2019-2020学年八年级数学 第11章 全等三角形拔高题 新人教版
- 格式:doc
- 大小:127.50 KB
- 文档页数:5
桑水初中数学试卷桑水出品第十一章 全等三角形测试题(A )4分,共40分) 、下列说法正确的是( ):全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( )A :2B :3C :5D :2.5、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ):1个 B :2个 C :3个 D :4个4、如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A :2 B :3 C :4 D :5、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=( ) :7 B :8° C :9° D :10° 、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF , ③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) :1个 B :2个 C :3个 D :4个7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( ) A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,③△BMP ≌△QNP ,其中正确的是( ) A :①②③ B :①② C :②③ D :①9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A :1个B :2个C :3个D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝,则△DEB 的周长是( ) A :6㎝ B :4㎝ C :10㎝ D :以上都不对 11、如图:AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD 。
全等三角形拔高题1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
3. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.4. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.A B C DE P D ACM NPDA CBO5.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE•⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.6.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由。
7.已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。
(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。
GD FAC BEGD FACBEFED CBAG8. 如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .(1) 求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.9. 已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1) 求证:△AED ≌△EBC .(2) 观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):10. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1) 求证:MB =MD ,ME =MF(2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.BA DMOE D C B A11. 如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
人教新课标版初中八上第11章全等三角形拔高题精选一、学科内综合题(每小题8分,共32分)1.假设三角形的两条边分别为10和7,那么第三条边的中心线的值范围是多少?2.如图11-全-1所示,已知△abc中,ab=ac,d是cb延长线上的一点,∠adb=60°,e是ad上一点,且有de=db.求证:ae=be+bc.3.如图11-2所示,C点是AB线上的任意点(C点与a点和b点不重合),用AC表示bc为边在直线ab的同侧作等边△acd和等边△bce,ae与cd相交于点m,bd与ce相交于点n.(1)核实:△ 王牌≌ △ DCB;(2)验证:Mn‖ab4.如图11-全-3所示,在△abc中,af平分∠bac交bc于f,fd⊥ab于d,fe⊥acE.验证:AF垂直对分De二、学科间综合题(6分)5.如图11-quan-4所示,这是一种室内木地板图案,其中AB=BC=CD=Da,AE=CE=CF=FA;图案由深色的全等三角形木块(阴影部分)和浅色的全等三角形土块(无阴影部分)拼成,这个图案的面积是0.05m2,若房间的面积是13m2,问最少需要深色木块和浅色木块各多少块?三、申请问题(每个子问题6分,共12分)6.传说在19世纪初,一位将军率领部队在一河边与敌军激战,为使炮弹准确落到河对岸的敌人的将领陈棣站在河边,放下帽子,视线正好落在河对岸帽沿的边线上。
然后他一步一步地后退,直到视线落到他站在河岸上的位置,如图11-5所示1此时,他后退的距离就是河流的宽度。
请考虑一下。
为什么?7.如图11-全-6所示,要在两条公路的中间建一座加油站,位置选在距两条公路的距离相到两条公路交叉口a的距离为2cm(参考图中的距离)。
图中的加油站在哪里?请解释原因四、创新题(每小题7分,共49分)8.如图11-7所示,已知ad是△ ABC,AE是我们的中线△ abd,ab=BD.验证:ac=2ae.9.如图11-8所示①, a、 e、F和C在一条直线上,AE=CF,de⊥ 分别在e和F之后,bf⊥ac,若ab=cd.验证:BD将EF一分为二。
第11章三角形压轴题训练1.如图1的图形我们把它称为“8字形”,显然有;阅读下面的内容,并解决后面的问题:(1)如图2,AP、CP分别平分、,若,,求的度数;(2)①在图3中,直线AP平分的外角,CP平分的外角,猜想与、的关系,并说明理由.②在图4中,直线AP平分的外角,CP平分的外角,猜想与、的关系,直接写出结论,无需说明理由.③在图5中,AP平分,CP平分的外角,猜想与、的关系,直接写出结论,无需说明理由.2.如图,在中,,D为射线上一点,过点D作于点E.(1)如图①,当点在线段上时,请直接写出与的数量关系;(2)如图②,当点在的延长线上时,交的延长线于点,探究与的数量关系,并说明理由;(3)在()的条件下,若点为线段上一点,过点作于点,连接,且,,延长,交于点,求的度数.3.如图,直线MN的同侧放置着角度分别为45°、45°、90°的三角板OAB和角度分别为30°、60°、90°的三角板OCD.点A、O、C在直线MN上,点O、B、D三点共线,OA=OB=OC=3cm.(1)如图1,连接BC,则∠BCD=_________.(2)如图2,把三角板OAB向右沿NM方向平移1cm得△,交OD于点G,求四边形的面积.(3)如图3,三角板OAB绕着点O旋转,当AB MN时,AB与OD交于点H,在OA上取一点P,∠PHO的角平分线HQ与线段BO的延长线交于点Q,试探索∠AHP与∠HQB 的数量关系,并说明理由.(4)如图4,若将图1中的三角板OAB绕着点O以每秒5°的速度顺时针旋转一周,当边OA或OB与边CD平行时,求旋转时间t的值.4.如图,已知AB CD,直线MN交AB于点M,交CD于点N.点E是线段MN上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分∠MPE,QF平分∠CQE.(1)如图1,若PE⊥QE,∠EQN=64°,则∠MPE=°,∠PFQ=°.(2)如图2,求∠PEQ与∠PFQ之间的数量关系,并说明理由.(3)如图3,当PE⊥QE时,若∠APE=150°,∠MND=110°,过点P作PH⊥QF交QF 的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线恰好平行于△的一条边,请直接写出所有满足条件的t的值.5.如图,在中,点D在上,过点D作,交于点E,平分,交的平分线于点P,与相交于点G,的平分线与相交于点Q.(1)若,则____________,____________;(2)若,当的度数发生变化时,的度数是否发生变化?并说明理由;(3)若,则____________,____________;(用含x的代数式表示);(4)若中存在一个内角等于另一个内角的三倍,请直接写出所有符合条件的的度数.6.在平面直角坐标系中,,,直角三角形的边与轴分别相交于、两点,与直线分别交于、点,.(1)将直角三角形如图位置摆放,如果,则______;(2)将直角三角形如图位置摆放,为上一点,①若,请直接写出与之间的等量关系:______;②若,请判断与之间的等量关系,并说明理由.(3)将直角三角形如图位置摆放,若,延长交于点,点是射线上一动点,探究,与的数量关系,请直接写出结论题中的所有角都大于小于:______.7.在中,(1)如图(1),、的平分线相交于点.①若,求的度数.②若,则_________.(2)如图(2),在中的外角平分线相交于点,,求的度数.(3)如图(3),的、的平分线相交于点,它们的外角平分线相交于点.请回答:与具有怎样的数量关系?并说明理由.8.(1)如图1,∠A=70°,BP、CP分别平分∠ABC和∠ACB,则∠P的度数是 .(2)如图2,∠A=70°,BP、CP分别平分∠EBC和∠FCD,则∠P的度数是 .