解 (2) f (z)=ex(cosy +isiny) 则 u=excosy, v= exsiny
u e x cos y, x v e x sin y, x
u e x sin y u v
y v
e x cos y
x v
y u
在R
2成立,
y
x y
且u, v在R2上偏导数连续
故 f (z) e x (cos y i sin y)在复平面C上可导,解析; 且f '(z) u i v e x cos y ie x sin y f (z)。
定理 设f (z)= u + i v, z= x +i y, z0=x0+i y0, 则f (z)在
(1) u( x, y), v( x, y)在( x0 , y0 )可微 ,
z0处可导 (2)
u x
v ,
y
u y
v x
在(
x0
,
y0
)成立.
定义 方程
u v v u x y x y
称为Cauchy-Riemann方程(简称C-R方程).
1.导数的概念
定义2.1.1 设函数f (z)在z0的某邻域N( z0 ,δ)内有定
义, 且极限 lim f (z0 z) f (z0 )存在,则称函数
z0
z
f (z)在点z0处可导。称此极限值为f (z)在z0的导数
记作
dw f '(z0 ) dz zz0
lim z0
f (z0 z) z
z
z
x x x x x iy x iy
当z取实数趋于0时, f z 1; 当z取纯虚数趋于0时, f z
0;