBF﹣∠DBE,∴∠ABE=∠DBF,∵∠A+∠ABD=90°,∠BDF+∠C=90°,∴∠A=∠BDF,∴△ABE∽△DBF,∴=.(2)证明:联结EF,与BD交于点G,∵=,∴=,∵∠ABD=∠EBF,∴△ABD∽△EBF,∴∠ADB=∠EFB,∵∠BGF=∠EGD,∠GFB=∠GDE,BG=EG,∴△BGF∽△EGD,∠GBE=∠GEB,∴===1,∴BF=ED,FG=DG,∴∠GDF=∠GFD,∵∠BGE=∠GBE+∠GEB=2∠GEB,∠BGE=∠GDF+∠GFD=2∠GFD,∴2∠GEB=2∠GFD,∴∠GEB=∠GFD,∴BE∥DF,∴四边形BEDF为等腰梯形.【点评】此题重点考查平行线的判定与性质、相似三角形的判定与性质、三角形的一个外角等于与它不相邻的两个内角的和等知识,证明△ABE∽△DBF及△ABD∽△EBF是解题的关键.24.【分析】(1)由待定系数法即可求解;(2)①当CF=DF时,则点F在CD的中垂线上,则(6﹣m+6)=﹣m2+2m+6,即可求解;②证明△EMD∽△FNA,得到DE:AF=DM:AN=1:3,则=(m+2),即可求解.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+2x+6;(2)由抛物线的表达式得,点A(﹣2,0)、C(0,6),设点F(m,﹣m2+2m+6),由点A(﹣2,0)、F的坐标得,直线AF的表达式为:y=﹣(m﹣6)(x+2),则点D(0,6﹣m),①当CF=DF时,则点F在CD的中垂线上,则(6﹣m+6)=﹣m2+2m+6,解得:m=0(舍去)或5,则CD=6﹣(6﹣m)=m=5;②由点B、C的坐标得,直线BC的表达式为:y=﹣x+6,联立上式和AF的表达式得:﹣x+6=﹣(m﹣6)(x+2),解得:x==DM,由点F的坐标得,AN=m+2,∵△ACF的面积是△CDE面积的3倍,则DE:AF=1:3过点D作DM∥x轴,作EM⊥DM,过点F作FN⊥x轴,则△EMD∽△FNA,则DE:AF=DM:AN=1:3,则=(m+2),解得:m=﹣4(舍去)或4,即点F(4,6).【点评】本题考查的是二次函数综合运用,涉及到一次函数的基本性质、待定系数法求函数表达式、三角形相似、中垂线的性质等,有一定的综合性,难度适中.25.【分析】(1)借助垂径定理,利用cos A表示出AO和BO,通过比较AO和BO的大小确定点与圆的位置关系;(2)①需要紧扣∠CDE=∠A,结合连心线和公共弦的性质可以发现圆E和圆O是等圆,借助相似三角形的性质或锐角三角函数,用含k的代数式表示出CD、AD,从而求解;②当AC′∥CB时,过点C′作C′N⊥AD,证明出∠C′AD=∠C′DA,在Rt△C′NC中,cos∠C'CN==,得到,解得,则;当AC′∥OC,延长OE交AC′延长线于点F,由AC′∥OC,得到,解得或5(舍去),则CE=4k=.【解答】解:(1)点B在⊙O内;理由如下:过点O作OH⊥AC,垂足为点H,∵OH过圆心,OH⊥AD,∴,∵OH⊥AC,∴∠AHO=90°,在Rt△AOH中,,∴,∵AB=6,∴,∵OB<AO,∴点B在⊙O内;(2)过点C作CM⊥AB,垂足为M,如图2,∵AC=BC,CM⊥AB,∴,在Rt△ACM中,,∴AC=5,∵OA=OD,∴∠CAB=∠ODA,又∵∠ODA=∠CDE,∴∠CAB=∠CDE,∵,在Rt△CDE中,∠CED=90°,,设DE=3k,CD=5k,则,∴AD=5﹣k,①两圆的交点记为P、Q,连接PE,PO,如图3,⊙O与⊙E相交,PQ是公共弦,∴OE垂直平分PQ,即OE⊥PQ,∵PQ经过OE的中点,∴PQ垂直平分OE,∴PE=PO,即CE=AO,,在Rt△AHO中,∠AHO=90°,∴,∵,∴,解得,∴;②由于点A在直线AB上,∴AC′不可能与OB平行,则当AC′∥CB时,过点C′作C′N⊥AD,如图4,∵AC=CB,∴∠CAB+∠B+∠ACB=180°,∴∠ACB=180°﹣2∠CAB,∵AC′∥CB,∴∠C′AD=∠ACB=180°﹣2∠CAB,∵DE⊥CC′,CE=C′E,∴DC′=DC,∴∠CDE=∠C′DE,∵∠C′DA+∠C′DE+∠CDE=180°,∴∠C′DA=180°﹣2∠CDE,∵∠CAB=∠CDE,∴∠CAD=∠CDA,∵C′N⊥AD,∴,∴,在Rt△C′NC中,,∴,∴,∴;当AC∥OC,延长OE交AC延长线于点F,如图5,∵AC′∥OC,∴,∴OE=EF,∴,DE=3k,∴,∴,∴,∵AC′∥OC,∴,∴,解得或5(舍去),∴,综上:或.【点评】本题考查了圆和三角形相结合的问题,锐角三角函数,点与圆的位置关系,相交两圆的性质,相似三角形的判定与性质,添加适当的辅助线,构造直角三角形,并灵活运用勾股定理是解答本题的关键。