(3)如图3,∠A=70°,BP、CP分别平分∠ABC和∠ACD,求∠P的度数.9.如图,,点A、分别在、上运动(不与点重合).(1)若是的平分线,的反方向延长线与的平分线交于点.①若,则______;②猜想:的度数是否随A,的移动发生变化?并说明理由.(2)如图,若,,则______;(3)若将改为(如图3),,,其余条件不变,则______(用含,的代数式表示,其中).10.(1)如图1,F是OC边上一点,求证:∠AFC=∠AOC+∠OAF;(2)如图2,∠AOB=36°,OC平分∠AOB,点D、E在射线OA、OC上,点P是射线OB 上的一个动点,连接DP交射线OC于点F.设∠EDP=x,若DE⊥OA,是否存在这样的x使得∠EFD=3∠EDF?若存在,求出x;若不存在,说明理由;(3)在(2)的条件下,若射线DA绕点D顺时针旋转至DO后立即回转,射线EO绕点E顺时针旋转至ED停止,射线DA转动的速度是4.5°/s,射线EO转动的速度是1°/s.若射线DA先旋转2s,射线EO才开始绕点E顺时针旋转,在射线EO到达ED之前,射线EO旋转到第________s时,射线DA与射线EO互相平行.11.已知AD∥BC,∠ADB=28°,点E在直线BD上,点F在射线BC上,E不与B、D 重合,F不与B、C重合.(1)如图1,当点E在线段BD的延长线上,点F在线段BC上时,连EF,求证:∠EFB +∠DEF=152°;(2)如图2,当点E在直线DB上运动,点F在线段BC上时,连EF,探究∠EFB与∠DEF 之间的数量关系,并说明理由;(3)如图3,当点E在线段BD延长线上,点Q在线段BC延长线上,点F在射线BC上,且点Q在点F的右侧时,直线DP平分∠ADE,直线FP平分∠EFQ,DP、FP交于点P,直接写出∠DEF和∠DPF的关系.12.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为∠CED=.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.13.如图1,直线GH分别交AB,CD于点E,F(点F在点E的右侧),若∠1+∠2=180°.(1)求证:AB CD;(2)如图2所示,点M、N在AB,CD之间,且位于E,F的异侧,连MN,若2∠M=3∠N,则∠AEM,∠NFD,∠N三个角之间存在何种数量关系,并说明理由.(3)如图3所示,点M在线段EF上,点N在直线CD的下方,点P是直线AB上一点(在E的左侧),连接MP,PN,NF,若∠MPN=2∠MPB,∠NFH=2∠HFD,则请直接写出∠PMH与∠N之间的数量.14.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明;【简单应用】(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;解:∵AP、CP分别平分∠BAD,∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P =(∠B+∠D)=26°.①【问题探究】如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想的度数,并说明理由.②【拓展延伸】在图4中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为:(用α、β表示∠P),并说明理由.15.如图1,在平面直角坐标系中,,过C作轴于B.(1)如图1,则三角形的面积_____________;(2)如图2,若过B作交y轴于D,则的度数为_____________;若分别平分,求的度数;(3)若线段与y轴交点M坐标为,在y轴上是否存在点P,使得三角形和三角形的面积相等?若存在,求出P点坐标;若不存在,请说明理由.16.如图,已知点E在四边形ABCD的边BC的延长线上,BM、CN分别是∠ABC、∠DCE 的角平分线,设∠BAD=α,∠ADC=β.(1)如图1,若α+β=180°,判断BM、CN的位置关系,并说明理由:(2)如图2,若α+β>180°,BM、CN相交于点O.①当α=70°,β=150°时,则∠BOC=_______;②∠BOC与α、β有怎样的数量关系?说明理由.(3)如图3,若α+β<180°,BM、CN的反向延长线相交于点O,则∠BOC=______.(用含α、β的代数式表示).17.已知:直线,动点在直线上运动,探究,,之间的关系.(1)【问题发现】若,,求的度数.(2)【结论猜想】当点在线段上时,猜想,,三个角之间的数量关系,并说明理由.(3)【拓展延伸】若点在射线上或者在射线上时(不包括端点),试着探究,,之间的关系是否会发生变化,请挑选一种情形画出图形,写出结论,并说明理由.18.中,,点D,E分别是边AC,BC上的点,点P是一动点,令,,.初探:(1)如图1,若点P在线段AB上,且,则_____________;(2)如图2,若点P在线段AB上运动,则∠1,∠2,之间的关系为_____________;(3)如图3,若点P在线段AB的延长线上运动,则∠1,∠2,之间的关系为_____________;再探:(4)如图4,若点P运动到的内部,写出此时∠1,∠2,之间的关系,并说明理由.19.如图,AB、CD被AC所截,,∠CAB=108°,点P为直线AB上一动点(不与点A重合),连CP,作∠ACP和∠DCP的平分线分别交直线AB于点E、F.(1)当点P在点A的右侧时①若∠ACP=36°,则此时CP是否平分∠ECF,请说明理由.②求∠ECF的度数.(2)在点P运动过程中,直接写出∠APC与∠AFC之间的数量关系.20.已知,如图,AB CD,直线交于点,交于点点是线段上一点,,分别在射线,上,连接,,平分,平分.(1)如图,当时,______;(2)如图,猜想与之间的数量关系,并说明理由;(3)如图,在问的条件下,若,,过点作交的延长线于点将绕点顺时针旋转,速度为每秒,直线旋转后的对应直线为,同时绕点逆时针旋转,速度为每秒,旋转后的对应三角形为,当首次落到上时,整个运动停止.在此运动过程中,经过秒后,恰好平行于的其中一条边,请直接写出所有满足条件的的值.参考答案:1.(1)(2)①,理由见解析;②;③【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P+∠3=∠1+∠ABC,∠P+∠2=∠4+∠ADC,相加得到2∠P+∠2+∠3=∠1+∠4+∠ABC+∠ADC,继而得到2∠P=∠ABC+∠ADC,代入数据得∠P的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠PAD+∠P=∠PCD+∠D,∠PAB+∠P=∠4+∠B,分别用∠2,∠3表示出∠PAD 和∠PCD,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP+∠P+∠4+∠B=360°,∠2+∠P+∠PCD+∠D=360°,分别用∠2,∠3表示出∠BAP 和∠PCD,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD+∠B=∠BCD+∠D,∠2+∠P=∠PCD+∠D,分别用∠2,∠3表示出∠BAD、∠BCD 和∠PCD,再整理即可得解;(1)解:∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,由(1)的结论得:∠P+∠3=∠1+∠ABC①,∠P+∠2=∠4+∠ADC②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∴∠P=(∠ABC+∠ADC)=(36°+16°)=26°.(2),理由如下:①∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D③,∠PAB+∠P=∠4+∠B④,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠PAD=∠PAB+∠BAD=∠2+180°-2∠2=180°-∠2,∴∠2+∠P=∠3+∠B⑤,③+⑤得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,∴∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D即2∠P+180°=∠B+∠D+180°,∴.②,理由如下:如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∴(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∴2∠P+∠B+∠D=360°,∴;③,理由如下:如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P﹣∠B=180°+∠D,∴.【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.2.(1)∠BAC=2∠EDC(2)∠BAC=2∠EDC,理由见解析(3)∠EKA=18°【分析】(1)如图1中,作AH⊥BC于H,利用等腰三角形的性质,等角的余角相等解决问题即可;(2)作AM⊥BC于M,由(1)同理可证∠BAC=2∠EDC;(3)如图2中,设∠C=∠FAC=∠ABC=x,则∠BAF=∠BFA=2x,构建方程求出x即可解决问题.(1)如图1中,作AH⊥BC于H,∵,∴∠BAC=2∠CAH.∵DE⊥AC,∴∠AHC=∠DEC=90°,∴∠C+∠CAH=90°,∠C+∠CDE=90°,∴∠CAH=∠CDE,∴∠BAC=2∠EDC.(2)结论:∠BAC=2∠EDC.理由如下:如图2中,作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠CAM.∵DE⊥AC,∴∠AMC=∠DEC=90°,∴∠C+∠CAM=90°,∠C+∠CDE=90°,∴∠CAM=∠CDE,∴∠BAC=2∠EDC.(3)∵∠AFG=∠CFG,FG⊥AC,∴∠FAC=∠C.