第2单元 匀变速直线运动的规律
- 格式:doc
- 大小:272.50 KB
- 文档页数:4
高三物理一轮复习体系建构及重难突破 第二讲 匀变速直线运动的公式及其推论应用知识点一:匀变速直线运动规律(一)规律:匀变速直线运动(1、直线;2、a 为恒量) 1.基本公式:(1)速度公式:Vt=V o+at (Vt Vo a t -=,Vt Vot a-=) (2)位移公式:S=V ot+12at 2(3)速度位移公式:Vt 2-V o 2=2aS (222Vt Vo a x -=,222Vt Vo x a-=)2.推论公式:(1)平均速度公式:2x Vo Vt V t +==(2)中间时刻速度:22t Vo VtV V +==(3)中间位置速度:2x V = (4)相等的时间间隔,相邻的位移差:2x aT =,2()m n x x m n aT -=-3.特殊规律:V o=0,则221,,22Vt at x at Vt ax === (1) 把时间等分:123:::X X X ……=1:4:9…… :::I II III X X X ……=1:3:5:…… 123:::V V V ……=1:2:3:……(2) 把位移等分: 123:::t t t ……=1……:::I II III t t t ……=1::……123:::V V V ……=1……重点突破一:基本公式的应用及技巧1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A .位移的大小可能小于3m B .位移的大小可能大于7m C .加速度的大小可能小于4m/s 2 D .加速度的大小可能大于10m/s 22.做匀变速度直线运动物体从A 点到B 点经过的时间t ,物体在A 、B 两点的速度分别为a v 和b v ,物体通过AB 中点的瞬时速度为1v ,物体在2t 时刻的瞬时速度为2v ,则( )A. 若做匀加速运动,则1v >2vB. 若做匀减速运动,则1v >2vC. 不论匀加速运动还是匀减速运动,则1v >2vD. 不论匀加速运动还是匀减速运动,则2v >1v3.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
1.基本公式 (2)加速度 a = v - v初速度 v 0=0(5)位移公式 s = v t + 122推论 1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即v= St 2⇒ v = v + v ⎪ t 2 ⎪ 2 ⎨ 2 ⎪v = v + a ⨯ t ⎪⎩ t2 ⎧2速度和位移关系公式 v 2 = v 2 + 2as 得: ⎪ 2⎪v 2 = v 2+ 2 a ⨯ S⎪⎩ t 22一.基本规律:(1)平均速度 v =stvt 0(1)加速度 a = ttt(3)平均速度 v = v 0 +v2t1(2)平均速度 v = v2 t(4)瞬时速度 v = v + at(3)瞬时速度 v = attt1at 2(4)位移公式 s = at 22.导出公式(6)位移公式 s = v + v v0 t t (5)位移公式 s = t t2 2(7)重要推论 2as = v 2 - v 2t(6)重要推论 2as = v 2t注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。
二.匀变速直线运动的推论及推理对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
t v + v = 0t2推导:设时间为 t ,初速 v ,末速为 v ,加速度为 a ,根据匀变速直线运动的速度公式 v = v + at0 t得:推论 2 做匀变速直线运动的物体在一段位移的中点的即时速度v=sv 2 + v 20 t22推导:设位移为 S ,初速 v ,末速为 v ,加速度为 a ,根据匀变速直线运动的0 t⎪vs = v 0+ 2 a ⨯2t 0 ⎨ s 2 S⇒ v =s2v 2 + v 20 t2经过第二个时间 t 后的速度为 v =2v +at ,这段时间内的位移为 S = v t + at 2 = v t + at 22 2 经过第三个时间 t 后的速度为 v =3v +at ,这段时间内的位移为 S = v t + at 2 = v t+ at 2 2 2 2 2 3 2 32 2 2 2t推论 3 做匀变速直线运动的物体,如果在连续相等的时间间隔 t 内的位移分别为 S 、 S 、 S …… S123n ,加速度为 a,则 ∆S =S 2- S 1 = S 3 - S 2= …… = S