2024年上海市青浦区中考数学二模试卷一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.下列计算正确的是()A. B.C.D.3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.B.C.D.4.某兴趣小组有5名成员,身高厘米分别为:161,165,169,163,增加一名身高为165厘米的成员后,现兴趣小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变小C.平均数不变,方差变大D.平均数变小,方差不变5.已知四边形ABCD 中,AB 与CD 不平行,AC 与BD 相交于点O ,那么下列条件中,能判断这个四边形为等腰梯形的是()A. B.C.,D.,6.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过O 作AC 的垂线交AD 于点E ,EC 与BD 相交于点F ,且,那么下列结论错误的是()A. B.C.D.二、填空题:本题共12小题,每小题4分,共48分。
7.分解因式:______.8.方程的解是______.9.函数的定义域是______.10.如果关于x的方程有实数根,那么实数c的取值范围是______.11.如果将抛物线向右平移3个单位,那么所得新抛物线的表达式是______.12.甲、乙两位同学分别在A、B、C三个景点中任意选择一个游玩,那么他们选择同一个景点的概率是______.13.某校有2000名学生参加了“安全伴我行”的宣传教育活动.为了解活动效果,随机从中抽取m名学生进行了一次测试,满分为100分,按成绩划分为A,B,C,D四个等级,将收集的数据整理绘制成如下不完整的统计图表.请根据以上信息,估计该校共有______名学生的成绩达到A等级.成绩频数分布表等级成绩x频数A nB117C32D814.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B的仰角为,看这栋楼底部C的俯角为,热气球A处与楼的水平距离为m米,那么这栋楼BC的高度为______米用含、、m的式子表示15.如图,在中,中线AD、BE相交于点F,设,,那么向量用向量、表示为______.16.如图,有一幅不完整的正多边形图案,小明量得图中一边与对角线的夹角,那么这个正多边形的中心角是______度.17.正方形ABCD的边长为1,E为边DC的中点,点F在边AD上,将沿直线EF翻折,使点D落在点G处,如果,那么线段DF的长为______.18.在矩形ABCD中,,,AC与BD相交于点经过点B,如果与有公共点,且与边CD没有公共点,那么的半径长r的取值范围是______.三、解答题:本题共7小题,共78分。
2024年上海市黄浦区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)多项式的因式分解与整式乘法是互逆的.在整式乘法中,“单项式乘多项式”所对应的互逆因式分解方法是()A.提取公因式法B.公式法C.十字相乘法D.分组分解法2.(4分)已知第二象限内点P到x轴的距离为2,到y轴的距离为3,那么点P的坐标是()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)3.(4分)如图1,一个3×5的网格,其中的12个单位正方形已经被2张“L”型和1张“田字”型纸片互不重叠地占据了.下列有4个均由4个单位正方形所组成的纸片,依次记为型号1、型号2、型号3和型号4.将这4个型号的纸片做平移、旋转,恰能将图1中3个未被占据的单位正方形占据,并且与已有的3张纸片不重叠的是()A.型号1B.型号2C.型号3D.型号44.(4分)对于数据:2、2、2、4、5、6、8、8、9、100,能较好反映这组数据平均水平的是()A.这组数据的平均数B.这组数据的中位数C.这组数据的众数D.这组数据的标准差5.(4分)反比例函数的图象有下述特征:图象与x轴没有公共点且与x轴无限接近.下列说明这一特征的理由中,正确的是()A.自变量x≠0且x的值可以无限接近0B.自变量x≠0且函数值y可以无限接近0 C.函数值y≠0且x的值可以无限接近0D.函数值y≠0且函数值y可以无限接近0 6.(4分)小明在研究梯形的相似分割问题,即如何用一条直线将一个梯形分割成两个相似的图形.他先从等腰梯形开始进行探究,得到下面两个结论.结论1:存在与上、下底边相交的直线,能将等腰梯形分割成两个相似的图形;结论2:不存在与两腰相交的直线,能将等腰梯形分割成两个相似的图形.对这两个结论,你认为()A.结论1、结论2都正确B.结论1正确、结论2不正确C.