设∠C=∠FAC=∠ABC=x,∴∠BAF=∠BFA=2x.在△BAF中,∠BAF+∠BFA+∠ABC=180°,∴2x+2x+x=180°,解得:x=36°,∴∠EAK=∠ABC+∠C=36°+36°=72°.∵KE⊥EC,∴∠E=90°,∴∠EKA=90°−∠EAK=18°.【点评】本题考查等腰三角形的判定及性质,等角的余角相等,三角形内角和定理,直角三角形两锐角互余,三角形外角的性质等知识.解题的关键是学会利用参数构建方程解决问题.3.(1)15(2)四边形的面积=(2+3) ×1=2.5;(3)∠AHP=2∠HQB;(4)旋转时间t的值为12或30或48或66秒.【分析】(1)求得∠OBC =∠BCO=45°,利用角的和差即可求解;(2)求得AO= GO=3-1=2(cm),利用梯形面积公式即可求解;(3)由角平分线的定义得到并设∠PHQ=∠QHO=α,推出∠AHP+2α=90°,∠HQB+α=∠BOH=45°,消去α即可求解;(4)分四种情况讨论,画出图形,利用解方程的方法求解即可.(1)解:∵OA=OB=OC=3cm,∠AOB=∠BOC=90°,∠DCO=60°,∴∠OBC =∠BCO=45°,∴∠BCD=∠DCO-∠BCO=15°,故答案为:15;(2)解:∵=1cm,∠GAO=45°,∴AO= GO=3-1=2(cm),∴四边形的面积=(2+3) ×1=2.5();(3)解:∠AHP=2∠HQB,理由如下:∵HQ平分∠PHO,∴∠PHQ=∠QHO,设∠PHQ=∠QHO=α,∵AB MN,∴∠BOC=∠B=45°,∠AHO=∠HOC=90°,∴∠BOH=45°,∴∠AHP+2α=90°,∠HQB+α=∠BOH=45°,∴∠AHP+2α=2∠HQB+2α=90°,∴∠AHP=2∠HQB;(4)解:由题意得旋转的角度为5t,当OA CD时,如图:∴∠AOD=∠D=30°,∠AON=90°-30°=60°,∴5t=60,解得:t=12(秒);当OB CD时,如图:∴∠BOC=∠DCO=60°,∴∠AOC=90°-60°=30°,∴∠AON=180°-30°=150°,∴5t=150,解得:t=30(秒);当OA CD时,如图:∴∠AOC=∠DCO=60°,∴5t=180+60,解得:t=48(秒);当OB CD时,如图:∴∠BON=∠DCO=60°,∴∠AON=90°-60°=30°,∴5t=360-30,解得:t=66(秒);综上,当边OA或OB与边CD平行时,旋转时间t的值为12或30或48或66秒.【点评】本题目考查了平行线的性质,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键.掌握分类思想,注意不能漏解.4.(1)26;135;(2)2∠PFQ-∠PEQ=180°,理由见解析;(3)t=或或.【分析】(1)延长PE交CD于G,设PE,FQ交于点H,设∠MPE=2α,则∠FPE=∠BPE=α,根据AB CD可表示出∠PGQ,进而根据三角形内角和推论表示出∠EQC,进而表示出∠EQH,然后结合△EQH和△PFH内角和得出关系式,进一步得出结果;(2)类比(1)的方法过程,得出结果;(3)分为△的三边分别与平行,分别画出图形求解即可.【详解】解:(1)如图1,延长PE交CD于G,设PE,FQ交于点H,设∠BPE=2α,则∠FPE=∠BPE=α,∵AB∥CD,∴∠PGQ=∠BPE=2α,∵PE⊥QE,∴∠QEH=QEG=90°,∴∠EQC=∠QEG+∠PGQ=90°+2α,∴∠EQH=∠EQC=45°+α,∵∠EQN=64°,∴∠EGQ=26°,∴∠BPE=26°.在△EQH和△PFH中,∵∠HEQ+∠HQE+∠EHQ=180°,∠FPH+∠FHP+∠PFH=180°,∠PHF=∠EHQ,∴∠HEQ+∠HQE=∠FPH+∠PFH,即:90°+45°+α=α+∠PFH,∴∠PFH=135°,故答案为:26;135;(2)2∠PFQ-∠PEQ=180°,理由如下:如图1,延长PE交CD于G,设PE,FQ交于点H,设∠BPE=2α,则∠FPE=∠BPE=α,∵AB CD,∴∠PGQ=∠BPE=2α,∵∠GEQ=180°-∠PEQ,∴∠EQC=∠QEG+∠PGQ=180°-∠PEQ+2α,∴∠HQE=∠EQC=90°+α-∠PEQ,在△EQH和△PFH中,∵∠PEQ+∠HQE+∠EHQ=180°,∠FPH+∠FHP+∠PFH=180°,∠PHF=∠EHQ,∴∠PEQ+∠HQE=∠FPH+∠PFH,即:∠PEQ+90°+α-∠PEQ=α+∠PFQ∴2∠PFQ-∠PEQ=180°;(3)根据题意,需要分三种情况:∵∠APE=150°,∴∠BPE=30°,∵PF平分∠MPE,∴∠FPE=∠BPF=15°,由(2)得2∠PFQ-∠PEQ=180°,又∠PEQ=90°,∴∠PFQ =135°,∴∠HPF=45°,∴∠HPB=30°,由题意得∠=10t,则∠=30+10t,∠=5t,则∠=110-5t,设与AB的交点为I,则∠=∠,如图3(1),当时,∠=∠=∠,110-5t=30+10t,∴t=,如图3(2),当时,∠=10t,则∠=30+10t,∴∠=∠-∠=90-(180-10t-30),同理∠=∠,∴90-(180-10t-30)=110-5t,∴t=,如图3(3),当时,∠=10t,则∠=5t-15,∴∠=∠,∴110-5t=10t-15,∴t=,综上所述:t=或或.【点评】本题考查了平行线的判定和性质,三角形内角和定理及其推论,四边形内角和等知识,解决问题的关键是正确分类,并找出相等关系列方程.5.(1)115,25(2)不发生变化,理由见解析(3),(4)45°,60°,120°,135°【分析】(1)由平行线的性质,角平分线的定义结合三角形内角和定理即可求解;(2)同理由平行线的性质,角平分线的定义结合三角形内角和定理即可求解;(3)将(2)中换成,同理即可求解;(4)设,由(3)可知,.再由不变,即可分类讨论①当时,②当时,③当时和④当时,分别列出关于x的等式,解出x即可.(1)∵,∴.∵平分,∴.∵,∴,.∵平分,∴.∴;∵,∴.∵CP平分,CQ平分,∴,.∵,∴,即,∴.故答案为:115,25;(2)当的度数发生变化时,、的度数不发生变化理由如下:∵,∴.∵,∴,.∵平分,平分,∴,.∴.∴由(1)可知不变,∴.∴当的度数发生变化时,、的度数不发生变化;(3)∵,∴.∵,∴,.∵平分,平分,∴,.∴.∴.由(1)可知不变,∴.故答案为:,;(4)设,由(3)可知,.∵,∴可分类讨论:①当时,∴,解得:,∴;②当时,∴,解得:,∴;③当时,∴,解得:,∴;④当时,∴,解得:,∴.综上可知或或或.【点评】本题考查平行线的性质,角平分线的定义,三角形内角和定理等知识.利用数形结合和分类讨论的思想是解题关键.6.(1)(2)①;②,见解析(3)或【分析】(1)过点作,可得轴,则,,结合,可得,即可得出答案.(2)①过点作轴,可得轴,则,,结合已知条件与邻补角的定义可得,根据,可得,结合,可得出答案.②由轴,可得,,结合已知条件与邻补角的定义可得,最后由,可得出答案.(3)当点在上时,或当点在线段的延长线上时,分别利用平行线的性质可得出答案.(1)解:过点作,,,轴,轴,,,,,,,.故答案为:.(2)解:①过点作轴,轴,,,,,,,,,,整理得.故答案为:..理由如下:轴,,,,,,,.(3)解:当点在上时,过点作,,,,,.当点在线段的延长线上时,,,,,,.故答案为:或.【点评】本题考查平行线的判定与性质、角的计算及坐标与图形,能够添加恰当的辅助线是解答本题的关键.7.(1)①;②;(2);(3)【分析】(1)①运用三角形的内角和定理及角平分线的意义,首先求出,进而求出,即可解决问题;②方法同①;(2)根据三角形的外角性质分别表示出和,再根据角平分线的性质求出,最后根据三角形内角和定理即可求解;(3)由(1)得,由(2)可得,两式相加即可得到结论.(1)解:①∵∠A=64°,∴∠ABC+∠ACB=116°,∵∠ABC、∠ACB的平分线相交于点P,∴,∴,∴,②∵∠A=n°,∴∠ABC+∠ACB=180°-n° ,∵∠ABC、∠ACB的平分线相交于点P,∴,∴,∴,故答案为:;(2)解:∵外角和的平分线相交于点Q,∴∴,∵,∴,(3)解:由(1)得,由(2)可得,∴【点评】本题主要考查了三角形内角和定理、外角的性质,角平分线定义等知识,灵活运用三角形内角和定理、外角的性质是解答本题的关键.8.(1)125°(2)55°(3)35°【分析】(1)根据三角形的内角和定理,角平分线的性质即可求解;(2)应用角平分线的性质,补角的概念即可求解;(3)综合(1)、(2)解题思路即可求解;【详解】解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB),=×(180°﹣∠A)=55°,∴∠P=180°﹣(∠PCB+∠PBC)=125°,故答案为:125°.(2)∵∠EBC=∠A+∠ACB,∠FCB=∠A+∠ABC,∴∠EBC+∠FCB=∠A+∠ACB+∠A+∠ABC,=180°+70°=250°,∵BP、CP分别平分∠EBC和∠FCB,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB),=125°,∴∠P=180°﹣(∠PBC+∠PCB)=55°,故答案为:55°.(3)∠ACD=∠A+∠ABC,∵CP平分∠ACD,BP平分∠ABC,∴∠PBC=∠ABC,∠PCA=∠ACD=∠A+∠ABC,∵∠P=180°﹣(∠PBC+∠PCA+∠ACB),=∠A=35°,即∠P等于∠A的一半,答:∠P的度数是35°.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的性质,掌握相关知识并灵活应用是解题的关键.9.(1)①;②不随A,的移动发生变化,理由见解析(2)(3)【分析】(1)①先利用角平分线的定义求出,利用三角形内角和定理可得,即可得到,利用角平分线的定义可得,即可求解;②设,证明过程与①类似;(2)设,解题过程与(1)类似;(3)与(1)(2)类似,设出的度数,再进行推导即可.