n - S推导:设开始的速度是 vn -1= at2经过第一个时间 t 后的速度为 v = v + a t ,这一段时间内的位移为 S = v t + 1 0 1 0 1 2 at 2,1 32 0 2 1 0 1 52 032…………………经过第 n 个时间 t 后的速度为 v =nv +at ,这段时间内的位移为 S =v t +1 a t 2 =v t + n 0 n n -1 02n -1 2at 2则 ∆S = S 2 - S 1 = S 3 - S 2 = …… = S n - Sn -1= at 2点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度 a 与时间 “有关的恒量”.这也提供了一种加速度的测量的方法: 即 a =∆S,只要测出相邻的相同时间内的位移之差 ∆S 和 t ,就容易测出加速度 a 。
高考物理匀变速直线运动的规律知识点一、匀变速直线运动的规律1.条件:物体受到的合外力恒定,且与运动方向在一条直线上.2.特点:a恒定,即相等时间内速度的变化量恒定.3.规律:(1)vt=v0+at(2)s=v0t+at2(3)vt2-v02=2as4.推论:(1)匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即s=si+1-si=aT2=恒量.(2)匀变速直线运动的物体,在某段时间内的平均速度等于该段时间的中间时刻的瞬时速度,即vt/2==以上两个推论在测定匀变速直线运动的加速度等学生实验中经常用到,要熟练掌握.(3)初速度为零的匀加速直线运动(设T为等分时间间隔):①1T末、2T末、3T末瞬时速度的比为:v1∶v2∶v3∶∶vN=1∶2∶3∶∶n②1T内、2T内、3T内位移的比为:s1∶s2∶s3∶∶sN=12∶22∶32∶∶n2③第一个T内、第二个T内、第三个T内位移的比为:sⅠ∶sⅡ∶sⅢ∶∶sN=1∶3∶5∶∶(2n-1)④从静止开始通过连续相等的位移所用时间的比:t1∶t2∶t3∶∶tN=1∶(-1)∶(-)∶∶(-)5.自由落体运动是初速度为0、加速度为g的匀加速直线运动,初速度为零的匀加速运动的所有规律和比例关系均适用于自由落体运动二.解题方法指导(1)要养成根据题意画出物体运动示意图的习惯.特别对较复杂的运动,画出草图可使运动过程直观,物理图景清晰,便于分析研究。
(2)要注意分析研究对象的运动过程,搞清整个运动过程按运动*质的转换可分为哪几个运动阶段,各个阶段遵循什么规律,各个阶段间存在什么联系。
(3)由于本章公式较多,且各公式间有相互联系,因此,本章的题目常可一题多解。
解题时要思路开阔,联想比较,筛选最简捷的解题方案。
解题时除采用常规的公式解析法外,图象法、比例法、极值法、逆向转换法(如将一匀减速直线运动视为反向的匀加速直线运动)等也是本章解题中常用的方法。
匀变速直线运动公式、规律总结一.基本规律:=ts 1. =t v v t 0-(1)加速度 =20t v v + at v v t +=0 2021at t v s +=2 t v v t 20+= t v t 22022v v as t -= 注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动..................................。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度: 即2tv =t s 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为S 1,S 2,S 3,……S N ; 则S=S 2-S 1=S 3-S 2= …… =S N -S N -1=aT 2注意:设在匀变速直线运动中物体在某段位移中初速度为,末速度为,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v + 无论匀加速还是匀减速总有2t v ==20t v v +<2s v =2220t v v +三.自由落体运动和竖直上抛运动:=2tv2tv总结:自由落体运动就是初速度=0,加速度=的匀加速直线运动.(1)瞬时速度gtvt-2021gttvs-=(3)重要推论22vvt-=-总结:竖直上抛运动就是加速度ga-=的匀变速直线运动.四.