结论1不正确、结论2正确D.结论1、结论2都不正确二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)100的平方根是.8.(4分)计算:(﹣a3)2=.9.(4分)方程x=的解是.10.(4分)已知关于x的方程x2+mx﹣1=0,判断该方程的根的情况是.11.(4分)将直线y=2x向上平移2个单位,所得直线与x轴、y轴所围成的三角形面积是.12.(4分)一副52张的扑克牌(无大、小王)被任意打乱后背面朝上放在桌上,小华先从中抽取1张,取得的是黑桃A.然后小王从剩下的牌中再任意抽取1张,他恰好抽到A 的概率是.13.(4分)小黄对学校提供午餐中的主食、荤菜、蔬菜和汤,开展了一次满意度调查.他利用中午休息时间,随机对学校中50名学生做了问卷调查,汇总数据如表.如果学校共有1400名学生,那么全校对午餐中主食满意的学生约有名.类别主食荤菜蔬菜汤满意人数16520814.(4分)现有一张矩形纸片,其周长为36厘米,将纸片的四个角各剪下一个边长为2厘米的正方形,然后沿虚线(如图所示)将纸片折成一个无盖的长方体.如果所得的长方体的体积是48立方厘米,设原矩形纸片的长是x厘米,那么可列出方程为.15.(4分)如图,D、E分别是△ABC边AB、AC上点,满足AD=2BD,∠ADE=∠ABC.记,,那么向量=(用向量、表示).16.(4分)如图,正六边形MNPQRS位于正方形ABCD内,它们的中心重合于点O,且MN∥BC,已知正方形ABCD的边长为a,正六边形MNPQRS的边长为b,那么点P到边CD的距离为.(用a、b的代数式表示)17.(4分)如图,由4个全等的直角三角形拼成一个大正方形ABCD,内部形成一个小正方形MNPQ.如果正方形MNPQ的面积是正方形ABCD面积的一半,那么∠ABM的正切值是.18.(4分)如图,D是等边△ABC边BC上点,BD:CD=2:3,作AD的垂线交AB、AC 分别于点E、F,那么AE:AF=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:|1﹣tan60°|﹣+(2024﹣)0.20.(10分)解不等式组:.21.(10分)如图,D是△ABC边AB上点,已知∠BCD=∠A,AD=5,BD=4.(1)求边BC的长;(2)如果△ACD∽△CBD(点A、C、D对应点C、B、D),求∠ACB的度数.22.(10分)网络平台上有一款代金券,主打的广告语是“满80团1张”.规则如下:在平台可以花75元团购一张80元代金券,一张代金券在平台商城内可以抵80元消费额,每笔消费可用于抵扣的代金券数量不限,但不找零.(1)在平台商城一笔375元的消费,如果使用4张代金券,实际共支付了多少元?(2)在充分使用代金券的情况下,在平台商城一笔x元的消费与实际总支付y元间存在着依赖关系,当320<x<375时,写出y关于x的函数关系式;(3)广告语是“满80团1张”.如果在平台商城一笔消费未满80元,那么是不是就一定没必要“团”哪?说说你的理由.23.(12分)如图,M、N分别是平行四边形ABCD边AD、BC的中点,对角线BD交AN、CM分别于点P、Q.(1)求证:;(2)当四边形ANCM是正方形时,试从内角大小和邻边的数量关系的角度探究平行四边形ABCD的形状特征.24.(12分)问题:已知抛物线L:y=x2﹣2x.抛物线W的顶点在抛物线L上(非抛物线L 的顶点)且经过抛物线L的顶点.请求出一个满足条件的抛物线W的表达式.(1)解这个问题的思路如下:先在抛物线L上任取一点(非顶点),你所取的点是;再将该点作为抛物线W的顶点,可设抛物线W的表达式是;然后求出抛物线L的顶点是;再将抛物线L的顶点代入所设抛物线W的表达式,求得其中待定系数的值为;最后写出抛物线W的表达式是.(2)用同样的方法,你还可以获得其他满足条件的抛物线W,请再写出一个抛物线W的表达式.(3)如果问题中抛物线L和W在x轴上所截得的线段长相等,求抛物线W的表达式.25.(14分)已知:如图,△ABC是圆O的内接三角形,AB=AC,弧、的中点分别为M、N,MN与AB、OA、AC分别交于点P、T、Q.(1)求证:OA⊥MN;(2)当△ABC是等边三角形时,求的值;(3)如果圆心O到弦BC、MN的距离分别为7和15,求线段PQ的长.2024年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.【分析】根据整式的乘法与因式分解的关系解答即可.【解答】解:多项式的因式分解与整式乘法是互逆的.在整式乘法中,“单项式乘多项式”所对应的互逆因式分解方法是提取公因式法,故选:A.【点评】本题考查了因式分解与整式乘法的关系,属于基础题.2.