(1)解:①,平分,,,,,是的平分线,,,,,故答案为:;②的度数不随,的移动发生变化,理由如下:设,平分,,,,,是的平分线,,,,,的度数不随,的移动发生变化;(2)解:设,,,,,,,,,,,,,故答案为:;(3)解:设,,,,,,,,,,,,,故答案为:.【点评】本题考查三角形内角和定理,列代数式,角的计算等知识点,解题的关键是熟练掌握三角形内角和定理.10.(1)见解析;(2)存在,当x=27°或18°时,∠EFD=3∠EDF;(3)或.【分析】(1)根据三角形的内角和定理与平角的定义证明即可;(2)求出∠AOC=18°,然后分情况讨论:①若DP在DE左侧,求出∠FED=72°,根据三角形内角和定理可得x+3x+72°=180°,解方程可得x的值;②若DP在DE右侧,求出∠DEO =72°,根据三角形外角的性质可得x+3x=72°,解方程可得x的值;(3)分两种情况进行讨论:DP在DE左侧,DP在DE右侧,分别根据平行线的性质,列方程求解即可.【详解】(1)证明:由三角形的内角和定理可得:∠OAF+∠AOC+∠AFO=180°,∵∠AFC+∠AFO=180°,∴∠AFC=∠AOC+∠OAF;(2)解:存在这样的x的值,使得∠EFD=3∠EDF.∵∠AOB=36°,OC平分∠AOB,∴∠AOC=∠BOC=18°,分两种情况:①如图,若DP在DE左侧,∵DE⊥OA,∴∠FED=90°−18°=72°,∴x+3x+72°=180°,解得x=27°;②如图,若DP在DE右侧,∵DE⊥OA,∴∠DEO=90°−18°=72°,∵∠DEO=∠EDF+∠EFD,∴x+3x=72°,解得x=18°;综上所述,当x=27°或18°时,∠EFD=3∠EDF;(3)解:分两种情况:①当射线DA向DO旋转时,如图,当时,∠1=∠2,设射线EO旋转的时间为t秒,则∠1=(72−t)°,∠2=90−4.5(t+2)=(81-4.5t)°,∴72−t=81-4.5t,解得t=;②当射线DA由DO回转时,如图,当时,∠1=∠2,设射线EO旋转时间为t秒,则∠1=(72−t)°,∠2=4.5(t+2)−270=(4.5t-261)°,∴72−t=4.5t-261,解得t=;综上,射线EO旋转到第或s时,射线DA与射线EO互相平行,故答案为:或.【点评】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,一元一次方程的应用等知识,掌握三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和是解题的关键,另外在解题时注意分类讨论思想的运用.11.(1)见详解(2)当E点线段BD的延长线上时,∠EFB+∠DEF=152°;当E点在线段BD上(不含端点)时,∠DEF-∠EFB=28°;当E点在线段DB的延长线上时,∠DEF+∠EFB=28°,理由见详解(3)2∠DPF-∠DEF=180°,理由见详解【分析】(1)根据,可得∠ADB=∠DBF,再根据三角形内角和定理即可求证;(2)根据E点位置不同,分当E点线段BD的延长线上时、当E点在线段BD上(不含端点)时、当E点在线段DB的延长线上时,三种情况讨论,利用三角形的外角的定义与性质即可求解;(3)设DP交EF于点N,M点是PD延长线上的一点,延长DP交BQ于点G,根据DP平分∠ADE,可得∠ADM=∠EDM=76°,在根据,可得∠PGF=∠ADM,由PF平分∠EFQ,得到∠PFG=∠EFQ,再根据三角形的外角的定义与性质有∠DPF=∠PGF+∠PFG,∠DBF+∠DEF=∠EFQ,即可求解.(1)∵,∴∠ADB=∠DBF,∵∠ADB=28°,∴∠DBF=28°,∵∠DBF+∠EFB+∠DEF=180°,∴∠EFB+∠DEF=180°-∠DBF=180°-28°=152°,得证;(2)根据E点位置不同,∠EFB与∠DEF之间的数量关系也不同,当E点线段BD的延长线上时,∠EFB+∠DEF=152°;当E点在线段BD上(不含端点)时,∠DEF-∠EFB=28°;当E点在线段DB的延长线上时,∠DEF+∠EFB=28°,理由如下,分情况讨论,第一种情况,当E点线段BD的延长线上时,根据(1)的结果可知:∠EFB+∠DEF=152°;第二种情况,当E点在线段BD上(不含端点)时,如图,∵∠EFB+∠DBF=∠DEF,又∵∠DBF=28°,∴∠EFB+28°=∠DEF,∴∠DEF-∠EFB=28°,此时数量关系为:∠DEF-∠EFB=28°;第三种情况,当E点在线段DB的延长线上时,如图,∵∠EFB+∠DEF=∠DBF,又∵∠DBF=28°,∴∠EFB+∠DEF=∠DBF=28°,∴∠EFB+∠DEF=28°,此时数量关系为:∠DEF+∠EFB=28°;(3)2∠DPF-∠DEF=180°,理由如下,设DP交EF于点N,M点是PD延长线上的一点,延长DP交BQ于点G,如图,∵∠ADB=28°,∴∠ADE=180°-28°=152°,∵DP平分∠ADE,∴∠ADM=∠EDM=∠ADE=76°,∵,∴∠PGF=∠ADM=76°,∵PF平分∠EFQ,∴∠PFG=∠EFQ,∵∠DPF=∠PGF+∠PFG,∠PGF=76°,∴∠DPF=76°+∠EFQ,∵∠DBF=28°,∠DBF+∠DEF=∠EFQ,∴∠DPF=76°+∠EFQ=76°+(28°+∠DEF),∴2∠DPF-∠DEF=180°,得证.【点评】本题主要考查了平行线的性质、三角形的外角定义及性质、角平分线的性质等知识.注重分类讨论的思想是解答本题的关键.12.(1)不变,∠AEB=135°;(2)45°,67.5°;(3)90°;∠ABO的度数为60°或45°.【分析】(1)先求出∠BAO+∠ABO=90°,结合角平分线的定义可得∠BAE+∠ABE=45°,再利用三角形的内角和定理可求解∠AEB的度数;(2)由平角的定义求出∠BAP+∠ABM=270°,利用角平分线的定义可求∠DAB+∠ABC=135°,利用三角形的内角和定理可求出∠F,然后根据四边形的内角和定理可得∠ADC+∠BCD=225°,再由角平分线的定义及三角形的内角和定理可求解;(3)先求出∠EAF=90°,∠ABO=2∠E,然后根据△AEF中,有一个角是另一个角的3倍分4种情况求解即可.(1)解:不变,∵MN⊥PQ,∴∠AOB=90°,∵∠AOB+∠BAO+∠ABO=180°,∴∠BAO+∠ABO=90°,∵AE平分∠BAO,BE平分∠ABO,∴∠BAE=∠BAO,∠ABE=∠ABO,∴∠BAE+∠ABE=45°,∵∠BAE+∠ABE+∠AEB=180°,∴∠AEB=135°;(2)∵∠ABO+∠BAO=90°,∴∠BAP+∠ABM=180°+180°−90°=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠DAB=∠BAP,∠ABC=∠ABM,∴∠DAB+∠ABC=135°,∴∠F=180°-∠DAB-∠ABC=45°,又∵∠DAB+∠ABC+∠ADC+∠BCD=360°,∴∠ADC+∠BCD=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE=∠ADC,∠DCE=∠BCD,∴∠CDE+∠DCE=112.5°,∴∠CED=180°-∠CDE-∠DCE=67.5°,故答案为:45°,67.5°;(3)∵AE平分∠BAO,AF平分∠OAG,∴∠EAO=∠BAO,∠FAO=∠OAG,∵∠BAO+∠OAG=180°,∴∠EAO+∠FAO=90°,即∠EAF=90°,∵OE平分∠BOQ,∴∠BOQ=2∠EOQ,∵∠EOQ=∠E+∠OAE,∠BOQ=∠ABO+∠BAO,∴∠ABO=2∠E,在△AEF中,∵有一个角是另一个角的3倍,故有4种情况:①∠EAF=3∠E=90°时,则∠E=30°,∠ABO=60°;②∠EAF=3∠F=90°时,则∠F=30°,∴∠E=90°-30°=60°,∴∠ABO=120°,(不合题意,舍去);③∠F=3∠E时,∵∠E+∠F=90°,∴∠E=22.5°,∴∠ABO=45°;④∠E=3∠F时,∵∠E+∠F=90°,∴∠E=67.5°,∴∠ABO=135°,(不合题意,舍去);综上,∠ABO的度数为60°或45°.故答案为:90°.【点评】本题主要考查了三角形的内角和定理,角平分线的定义,三角形外角的性质,四边形的内角和问题,灵活运用三角形的内角和是180°,四边形的内角和是360°来求解角的度数是解题的关键.13.(1)见解析(2),理由见解析(3),理由见解析【分析】(1)根据平行线的判定定理即可得到结论;(2)设,,,,过作,过作,推出,根据平行线的性质得到,,得到,于是得到结论;(3)设,,,,根据平行线的性质得到,由三角形的外角的性质得到,根据平角的定义得到,于是得到结论.(1)解:,,,,;(2)解:设,,,,过作,过作,,,,,,,,,,,;(3)解:,,设,,,,,,,,,,,,.【点评】本题考查了平行线的判定和性质,四边形的内角和,三角形的外角的性质,解题的关键是正确的识别图形.14.(1)见解析;(2)①26°,理由见解析;②∠P=α+β,理由见解析【分析】(1)根据三角形内角和定理即可证明.(2)【问题探究】由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠ADC+(180°-∠3),∠P+∠1=∠ABC+∠4,推出2∠P=∠ABC+∠ADC,即可解决问题.【拓展延伸】由(1)的结论易求∠P+∠PDC=∠C+∠CAP,∠P+∠PAB=∠B+∠BDP,再将已知条件代入化简即可求解∠P.【详解】(1)证明:∵∠A+∠B+∠AEB=180°,∠C+∠D+∠CED=180°,∴∠A+∠B+∠AEB=∠C+∠D+∠CED,∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)①解∶如图3,∵AP平分∠FAD,CP平分∠BCE∴∠1=∠2,∠3=∠4,∵∠PAD=180°-∠2,∠PCD=180°-∠3,∴由(1)可得:∠P+180°-∠2=∠D+180°-∠3,∠P+∠PAB=∠B+∠4,又∠1=∠PAB,∴∠P+∠1=∠B+∠4,又∠P+180°-∠2=∠D+180°-∠3,∴2∠P+∠1+180°-∠2=∠B+∠4+∠D+180°-∠3,又∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D∴∠P =(∠B+∠D)=26°②解:∠P=α+β.