初速度为零的匀加速直线运动规律:设T为时间单位,则有:(1)1s末、2s末、3s末、…… ns末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n同理可得:1T末、2T末、3T末、…… nT末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n(2)1s内、2s内、3s内……ns内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2同理可得:1T内、2T内、3T内……nT内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2(3)第一个1s内,第二个2s内,第三个3s内,……第n个1s内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)同理可得:第一个T内,第二个T内,第三个T内,……第n个T内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶……:t n=1∶(12-)∶(23-)∶………∶(1--nn)课时4:匀速直线运动、变速直线运动基本概念(例题)一.变速直线运动、平均速度、瞬时速度:例1:一汽车在一直线上沿同一方向运动,第一秒内通过5m,第二秒内通过10m,第三秒内通过20m,第四秒内通过5m,则最初两秒的平均速度是_________m/s,则最后两秒的平均速度是_________m/s,全部时间的平均速度是_________m/s.例2:做变速运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度为8m/s,则全程内的平均速度是_________m/s;若物体前一半位移的平均速度为4m/s,后一半位移的平均速度为8m/s,则全程内的平均速度是_________m/s.二.速度、速度变化量、加速度:提示:1、加速度:是表示速度改变快慢的物理量,是矢量。
第二章匀变速直线运动的研究知识梳理第1节实验:探究小车速度随时间变化的规律一、实验原理1.利用纸带计算瞬时速度:以纸带上某点为中间时刻取一小段位移,用这段位移的平均速度表示这点的瞬时速度。
2.用v-t图像表示小车的运动情况:以速度v为纵轴、时间t为横轴建立直角坐标系,用描点法画出小车的v-t图像,图线的倾斜程度表示加速度的大小,如果v-t图像是一条倾斜的直线,说明小车的速度是均匀变化的。
二、实验器材打点计时器、学生电源、复写纸、纸带、导线、一端带有滑轮的长木板、小车、细绳、槽码、刻度尺、坐标纸。
三、实验步骤1.如图所示,把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路。
2.把一条细绳拴在小车上,使细绳跨过滑轮,下边挂上合适的槽码,放手后,看小车能否在木板上平稳地加速滑行,然后把纸带穿过打点计时器,并把纸带的另一端固定在小车后面。
3.把小车停在靠近打点计时器处,先接通电源,后释放小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列小点。
4.换上新纸带,重复实验两次。
5.增减所挂槽码,按以上步骤再做两次实验。
四、数据处理1.纸带的选取与测量(1)在三条纸带中选择一条点迹最清晰的纸带。
(2)为了便于测量,一般舍掉开头一些过于密集的点迹,找一个适当的点作计时起点(0点)。
(3)每5个点(相隔0.1 s)取1个计数点进行测量(如图所示,相邻两点中间还有4个点未画出)。
(4)采集数据的方法:不要直接去测量两个计数点间的距离,而是要量出各个计数点到计时零点的距离d1、d2、d3…然后再算出相邻的两个计数点的距离x1=d1;x2=d2-d1;x3=d3-d2;x4=d4-d3…2.瞬时速度的计算瞬时速度的求解方法:时间间隔很短时,可用某段时间的平均速度表示这段时间内中间时刻的瞬时速度,即v n =x n +x n +12T。
3.画出小车的v -t 图像(1)定标度:坐标轴的标度选取要合理,应使图像大致分布在坐标平面中央。
2013~2014学年第一学期期末复习第二章匀变速直线运动规律复习学案一、基本概念1.匀变速直线运动的规律(三个基本公式)①速度公式:v t=②位移公式:s=③位移与速度关系式:2.匀变速直线运动的推论(1)任意相邻两个连续相等的时间T里的位移之差是一个恒量,即ΔS=X2-X1=X3-X2=…=X n-X n-1=aT2 。
(2)某段时间内的平均速度,等于该时间的中间时刻的瞬时速度,即v t/2=3.自由落体运动(1)条件:物体只在作用下,从开始下落.(2)特点:初速度v0=0,加速度为重力加速度g的运动.通常的计算中g= m/s2, 在粗略的计算中g= m/s2。
(3)基本规律:速度公式v=.位移公式h=.速度位移关系式:v2=.二、速度-时间图像(v-t图像)纵坐标表示物体运动的速度,横坐标表示时间。