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限内,P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是2,∴点P(﹣3,2).故选:B.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3.【分析】对所给四个型号,按要求依次进行判断即可.【解答】解:由题知,型号1是“田字”型,当放入空白处时,要么右下角的小正方形无法被占据,要么会与左下角的阴影小正方形重叠.故A选项不符合题意.如图所示,型号2中的图案若不旋转,则无法完全占据空白小正方形,旋转后,也无法完全占据空白小正方形,.故B选项不符合题意.如图所示,型号3无法完全占据空白小正方形,故C选项不符合题意.如图所示,型号4通过旋转可以完全占据空白小正方形,且与已有的正方形不重叠,故D选项符合题意.故选:D.【点评】本题考查旋转的性质,良好的空间想象能力是解题的关键.4.【分析】根据平均数的定义即可得出答案.【解答】解:能较好反映这组数据平均水平的是这组数据的平均数;故选:A.【点评】此题考查了平均数,掌握平均数能较好地反映一组数据的平均水平是解题的关键.5.【分析】根据反比例函数的性质和题目条件,逐项分析判断即可.【解答】解:A、自变量x≠0且x的值可以无限接近0,与题目条件不符,错误,不符合题意;B、自变量x≠0且函数值y可以无限接近0,与题目条件不符,错误,不符合题意;C、函数值y≠0且x的值可以无限接近0,与题目条件不符,错误,不符合题意;D、函数值y≠0且函数值y可以无限接近0,与题目条件相符,正确,符合题意;故选:D.【点评】本题考查了反比例函数的图象,熟练掌握反比例函数图象的特点是关键.6.【分析】分别作上下底的垂直平分线即可判定结论1正确;连接两腰与其垂直平分线的交点即可判定结论2错误.【解答】如图,存在与上、下底边相交的直线,将等腰梯形分割成两个相似的图形,则结论1正确;如图,存在与两腰相交的直线,将等腰梯形分割成两个相似的图形,则结论2不正确;故选:B.【点评】本题主要考查了图形的相似和垂直平分线的性质,掌握垂直平分线的性质是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.【分析】平方根的概念:一个数x的平方等于a,这个数x叫a的平方根;所以谁的平方是100,谁就是100的平方根.【解答】解:①∵(±10)2=100,∴100的平方根是±10.故答案为±10.【点评】此题主要考查了平方根的定义,解决此类问题要先熟悉平方根的概念.规律总结:弄清概念是解决本题的关键.8.【分析】根据幂的乘方,底数不变指数相乘计算即可.【解答】解:(﹣a3)2=a6.【点评】本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.9.【分析】先将无理方程两边同时平方转化为有理方程,解得方程的解,最后要进行检验,即可解答本题.【解答】解:x=,两边平方,得x2=x+2,移项,得x2﹣x﹣2=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,解得,x=2或x=﹣1,检验,当x=2时,方程左边等于右边,故x=2是原无理方程的解,当x=﹣1时,方程左边不等于右边,故x=﹣1不是原无理方程的解,故答案为:x=2.【点评】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要进行检验.10.【分析】根据b2﹣4ac的正负即可解决问题.【解答】解:由题知,Δ=m2﹣4×1×(﹣1)=m2+4,因为m2≥0,所以Δ=m2+4≥4>0,则该方程有两个不相等的实数根.故答案为:两个不相等是实数根.【点评】本题考查根的判别式,熟知一元二次方程根的判别式是解题的关键.11.【分析】根据函数图象“上加下减”的平移规律得到直线解析式,求出解析式与坐标轴交点,可得答案.【解答】解:直线y=2x向上平移2个单位长度得到:y=2x+2,令y=0,即2x+2=0,解得x=﹣1,令x=0,得y=2,所以直线与x轴和y轴的交点坐标分别为:(﹣1,0)与(0,2),所以直线与坐标轴围成的三角形的面积为=1.故答案为:1.【点评】本题考查了一次函数的几何变换,以及图象与坐标轴的交点求面积,解题的关键是掌握“左加右减,上加下减”.12.【分析】根据概率公式直接求解即可.【解答】解:∵共有52张扑克牌(无大、小王),小华先从中抽取1张,∴剩下51张扑克牌,∵小华取得的是黑桃A,∵剩下的扑克牌中有3张A,∴他恰好抽到A的概率是=.