理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,由(1)可得:∠P+∠PDC=∠C+∠CAP,∠P+∠PAB=∠B+∠BDP,∴∠P+∠CDB =∠C+∠CAB,①∠P+∠CAB=∠B+∠CDB,②①×2+②,得2∠P+∠CDB+∠P+∠CAB=2∠C+∠CAB+∠B+∠CDB,∴3∠P=2∠C+∠B∴∠P==α+β.【点评】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.15.(1)4;(2)90°,45°;(3)存在,或.【分析】(1)根据题意求出BC=2,AB=OA+OB=4,根据三角形面积公式即可求出三角形的面积为;(2)根据题意求出∠OBD+∠ODB=90°,根据得到∠OBD=∠BAC,即可得到;连接,得到,,,根据三角形内角和为180°和即可求出;(2)设P点坐标为,根据三角形和三角形的面积相等,得到,求出或,问题得解.(1)解:∵,轴,∴BC=2,AB=OA+OB=4,∴三角形的面积为;故答案为:4(2)解:∵OB⊥OD,∴∠BOD=90°,∴∠OBD+∠ODB=90°,∵∴∠OBD=∠BAC,∴,故答案为:90°;连接,如图2,∵,分别平分,,∴,,∴,∵,即,而,∴,∴;(3)解:存在.如图3,设P点坐标为,∵三角形和三角形的面积相等,∴,即,即∴或,∴P点坐标为或.【点评】本题考查了平面直角坐标系中点的坐标特点,三角形的内角和,直角三角形两锐角互余等知识,综合性较强,难度较大,理解相关知识并根据题意灵活应用是解题关键.16.(1)BM CN,理由见解析(2)①20°;②,理由见解析(3)【分析】(1)由α+β=180°先判断AB CD,根据平行线的性质得出∠DCE=∠ABC,再由角平分线的性质证得结论;(2)①根据α和β的度数,求出∠ABC+∠BCD,根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC即可;②根据α和β的度数,求出∠ABC+∠BCD=180°-(α+β),根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC 即可;(3)根据α和β的度数,求出∠ABC+∠BCD=180°-(α+β),根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC 即可.(1)解:CN BM,理由如下:∵α+β=180°,∴AB CD,∴∠DCE=∠ABC,∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠CBM,∴CN BM;(2)解:①∵α=70°,β=150°,∴∠ABC+∠BCD=360°-70°-150°=140°,∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠ECN=∠BOC+∠CBM,∴x=∠BOC+y,∴∠BOC=x-y,∵∠ECD+∠DCB=180°,∴2x+140°-2y=180°,∴x-y=20°,∴∠BOC=20°.故答案为:20°;②∠BOC=,理由如下:∵四边形内角和为360°,∴∠ABC+∠BCD=360°-(α+β),∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠ECN=∠BOC+∠CBM,∴x=∠BOC+y,∴∠BOC=x-y,∵∠ECD+∠DCB=180°,∴2x+360°-(α+β)-2y=180°,∴,∴∠BOC=;(3)解:∠BOC=,理由如下:∵四边形内角和为360°,∴∠ABC+∠BCD=360°-(α+β),∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠CBM=∠BOC+∠BCO,∠ECN=∠BCO,∴y=∠BOC+x,∴∠BOC=y-x,∵∠ECD+∠DCB=180°,∴2x+360°-(α+β)-2y=180°,∴,∴∠BOC=.故答案为:∠BOC=.【点评】本题考查了多边形的内角与外角,解题的关键是根据多边形的内角和正确表示出各个角.17.(1)60°;(2)∠DPC=∠ADP+∠PCB,理由见解析;(3)∠PCB=∠DPC+∠ADP;或∠ADP=∠DPC+∠PCB,图及理由见解析.【分析】(1)过P作,由,利用平行于同一条直线的两直线平行,得到PM平行于AB,由PM平行于CD,利用两直线平行内错角相等得到∠ADP=∠DPM,∠CPM=∠BCP,而∠DPC=∠DPM+∠CPM,等量代换可得证;(2)过P作,由,利用平行于同一条直线的两直线平行,得到PM平行于AB,由PM平行于CD,利用两直线平行内错角相等得到∠ADP=∠DPM,∠CPM=∠BCP,而∠DPC=∠DPM+∠CPM,等量代换可得证;(3)分别就两种情况画图2和图3,根据平行线的性质和外角的性质可得结论.(1)如图1,过P作,。
2019-2020 学年八年级数学《第十一章全等三角形》综合测试A新人教版一、选择题(每题 3 分,共 30 分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号12345678910答案1.以下判断中错误的是()..A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等E C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等D2.如图,△DAC和△EBC均是等边三角形,AE,BD分别与N CD, CE 交于点 M , N ,有以下结论:A M BC①△ ACE ≌△ DCB ;② CM CN ;③ AC DN .其中,正确结论的个数是()(第 2 题)A.3 个B. 2 个C. 1 个D. 0 个3.某同学把一块三角形的玻璃打碎了 3 块,现在要到玻璃店去配一块完好相同的玻璃,那么最省事的方法是()A.带①去B.带②去(第 3 题)C.带③去D.带①②③去4.△ABC≌△DEF, AB=2,AC=4,若△DEF的周长为偶数,则 EF的取值为()A .3B .4C .5D .3 或 4 或 55.如图,已知,△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙6.三角形ABC的三条内角平(第 5 题)分线为 AE、 BF、CG、下面的说法中正确的个数有()①△ ABC的内角均分线上的点到三边距离相等②三角形的三条内角均分线交于一点③三角形的内角均分线位于三角形的内部④三角形的任一内角均分线将三角形分成面积相等的两部分(第 7 题)A .1 个B . 2 个C . 3 个D . 4 个7.如图,长方形 沿 AE 折叠,使 D 点落在边上的 F 点处,∠=600,那么∠等于()ABCDBCBAFDAEA .150B .300C . 450D . 6008.以下列图, △ ABE 和△ ADC 是△ ABC 分别沿着 AB ,AC 边翻折 180°形成的,若∠ 1∶∠ 2∶∠ 3=28∶ 5∶ 3,则∠ α 的度数为()A .80°B .100°C .60°D .45°9. 在△ ABC 和△ A B C 中 , 已知 A A , ABAB , 在下面判断中错误的(第 8 题)是 ( )A. 若增加条件 ACA C , 则△ ≌△A B CABC B. 若增加条件 BCB C , 则△ ABC ≌△ A B C C. 若增加条件 BB , 则△ ABC ≌△ A B CD. 若增加条件CC , 则△ ABC ≌△ A B C10. 如图 , 在△ ABC 中 , ∠ C = 90 , AD 均分∠ BAC ,DE ⊥ AB 于 E ,则以下结论 : ① AD 均分∠ CDE ;②∠ BAC =∠ BDE ;③ DE 均分∠ ADB ;④ BE +AC =AB . 其中正确的有 ()A.1 个B.2 个 个个二、填空题(每题3 分,共 30)第 10 题11.如图, AB , CD 订交于点 O , AD = CB ,请你补充一个条件,使得△AOD ≌△ COB .你补充的条件是 ______________________________ .12.如图, AC ,BD 订交于点 O , AC =BD , AB =CD ,写出图中两对相等的角 ______ .13.如图,△ ABC 中,∠ C = 90°, AD 均分∠ BAC , AB = 5, CD =2,则△ ABD 的面积是 ______.BDACADE OOCDAD B B C ABC的面 14.如图(,第直11线题)AE ∥ BD ,点 C 在(BD 第上12,题若) AE =4, BD (=第8,13△题ABD )的面积为 (16第,14则题△)ACE 积为 ______. 15.在△ ABC 中,∠ C =90°, BC =4CM ,∠ BAC 的均分线交 BC 于 D ,且 BD :DC =5:3,则 D 到 AB 的距离为 _____________ .16.如图,△ ABC 是不等边三角形, DE =BC ,以 D ,E 为两个极点作地址不相同的三角形,使所作的三角形与△ ABC全等,这样的三角形最多可以画出_____个.(第 16 题)17.如图,AD, A D 分别是锐角三角形ABC 和锐角三角形 A B C 中 BC , B C 边上的高,且AB A B , AD A D .若使△ ABC ≌△ A B C ,请你补充条件___________.(填写一个你认为合适的条件即可)18.如图,若是两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.A A'ADBCB''C'D DBE C(第 17、 18 题)(第 19 题)19.