图像意义:表示物体速度随时间的变化规律(1)①表示物体做直线运动;②表示物体做直线运动;③表示物体做直线运动;(2)图中阴影部分面积表示0~t1时间内②的大小,阴影部分面积在横坐标轴上方表示位移方向是沿方向。
自主学习巩固:1.物体做匀加速直线运动,初速度v0=2 m/s ,加速度a=0.1 m/s2 ,则第3 s 末的速度是_____m/s,5 s末的速度是_________m/s。
2.汽车在平直公路上以10m/s的速度做匀速直线运动,发现前面有情况而刹车,获得的加速度大小是2m/s2,则(1)汽车在3 s 末的速度大小是________________m/s;(2)在5 s 末的速度大小是________________m/s;(3)在10 s 末的速度大小是________________m/s。
当堂达标:1、一物体做匀加速直线运动,初速度为2m/s,加速度为0.5m/s2,则此物体在4s末的速度为___________m/s。
2、一辆汽车做匀减速直线运动,初速度大小为15m/s,加速度大小为3m/s2,求:①汽车速度刚好为零时所经历的时间?②汽车第3s末的瞬时速度大小?3、某质点的位移随时间而变化的关系式为x=4t+2t2,x与t的单位分别是m和s,则质点的初速度与加速度分别为()A.0m/s与2m/s2B.0与4m/s2C.4m/s与0 D.4m/s与4m/s24、某汽车正以12m/s的速度在路面上匀速行驶,前方出现紧急情况需刹车,加速度大小是3m/s2,求汽车5s末的速度。
第二章匀变速直线运动的研究※知识点一、知识网络※知识点二、匀变速直线运动规律的理解与应用 1.公式中各量正负号的确定x 、a 、v 0、v 均为矢量,在应用公式时,一般以初速度方向为正方向(但不绝对,也可规定为负方向),凡是与v 0方向相同的矢量为正值,相反的矢量为负值.当v 0=0时,一般以a 的方向为正方向,这样就把公式中的矢量运算转换成了代数运算. 2.善用逆向思维法特别对于末速度为0的匀减速直线运动,倒过来可看成初速度为0的匀加速直线运动,这样公式可以简化⎝ ⎛⎭⎪⎫如v =at ,x =12at 2,初速度为0的比例式也可以应用.3.注意(1)解题时首先选择正方向,一般以v 0方向为正方向. (2)刹车类问题一般先求出刹车时间.(3)对于有往返的匀变速直线运动(全过程加速度a 恒定),可对全过程应用公式v =v 0+at 、x =v 0t +12at 2、……列式求解.(4)分析题意时要养成画运动过程示意图的习惯,特别是对多过程问题.对于多过程问题,要注意前后过程的联系——前段过程的末速度是后一过程的初速度;再要注意寻找位移关系、时间关系. 4.匀变速直线运动的常用解题方法【典型例题】【例题1】一个物体以v 0=8m/s 的初速度沿光滑斜面向上滑,加速度的大小为2 m/s 2,冲上最高点之后,又以相同的加速度往回运动,下列说法错误的是( ) A .1 s 末的速度大小为6 m/s B .3 s 末的速度为零 C .2 s 内的位移大小是12 m D .5 s 内的位移大小是15 m【审题指导】分析题中已知条件选择合适的关系式求解. 【答案】 B【针对训练】在某地地震发生后的几天,通向灾区的公路非常难行,一辆救灾汽车由静止开始做匀变速直线运动,刚运动了8 s ,由于前方突然有巨石滚在路中央,所以又紧急刹车,经4 s 停在巨石前.则关于汽车的运动情况,下列说法正确的是 ( ) A .加速、减速中的加速度大小之比a 1∶a 2=1∶2 B .加速、减速中的加速度大小之比a 1∶a 2=2∶1 C .加速、减速中的平均速度之比v -1∶v -2=2∶1 D .加速、减速中的位移之比x 1∶x 2=1∶1 【答案】A 【解析】 由a =v -v 0t 可得a 1∶a 2=1∶2,选项A 正确,B 错误;由v -=v 0+v 2可得v -∶v -2=1∶1,选项C错误;又根据x =v -t ,x 1∶x 2=2∶1,选项D 错误.※知识点三、x -t 图象和v -t 图象 ★x -t 图象和v -t 图象的比较2.在图象问题的学习与应用中首先要注意区分它们的类型,其次应从图象所表达的物理意义,图象的斜率、截距、交点、拐点、面积等方面的含义加以深刻理解.【典型例题】【例题2】在水平直轨道上距离A点右侧10 m处,一辆小车以4 m/s的速度匀速向右行驶,5 s末,小车的速度立即变为2 m/s匀速向左行驶.设小车做直线运动的位移和运动方向都以水平向左为正方向,(1)试作出小车在20 s内的v-t图象和x-t图象:(写出必要的计算过程,以小车出发点为位移坐标原点);(如图所示)(2)根据图象确定小车在20 s末的位置.