故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】用该校的总人数乘以对午餐中主食满意的学生所占的百分比,即可得出答案.【解答】解:根据题意得:1400×=448(名),答:全校对午餐中主食满意的学生约有448名.故答案为:448.【点评】本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.14.【分析】设原矩形纸片的长是x厘米,则宽为(18﹣x)厘米,所得的长方体的长为(x ﹣2×2)厘米,宽为(18﹣x﹣2×2)厘米,高为2厘米,根据“所得的长方体的体积是48立方厘米”即可列出方程.【解答】解:设原矩形纸片的长是x厘米,则宽为(18﹣x)厘米,所得的长方体的长为(x﹣2×2)厘米,宽为(18﹣x﹣2×2)厘米,高为2厘米,根据题意,得2(x﹣﹣2×2)(18﹣x﹣2×2)=48,故答案为:2(x﹣﹣2×2)(18﹣x﹣2×2)=48.【点评】本题主要考查的是由实际问题抽象出一元二次方程,关键在于理解清楚题意找出等量关系,列出方程求出符合题意得解.15.【分析】过点E作EF∥BC交BC于点F,根据平行线分线段成比例推出,,再根据平行四边形法则即可得出结果.【解答】解:∵∠ADE=∠ABC.∴DE∥BC,如图,过点E作EF∥BC交BC于点F,则四边形DBFE是平行四边形,∴BF=DE,∵AD=2BD,DE∥BC,∴,BD=,∴BF=DE=,又,,∴,,∴,故答案为:.【点评】本题考查了平面向量,平行四边形的性质,熟记平面向量的平行四边形运算法则是解题的关键.16.【分析】根据正六边形、正方形的性质,由于它们的中心O重合,由对称性可得点P到边CD的距离PE是正方形边长的一半与正六边形边长的差即可.【解答】解:如图,连接SP,则SP过点O,延长SP交CD于点E,∵六边形PQRSMN是正六边形,∴=60°,∵OP=OQ,∴△POQ是正三角形,∴OP=PQ=b,由于MN∥BC,正六边形PQRSMN,正方形ABCD的中心O重合,由对称性可知,PE⊥CD,OE=AD=a,∴PE=OE﹣OP=a﹣b,即点P到边CD的距离为a﹣b,故答案为:a﹣b.【点评】本题考查正多边形和圆,掌握正六边形、正方形的性质是正确解答的关键.17.【分析】设AM=a,BM=b,并用a,b表示出正方形MNPQ的面积和正方形ABCD面积,再列方程求出的值,即可解决问题.【解答】解:设AM=a,BM=b,则正方形ABCD面积=AB2=a2+b2,正方形MNPQ的面积=MN2=(b﹣a)2,∵正方形MNPQ的面积是正方形ABCD面积的一半,∴(b﹣a)2=(a2+b2),整理,得a2﹣4ab+b2=0,∵b≠0,∴()2﹣4•+1=0,解得=2+>1(舍去),=2﹣,∵tan∠ABM===2﹣.【点评】本题考查赵爽弦图,勾股定理,一元二次方程的解法,三角函数,能灵活运相关知识和一元二次方程的解法求出AM,BM间的关系是解题的关键.18.【分析】过点D作GD⊥AD,交AB于点G,交AC的延长线于点H,DM⊥AB于点M,DN⊥AC于点N,设BD=2m,则CD=3m,BC=5m,利用等边三角形的性质和含30°角的直角三角形的性质,勾股定理表示出线段BM,CN,DM,DN的长度,利用相似三角形的判定与性质求得线段AG,AH的长度,最后利用平行线的判定与性质,相似三角形的判定与性质解答即可得出结论.【解答】解:过点D作GD⊥AD,交AB于点G,交AC的延长线于点H,DM⊥AB于点M,DN⊥AC于点N,如图,∵BD:CD=2:3,∴设BD=2m,则CD=3m,∴BC=5m.∵△ABC为等边三角形,∴AB=AC=BC=5m,∠B=∠ACB=60°,∵DM⊥AB,DN⊥AC,∴∠BDM=NCD=30°,∴BM=BD=m,CN=CD=m,∴DM=m,DN=m.∴AM=AB﹣BM=4m,AN=AC﹣CN=m.∴AD==m.∵AD⊥DG,DM⊥AB,∴△AMD∽△ADG,∴.∴AG==m.同理:△ADN∽△AHD,∴,∴AH=m.∵EF⊥AD,GH⊥AD,∴EF∥GH,∴△AEF∽△AGH,∴=.故答案为:.【点评】此题考查等边三角形的性质、轴对称的性质、全等三角形的判定与性质、相似三角形的判定与性质、分式的化简等知识与方法,正确的作出所需要的辅助线是解题的关键.三、解答题:(本大题共7题,满分78分)19.【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式=﹣1﹣()+1=﹣1﹣+1=.【点评】本题考查的是二次根式的混合运算,零指数幂和特殊的三角函数值,熟练掌握上述知识点是解题的关键.20.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而可得答案.