如图,已知在ABC 中, A 90 , AB AC , CD均分ACB , DE BC 于 E ,若BC 15cm ,则△ DEB 的周长为cm .20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900, E 是 BC的中点, DE均分∠ ADC,∠CED=350,如图16,则∠ EAB是多少度?大家一起热忱地谈论交流,小英第一个得出正确答案,是 ______.三、解答题(每题9 分,共 36 分)21.如图,O为码头,A,B两个灯塔与码头的距离相等,OA, OB为海岸线,一轮船从码头开出,计划沿∠ AOB的均分线航行,航行途中,测得轮船与灯塔A,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的原由.AOB22.如图,在△ABC中,BD=DC,∠ 1=∠ 2 ,求证:AD⊥BC.23.如图,OM均分∠POQ,MA⊥OP, MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠ OAB=∠ OBA24.如图,已知AD∥BC,∠PAB的均分线与∠CBA的均分线订交于E,CE的连线交 AP于 D.求证:AD+BC=AB.PCEDA B四、解答题(每题10 分,共 30 分)25.如图,△ABC中,AD是∠CAB的均分线,且AB=AC+CD,求证:∠ C=2∠ BACD B26.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于 E,BF⊥AC于F,若AB=CD,AF=CE,BD交 AC于点 M.(1)求证:MB=MD,ME=MF(2)当E、F两点搬动到如图②的地址时,其余条件不变,上述结论能否成立?若成立请恩赐证明;若不成立请说明原由.27.已知:如图,DC∥ AB,且 DC=AE, E 为 AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):AE O DB C五、(每题12 分,共24 分)28.如图,△ABC中,∠BAC=90 度,AB=AC,BD是∠ABC的均分线,BD的延长线垂直于过C点的直线于,直线交的延长线于.E CE BA F求证: BD=2CE.FAEDB C29.已知 : 在△ABC中 , ∠BAC= 90 , AB=AC, AE是过点A的一条直线 , 且BD⊥AE于D, CE⊥AE于 E.(1)当直线 AE 处于如图①的地址时,有 BD=DE+CE,请说明原由;(2)当直线 AE处于如图②的地址时,则 BD、DE、 CE的关系如何?请说明原由;(3)归纳 (1) 、(2), 请用简洁的语言表达BD、DE、CE之间的关系 . 第十一章全等三角形综合测试 A 参照答案。
人教版初中八年级数学上册第十一章《全等三角形》精品试题班级姓名考号一.相信你的选择1. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是()A. 两角和一边B. 两边及夹角C. 三个角D. 三条边2.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B. 周长相等的两个等边三角形C. 有一个角是100°,腰长相等的两个等腰三角形D. 斜边和和一条直角边分别相等的两个直角三角形。
3.如图,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是()A. 3B. 4C. 5D. 64.在△ABC和△A/B/C/中,AB=A/B/,∠A=∠A/,若证△ABC≌△A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()(A)带①去(B)带②去(C)带③去(D)带①和②去6、如图在△ABD和△ACE都是等边三角形,则ΔADC≌ΔABE的根据是()A. SSSB. SASC. ASAD. AAS7、如图,∠1=∠2,∠C=∠D ,AC 、BD 交于E 点,下列结论中不正确的是( )A. ∠DAE=∠CBEB. CE=DEC.ΔDEA 不全等于ΔCBED.ΔEAB 是等腰三角形8、如图在ΔABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB于E ,若AB=6cm ,则ΔDBE 的周长是( )A. 6cmB. 7cmC. 8cmD. 9 cm9.如图,△ABC 是直角三角形,∠A =90°,BD 是角平分线,AD =n ,BC =m ,则△BDC 的面积是( )A .mnB .12mn C .2mn D .14mn 10.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处l 1 l 2l 3二、试试你的身手11.由同一张底片冲洗出来的两张五寸照片的图案 全等图形,DCB A而由同一张底片冲洗出来的五寸照片和七寸照片 全等图形(填“是”或“不是”).12.如图1,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若∠B =20°,则∠C = .13.在△ABC 中,∠C =90°,AD 为△ABC 角平分线,BC =40,AB =50,若BD ∶DC =5∶ 3,则△ADB 的面积为 .14.如图2,∠ACB =∠DBC ,要想说明△ABC ≌△DCB ,只需增加的一个条件是 .(只需填一个你认为合适的条件)15.如图3,BD 是∠ABC 的平分线,DE ⊥AB 于E ,S △ABC =36cm 2,AB =18cm ,BC =12cm ,则DE = cm .三、挑战你的技能16、 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证: ΔCAB≌ΔDEF17、如图,AD ⊥BC 于D ,AD=BD ,AC=BE 。
三角形章节同步测试题(满分:100分,时间:45分钟)一、精心选一选(每小题3分,共24分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是( )2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是( ) A .0720 B .01080 C .01440 D .01900 3.随着一个多边形的边数增加,它的外角和( )A .随着增加B .随着减少C .保持不变D .无法确定 4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于( )A .0720 B .0900 C .01080 D .012605.若四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A+∠D 等于( ) A .030 B .075 C .0180 D .0210 6.能进行镶嵌的正多边形组合是( )A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是( )A .0110 B .0108 C .0105 D .0100 8.能构成如图所示的图案的基本图形是( )ABCDABCDABC DE1 234二、细心填一填(每小题4分,共32分)9.正十边形的内角和等于 度,每个内角等于 度. 10.如果正多边形的一个外角为072,那么它的边数是 . 11.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正 边形.12.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用 ,使这三种组合在一起的广场铺满.13.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有 条. 14.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为 厘米.15.过a 边形的一个顶点有7条对角线,正b 边形的内角和与外角和相等,c 边形没有对角线,d 边形有d 条对角线,则代数式ab dc )( = .16.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为 .三、专心解一解(共44分)17.(5分)小华想:2012年奥运会在伦敦举办,设计一个内角和为02012的多边形图案多有意义,他的想法能实现吗?请说明理由.18.(7分) 小华画了一个八边形,请问: (1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍? 19.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.20.(8分)小华从点A 出发向前走10m ,向右转036A BCDE第19题图第11题图ABCD EFG第21题图Q P然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不能,写出理由.21.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.22.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪.(1)图1中草坪的周长为 ; (2)图2中草坪的周长为 ; (3)图3中草坪的周长为 ;(4)如果多边形边数为n ,其余条件不变,那么,你认为草坪的周长为 .加强卷(满分:50分,时间:30分钟)一、精心选一选(每小题3分,共15分)1.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是( ) A .3 B .4 C .5 D .62.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E 一直到F 时,他在行程中共转过了( )A .0265 B .0275 C .0360 D .04453.一个多边形的每一个内角都是0144,则它的内角和等于( ) A .01260 B .01440 C .01620 D .01800第22题图图1图2 图 31 ABCDE F第2题图4.