【解答】解:解不等式①,得:x≤2.5,解不等式②,得:x>﹣10,则不等式组的解集为﹣10<x≤2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【分析】(1)由∠BCD=∠A可得△BCD∽△BAC,根据相似三角形的性质即可解答;(2)由△ACD∽△CBD得出∠ACD=∠B,进而得出∠ACD+∠BCD=∠A+∠B=90°.【解答】解:(1)∵AD=5,BD=4.∴AB=9,∵∠BCD=∠A,∠B=∠B,∴△BCD∽△BAC,∴,∴BC2=AB•BD=9×4=36,∴BC=6;(2)∵△ACD∽△CBD,∴∠ACD=∠B,∵∠BCD=∠A,∴∠ACD+∠BCD=∠A+∠B=180°÷2=90°,∴∠ACB=90°.【点评】本题考查相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题关键.22.【分析】(1)根据题意列式4×75+(375﹣4×80),即可算得答案;(2)当320<x<375时,可使用4张代金券,故y=4×75+(x﹣4×80)=x﹣20;(3)当在平台商城一笔消费为76元时,若不团,需支付76元,若团一张代金券,实际只支付75元;同理在平台商城一笔消费为77元,78元,79元时,团1张代金券都比不团要划算;故如果在平台商城一笔消费未满80元,那么不是就一定没必要“团”.【解答】解:(1)∵4×75+(375﹣4×80)=300+55=355(元),∴在平台商城一笔375元的消费,如果使用4张代金券,实际共支付了355元;(2)当320<x<375时,可使用4张代金券,∴y=4×75+(x﹣4×80)=x﹣20;∴y关于x的函数关系式为y=x﹣20(320<x<375);(3)如果在平台商城一笔消费未满80元,那么不是就一定没必要“团”,理由如下:当在平台商城一笔消费为76元时,若不团,需支付76元,若团一张代金券,实际只支付75元;同理在平台商城一笔消费为77元,78元,79元时,团1张代金券都比不团要划算;∴如果在平台商城一笔消费未满80元,那么不是就一定没必要“团”.【点评】本题考查一次函数的应用,解题的关键是读懂题意,列出函数关系式.23.【分析】(1)由平行四边形性质可得:AD=BC,AD∥BC,得出AM=CN,推出四边形AMCN是平行四边形,可得AN∥CM,得出==1,==1,即可证得结论;(2)由正方形性质可得:AM=AN=CN=CM,∠MAN=∠ANC=∠AMC=90°,由tan ∠ABN==1,可得∠ABN=45°,∠BAD=180°﹣45°=135°,再利用解直角三角形可得AD=AB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是平行四边形ABCD边AD、BC的中点,∴AM=DM=AD,BN=CN=BC,∴AM=CN,∴四边形AMCN是平行四边形,∴AN∥CM,∴==1,==1,∴DQ=BP=PQ,∴PQ=BD;(2)解:如图,∵四边形ANCM是正方形,∴AM=AN=CN=CM,∠MAN=∠ANC=∠AMC=90°,∵M、N分别是平行四边形ABCD边AD、BC的中点,∴AM=DM=BN=CN,AD∥BC,∴AN=BN,∴tan∠ABN==1,∴∠ABN=45°,∴∠BAD=180°﹣45°=135°,∴AB===AM,∵AD=2AM,∴==,即AD=AB,∴当四边形ANCM是正方形时,平行四边形ABCD的内角分别为∠BAD=∠BCD=135°,∠B=∠D=45°,AD=AB.【点评】本题考查了平行四边形的判定和性质,正方形的性质,平行线分线段成比例,解直角三角形等,熟练运用平行四边形的判定和性质是解题关键.24.【分析】(1)按照题干中的思路求解即可;(2)根据(1)的方法解答即可;(3)设在抛物线L上所取非顶点的一点P的坐标为(m,m2﹣2m),设出抛物线W的解析式,再把抛物线L的顶点(1,﹣1)代入W求出a=﹣1,然后抛物线W与x轴的交点坐标为(x3,0),(x4,0),由根与系数的关系和抛物线L和W在x轴上所截得的线段长相等求出m的值,从而得出抛物线W的表达式.