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为( ) A .075 B .090 C .0105 D .0120 5.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是( )A .54B .54C .60D .66 二、细心填一填(每小题3分,共15分)6.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为 . 7.一个多边形的每一个外角都相等,且比它的内角小0140,则这个多边形的边数是 .8.一个四边形的四个内角中做多有 个钝角,最多有 个锐角.9.一个正方形的截取一个角后,得到的图形的内角和可能是 .10.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图所示的正五边形ABCDE ,其中∠BAC= .(提示:由AB=AC ,可得∠BAC=∠BCA )三、专心解一解(共20分)11.(8分)多边形除一个内角外,其余各内角和为01200. (1)求多边形的边数;(2)此多边形必有一外角为多少度?12.(12分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.第5题图 ABC DE第10题图第12题图BCAED12参考答案一、1~4 ADCA ;5~8 CCDD .二、9.1440,45; 10.5; 11.六; 12.正十二边形; 13.6; 14.9; 15.3; 16.0540.三、17.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(=-n ,解得n ≈13.18.∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.18.解:(1)从八边形的一个顶点出发,可以引5条对角线?它们将八边形分成6个三角形.(2)2360180)28(0=-.故八边形的内角和是外角和的2倍. 19.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(-. 即0130+∠B 0135++0180=0540,解得∠B=095. 20.解:小华能回到A 点,当他回到A 点时共走了100m . 21.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360. ∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.22.解:(1)R π;(2)R π2;(3)R π3;(4)R n π)2(-.加强卷一、1.C ; 2.B ; 3.B ; 4.C ; 5.D .二、6.54; 7.18; 8.3,3; 9.0180,0360或0540; 10.036. 三、11.解:(1)设该多边形的一个内角为0x ,边数为n ,依题意,有0001200180)2(x n +=-.∵00012061801200⋅⋅⋅⋅⋅⋅=÷,∴01201806180)2(x n ++⨯=-. 又∵1800<<x ,∴180120=+x ,解60=x .把60=x 代入原方程,得0601200180)2(+=-n ,解得9=x . ∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120. 12.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A ∠-0180,∠ADE+∠AED=A ∠-0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360. ∴A ∠-0180+∠1+∠2+A ∠-0180=0360, 整理,得∠1+∠2=2∠A .。
人教版八年级上册数学11章三角形复习常考(含解析)一、选择题(共20小题;共40分)1. ,,是的三个内角,下列条件能确定是钝角三角形的条件是A. B.C. D.2. 如图,是的角平分线,点在上,且于点,,,则的度数为A. B. C. D.3. 一个多边形的内角和是,这个多边形的边数是:A. B. C. D.4. 一个多边形的每个内角都相等,且每个内角与相邻补角的差为,那么这个多边形是A. 七边形B. 八边形C. 九边形D. 十边形5. 如图,,,,,则等于A. B. C. D.6. 如图所示,在中,的平分线和的平分线相交于点.已知,,则的度数为A. B. C. D.7. 两根木棒分别长和,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒的长为偶数,那么第三根木棒长的取值情况有A. 种B. 种C. 种D. 种8. 已知三角形两边的长分别是和,则此三角形第三边的长可能是A. B. C. D.9. 如图,将一块含有角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果,那么的度数为A. B. C. D.10. 如图,在五边形中,,,分别平分,,则的度数是A. B. C. D.11. 若中,,则是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定12. 已知等腰三角形的底边的长为,那么腰的长可能是A. B. C. D.13. 在等腰三角形中,,其周长为,则边的取值范围是A. B.C. D.14. 一副三角板有两个直角三角形,如图叠放在一起,则的度数是A. B. C. D.15. 如图,在中,点在上,,,则的度数为A. B. C. D.16. 如图,直线,,,则的度数是A. B. C. D.17. 已知三角形两边长分别为和,则该三角形第三边的长可能是A. B. C. D.18. 如图,中,、分别是、的平分线,,则等于A. B. C. D.19. 如图,,,,垂足分别为,,,则下列说法不正确的是A. 是的高B. 是的高C. 是的高D. 是的高20. 下列长度的三条线段能组成三角形的是A. ,,B. ,,C. ,,D. ,,二、填空题(共10小题;共30分)21. 一个多边形的内角和比外角和的倍多,则它的边数是.22. 如图,,其理由是.23. 如图,在中,,,分别平分,,与相交于点,,,,,则.24. 如图,已知:是的角平分线,是的高,,,则的度数为.25. 若的三个内角满足,则这个三角形是三角形.26. 过边形的一个顶点可作条对角线,可将边形分成个三角形.27. 一个三角形的两条边长分别为和,且第三条边长为偶数,则第三条边长是.28. 已知一个等腰三角形两边分别为和,则第三边长是.29. 等腰三角形的两边长分别是和,则周长是30. 如图,有一圆柱,其高为,它的底面半径为,在圆柱下底面处有一只蚂蚁,它想得到上面处的食物,则蚂蚁经过的最短距离为.(取)三、解答题(共5小题;共50分)31. 一个多边形的内角和是它的外角和的倍,求这个多边形的边数.32. (1)下列图形中具有稳定性的是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.33. 如图,是等腰三角形,,请你作一条直线将分成两个全等的三角形,并证明这两个三角形全等.34. 把多边形的某些边向两方延长,其他各边若不全在延长所得直线的同侧,则把这样的多边形叫做凹多边形,如图()四边形中,作的延长线,则边,分别在直线的两侧,所以四边形就是一个凹四边形,我们来简单研究凹多边形的边和角的性质.(1)请你画一个凹五边形;(2)如图②,在凹六边形中,探索与,,,,之间的关系;(3)如图①,在凹四边形中,证明.35. 如图,已知中,,,是边上的高,是的平分线,求的度数.答案第一部分1. D2. A3. A4. C 【解析】设这个多边形的每个外角为,则每个内角为,则,解得,所以多边形边数为.5. A【解析】在中,,,,在与中,,,,,故,在四边形中,,.6. C7. B 【解析】设第三边长为,则.因为为偶数,所以可以是,,,,共种.8. C9. D10. A11. B12. A 【解析】当腰长为,,时,不能构成三角形,故选A.13. B 【解析】设,则,.根据三角形的三边关系,得,解得所以 .14. A 【解析】由题意可得,而,所以,所以.15. B【解析】在中,,,,,,是的一个外角,.16. C17. B18. B19. C20. D第二部分21.22. 两点之间线段最短23.24.25. 直角26. ,27. 或28.29. 或30.【解析】最短距离为的长.由题意得,,.由勾股定理,得.第三部分31. 设这个多边形有条边.由题意得:,解得.故这个多边形的边数是.32. (1)①④⑥(2)如图所示:33. 如图,取中点,作直线,则直线将分成两个全等的三角形,即.理由如下:在和中,.34. (1)如图所示:即为凹五边形.(2)如图,连接,由多边形内角和定理可得:五边形的内角和为:,的内角和为:,故则(3)如图,设与直线的交点为,在中,,中,,故,则.35. 在中,因为,是的平分线,所以.又因为是边上的高,所以,因为在中,,所以.。
A CFED(第6题)(第7题)ABECD(第5题)AB C D E (第4题) A O D B C(第1题)ABFEDC 第十一章 全等三角形第1课时 全等三角形一、选择题1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( ) A .∠A B .∠DCB C .∠ABC D .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .6二、填空题3.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________. 三、解答题5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF . 求证:AC ∥DF 。