【解答】解:(1)对于抛物线L:y=x2﹣2x,当x=3时,y=32﹣2×3=3,∴在抛物线L上所取的点是(3,3),∴设抛物线W的表达式是W=a(x﹣3)2+3,∵y=x2﹣2x=(x﹣1)2﹣1,∴抛物线L的顶点是(1,﹣1),将(1,﹣1)代入W=a(x﹣3)2+3得,a(1﹣3)2+3=﹣1,解得a=﹣1,∴抛物线W的表达式是W=﹣(x﹣3)2+3=﹣x2﹣6x﹣6,故答案为:(3,3),W=a(x﹣3)2+3,(1,﹣1),﹣1,﹣x2﹣6x﹣6;(2)对于抛物线L:y=x2﹣2x,当x=﹣1时,y=(﹣1)2﹣2×(﹣1)=3,∴在抛物线L上所取的点是(﹣1,3),∴设抛物线W的表达式是W=a(x+1)2+3,∵y=x2﹣2x=(x﹣1)2﹣1,∴抛物线L的顶点是(1,﹣1),将(1,﹣1)代入W=a(x﹣3)2+3得,a(1+1)2+3=﹣1,解得a=﹣1,∴抛物线W的表达式是W=﹣(x+1)2+3=﹣x2﹣2x+2(答案不唯一);(3)设在抛物线L上所取非顶点的一点P的坐标为(m,m2﹣2m),设抛物线W的表达式是W=a(x﹣m)2+m2﹣2m,将抛物线L的顶点(1,﹣1)代入W=a(x﹣m)2+m2﹣2m得,a(1﹣m)2+m2﹣2m=﹣1,解得a=﹣1,令抛物线L中的y=0,即x2﹣2x=0,解得x1=0,x2=2,抛物线L上在x轴上所截得的线段长为2,抛物线W与x轴的交点坐标为(x3,0),(x4,0),方程a(x﹣m)2+m2﹣2m=0的两个根为x3,x4,把方程a(x﹣m)2+m2﹣2m=0整理并把a=﹣1代入得:x2﹣2mx+2m=0,∴x3+x4=2m,x3•x4=2m,∴|x3﹣x4|==,∵抛物线L和W在x轴上所截得的线段长相等,∴|x3﹣x4|=2,∴4m2﹣8m=4,解得m=1±,∴点P坐标为(1+,1)或(1﹣,1),∴抛物线W的表达式为W=﹣(x﹣1﹣)2+1或W=﹣(x﹣1+)2+1.【点评】本题考查抛物线与x轴的交点以及待定系数法求函数解析式,关键是掌握抛物线与x轴的交点与一元二次方程根的关系.25.【分析】(1)利用等弦对等弧的性质,弧的中点的性质和垂径定理解答即可;(2)连接OM交AB于点E,连接ON交AC于点F,利用等边三角形的性质,弧的度数的性质求得∠AOM=∠AON=60°,利用直角三角形的边角关系定理解答即可;(3)利用分类讨论的方法分两种情况讨论解答:①当圆心O在△ABC的内部时,连接OM交AB于点E,连接ON交AC于点F,延长AO交BC于点H,利用全等三角形的判定与性质得到ME=AT,MP=AT;设⊙O的半径为r,则AH=r+7,AE=,利用勾股定理求得半径,设PT=m,则MP=AP =20﹣m,再利用勾股定理解答即可得出结论;②当圆心O在△ABC的外部时,连接OM交AB于点E,连接ON交AC于点F,AO交BC于点H,类比①的方法解答即可得出结论.【解答】(1)证明:∵AB=AC,∴.∵弧、的中点分别为M、N,∴,,∴,∵OA为圆O的半径,∴OA⊥MN;(2)解:连接OM交AB于点E,连接ON交AC于点F,如图,∵△ABC是等边三角形,∴AB=AC=BC,∴=⊙O,∵弧、的中点分别为M、N,∴OE⊥AB,OF⊥AC,,,∴=⊙O,∴∠MON=120°.∴∠AOM=∠AON=60°,∵cos∠AOE=,∴OE=OA.∵,OE⊥AB,OA⊥MN,∴OE=OT,∴OT=OA,∴=1;(3)解:①当圆心O在△ABC的内部时,连接OM交AB于点E,连接ON交AC于点F,延长AO交BC于点H,如图,∵AB=AC,OA⊥MN,∴OA平分∠BAC,∴AH⊥BC.则OT=15,OH=7,由(2)知:OE⊥AB,OF⊥AC,在△AOE和△MOT中,,∴△AOE≌△MOT(AAS),∴OE=OT=15,AE=MT,∴ME=AT.在△MEP和△ATP中,,∴△MEP≌△ATP(AAS),∴MP=AT.∵OE⊥AB,∴AE=AB,∵OA⊥MN,∴MT=NT=MN,PT=QT=PQ.设⊙O的半径为r,则AH=r+7,AE=,∴AB=2AE=2.连接OB,∵BH2=AB2﹣AH2,BH2=OB2﹣OH2,∴,∴r=﹣18(不合题意,舍去)或r=25.∴AT=OA﹣OT=10,MT==20,设PT=m,则MP=AP=20﹣m,∵AT2+PT2=AP2,∴102+m2=(20﹣m)2,∴m=.∴PQ=2PT=15;②当圆心O在△ABC的外部时,连接OM交AB于点E,连接ON交AC于点F,AO交BC于点H,如图,∵AB=AC,OA⊥MN,∴OA平分∠BAC,∴AH⊥BC.则OT=15,OH=7,由(2)知:OE⊥AB,OF⊥AC,在△AOE和△MOT中,,∴△AOE≌△MOT(AAS),∴OE=OT=15,AE=MT,∴ME=AT.在△MEP和△ATP中,,∴△MEP≌△ATP(AAS),∴MP=AT.∵OE⊥AB,∴AE=AB,∵OA⊥MN,∴MT=NT=MN,PT=QT=PQ.设⊙O的半径为r,则AH=r﹣7,AE=,∴AB=2AE=2.连接OB,∵BH2=AB2﹣AH2,BH2=OB2﹣OH2,∴,∴r=﹣25(不合题意,舍去)或r=18.∴AT=OA﹣OT=3,MT==3,设PT=n,则MP=AP=3﹣n,∵AT2+PT2=AP2,∴,∴n=.∴PQ=2PT =.综上,线段PQ的长为15或.【点评】本题主要考查了圆的有关性质,圆周角定理,垂径定理,等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,等边三角形的性质,特殊角的三角函数值,直角三角形的边角关系定理,利用分类讨论的思想方法解答是解题的关键。