7.如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.AD B C (第2题) A FE CD B(第3题) A B C (第4题)一、选择题1. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( )A .73 B .3 C .4 D .5二、填空题2.如图,已知AC=DB ,要使△ABC ≌△DCB ,还需知道的一个条件是________.3.已知AC=FD ,BC=ED ,点B ,D ,C ,E 在一条直线上,要利用“SSS”,还需添加条件___________,得△ACB ≌△_______.4.如图△ABC 中,AB=AC ,现想利用证三角形全等证明∠B=∠C ,若证三角形全等所用的公理是SSS 公理,则图中所添加的辅助线应是_____________________. 二、解答题5. 如图,A ,E ,C ,F 在同一条直线上,AB=FD ,BC =DE ,AE=FC .求证:△ABC ≌△FDE .6.如图,AB=AC ,BD=CD ,那么∠B 与∠C 是否相等?为什么?7.如图,AB=AC ,AD = AE ,CD=BE .求证:∠DAB=∠EAC .DC EB A (第5题) (第6题) AC D DCE BA (第7题)ABCED(第6题)A C DB E F(第2题) A B E D C(第1题) 一、填空题 1.如图,AB =AC ,如果根据“SAS”使△ABE ≌△ACD ,那么需添加条件________________.2.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等三角形有_____________对. 3.下列命题:①腰和顶角对应相等的两个等腰三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的命题有_____________. 二、解答题4. 已知:如图,C 是AB 的中点,AD ∥CE ,AD=CE .求证:△ADC ≌△CEB .5. 如图, A ,C ,D ,B 在同一条直线上,AE=BF ,AD=BC ,AE ∥BF . 求证:FD ∥EC .6.已知:如图,AC ⊥BD ,BC=CE ,AC=DC . 求证:∠B+∠D=90°;(第4题) AB CD E DCF BA(第5题)E D CB A(第4题)A B C DOA ECBDAFEDC一、选择题1.下列说法正确的是( )A .有三个角对应相等的两个三角形全等B .有一个角和两条边对应相等的两个三角形全等C .有两个角和它们夹边对应相等的两个三角形全等D .面积相等的两个三角形全等 二、填空题2.如图,∠B =∠DEF ,BC =EF, 要证△ABC ≌△DEF , (1)若以“SAS”为依据,还缺条件 ; (2)若以“ASA”为依据,还缺条件 . 3.如图,在△ABC 中,BD =EC ,∠ADB =∠AEC , ∠B =∠C ,则∠CAE = .三、解答题4.已知:如图,AB ∥CD ,OA=OC .求证:OB=OD5.已知:如图,AC ⊥CE ,AC=CE ,∠ABC=∠CDE=90°,求证:BD=AB+ED6.已知:如图,AB=AD ,BO=DO ,求证:AE=ACOE ADBC (第6题)(第3题)(第5题)(第2题)3421EDCBA AB EDCF(第3题)(第5题)(第6题)(第4题)ADBCo一、选择题1.已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A .甲和乙B .乙和丙C .只有乙D .只有丙 二、填空题2.如图,已知∠A=∠D ,∠ABC=∠DCB ,AB=6,则DC= .3.如图,已知∠A=∠C ,BE ∥DF ,若要用“AAS ”证△ABE ≌△CDF ,则还需添加的一个条件是 .(只要填一个即可)三、解答题4.已知:如图,AB=CD ,AC=BD ,写出图中所有全等三角形, 并注明理由.5.如图,如果AC =EF ,那么根据所给的数据信息,图中的两个三角形全等吗?请说明理由.6.如图,已知∠1=∠2,∠3=∠4,EC =AD , 求证:AB =BEDCB A(第2题)(第3题) (第4题) A B D F C E 一、选择题1.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D 。
2019-2020学年八年级数学 第11章 全等三角形拔高题 新人教版
如图所示,△ABC ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。
如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?
如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是多少?
如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=
已知,如图所示,AB=AC ,AD ⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD 是多少?
如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE=
A
B'
C
A
如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,AD 与EF 垂直吗?证明你的结论。
如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是
28cm2,AB=20cm ,AC=8cm ,求DE 的长。
已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:AF ⊥CD
如图,AD=BD ,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?
如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:BE ⊥AC
△DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC
已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN
B
C F
B
B
A B
于点F
求证:AN=BM
求证:△CEF 为等边三角形
将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)。
如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD ;②BF=BG ;③BH 平分∠AHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有( ) A .3个 B. 4个 C. 5个 D. 6个
已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE 的延长线上,CG=AB ,求证:AG ⊥AF
如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取
CG=AB ,连结AD 、AG
求证:(1)AD=AG
(2)AD 与AG 的位置关系如何
17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE 求证:AF=AD-CF
18.如图所示,已知△ABC 中,AB=AC ,D 是CB 延长线上一点,∠ADB=60°,E 是
,求证:AC=BE+BC
图1A 图2
M
A B B
19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF
20.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD
21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 是OC 上一点,连接DF 和EF ,求证:DF=EF
22.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD ,求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的平分线上
23.如图,已知AB ∥CD ,O 是∠ACD 与∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE=2,则AB 与CD 之间的距离是多少?
24.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN ,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E (1)∠AEB 是什么角?
(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?
D
B
A
C
(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。
25.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于?
26.正方形ABCD 中,AC 、BD 交于O ,∠EOF=90°,已知AE=3,CF=4,则S △BEF 为多少?
27.如图,在Rt △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H ,交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE
28.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E (1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE
(3)当直线MN 绕点C 旋转到图③的位置时,试问DE 、AD 、BE
个等量关系。
C B E
B
图1
A
A。