旋转
(2015 二模 奉贤) 18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△
AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,
如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ;
(2015 二模 静安青浦)17. 将矩形ABCD
(如图)绕点A 旋转后, 点D 落在对角线AC 上的点
D ’,点C 落到C ’,如果AB =3,BC=4,那么CC ’的长为 .
(2015 二模 杨浦)18.如图,钝角△ABC 中,tan ∠BAC =
3
4
,BC =4,将三角形绕着点 A 旋转,点C 落在直线AB 上的点C ,处,点B 落在点B ,处,若C 、 B 、B ,恰好在一直线上,则AB 的长为 .
翻折
(2015 二模 宝山嘉定) 18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,
△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=,
那么=DE .
(2015 二模 崇明)18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC
的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 .
A D
B C
G E F
图5 B
A C F
E
D
(第18题图)
C
B
O
A (第18题图)
(第17题图)
A B
D
(2015 二模 金山)18.在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻
折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于
(2015 二模 闵行)18.如图,已知在Rt △ABC 中,∠C = 90º,AC = BC = 1,点D 在边BC
上,将△ABC 沿直线AD 翻折,使点C 落在点C ′处,联结AC ′,直线AC ′与边CB 的延长线相交于点F .如果∠DAB =∠BAF ,那么BF = .
(2015 二模 浦东)18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△
ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于 .
(2015 二模 普陀)18.如图6,在矩形纸片ABCD 中,AB <BC .点M 、N 分别在边AD 、
BC 上,沿直线MN 将四边形DMNC 翻折,点C 恰好与点A 重合.如果此时在原图中
△CDM 与△MNC 的面积比是1︰3,那么MN
DM
的值等于 .
B
C
D
M N
A 第18题图
A B C (第18题图) C
A D
B
(第18题图)
图6
第18题图
(2015 二模 松江)18.如图,在△ABC 中,AB =AC =5cm ,BC =6cm ,
BD 平分∠ABC ,BD 交AC 于点D .如果将△ABD 沿BD 翻折,点A
落在点A ′处,那么△D A ′C 的面积为_______________cm 2
.
(2015 二模 徐汇)18.如图,已知扇形AOB 的半径为6,圆心角为90°,E 是半 径OA 上一点,F 是AB 上一点.将扇形AOB 沿EF 对折,
使得折叠后的圆弧'A F 恰好与半径OB 相切于点G ,若 OE =5,则O 到折痕EF 的距离为 .
其他
(2015 二模 黄浦)18. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,
90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 .
(2015 二模 长宁)18.如图,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC =5,BC =6,△ABC 固定不动,△DEF 运动,并满足点E 在BC 边从B 向C 移动(点E 不与B 、C 重合),DE 始终经过点A ,EF 与AC 边交于点M ,当△AEM 是等腰三角形时,BE = .
A
B
C
D
(第18题图)
第18题。