(用文字表达)【针对训练】一质点由静止开始做直线运动的v-t关系图象如图所示,则该质点的x-t关系图象可大致表示为下图中的( )【答案】 B※知识点四、纸带问题的处理方法纸带的分析与计算是近几年高考中考查的热点,因此应该掌握有关纸带问题的处理方法.1.判断物体的运动性质(1)根据匀速直线运动的位移公式x =vt 知,若纸带上各相邻的点的间隔相等,则可判定物体做匀速直线运动.(2)由匀变速直线运动的推论Δx =aT 2知,若所打的纸带上在任意两个相邻且相等的时间内物体的位移差相等,则说明物体做匀变速直线运动. 2.求瞬时速度根据在匀变速直线运动中,某段时间内的平均速度等于该段时间中间时刻的瞬时速度:v n =x n +x n +12T,即n 点的瞬时速度等于(n -1)点和(n +1)点间的平均速度. 3.求加速度 (1)逐差法虽然用a =ΔxT2可以根据纸带求加速度,但只利用一个Δx 时,偶然误差太大,为此应采取逐差法.如图所示,纸带上有六个连续相等的时间间隔T 内的位移x 1、x 2、x 3、x 4、x 5、x 6.由Δx =aT 2可得:x 4-x 1=(x 4-x 3)+(x 3-x 2)+(x 2-x 1)=3aT 2 x 5-x 2=(x 5-x 4)+(x 4-x 3)+(x 3-x 2)=3aT 2 x 6-x 3=(x 6-x 5)+(x 5-x 4)+(x 4-x 3)=3aT 2所以a =(x 6-x 3)+(x 5-x 2)+(x 4-x 1)9T 2=(x 6+x 5+x 4)-(x 3+x 2+x 1)9T 2. (2)两段法将如图所示的纸带分为OC 和CF 两大段,每段时间间隔是3T ,可得:x 4+x 5+x 6-(x 1+x 2+x 3)=a (3T )2,显然,求得的a 和用逐差法所得的结果是一样的,但该方法比逐差法简单多了. (3)v -t 图象法根据纸带,求出各时刻的瞬时速度,作出v -t 图象,求出该v -t 图象的斜率k ,则k =a . 这种方法的优点是可以舍掉一些偶然误差较大的测量值,有效地减少偶然误差. 【典型例题】【例题3】某兴趣小组利用自由落体运动测定重力加速度,实验装置如图所示.倾斜的球槽中放有若干个小铁球,闭合开关K ,电磁铁吸住第1个小球.手动敲击弹性金属片M ,M 与触头瞬间分开,第1个小球开始下落,M迅速恢复,电磁铁又吸住第2个小球.当第1个小球撞击M时,M与触头分开,第2个小球开始下落…….这样,就可测出多个小球下落的总时间.(1)在实验中,下列做法正确的是________.A.电路中的电源只能选用交流电源B.实验前应将M调整到电磁铁的正下方C.用直尺测量电磁铁下端到M的竖直距离作为小球下落的高度D.手动敲击M的同时按下秒表开始计时(2)实验测得小球下落的高度H=1.980 m,10个小球下落的总时间T=6.5 s.可求出重力加速度g=________ m/s2.(结果保留两位有效数字)(3)某同学考虑到电磁铁在每次断电后需要时间△t磁性才消失,因此,每个小球的实际下落时间与它的测量时间相差△t,这导致实验误差.为此,他分别取高度H1和H2测量n个小球下落的总时间T1和T2.他是否可以利用这两组数据消除△t对实验结果的影响?________(填“是”或“否”)(4)在不增加实验器材的情况下,请提出减小实验误差的两个办法.①________________________________________________________________________;②________________________________________________________________________.【答案】(1)BD (2)9.4 (3)是(4)见解析(2)H =12gt 2=12g ⎝ ⎛⎭⎪⎫T 102所以g =200H T 2=200×1.980(6.5)2 m/s 2=9.4 m/s 2(3)由H 1=12g ⎝ ⎛⎭⎪⎫T 1n -Δt 2和H 2=12g ⎝ ⎛⎭⎪⎫T 2n -Δt 2可得g =2n 2(H 1-H 2)2(T 1-T 2)2,因此可以消去Δt 的影响. (4)增加小球下落的高度或多次重复实验,取平均值做为最后的测量结果均能使实验误差减小【针对训练】 在做“探究小车速度随时间变化的规律”的实验中,取一段如图所示的纸带研究其运动情况.设O 点为计数的起始点,在四个连续的计数点中,相邻计数点间的时间间隔为0.1 s ,若物体做理想的匀加速直线运动,则计数点“A ”与起始点O 之间的距离x 1为________ cm ,打计数点“A ”时物体的瞬时速度为________ m/s ,物体的加速度为________ m/s 2.【答案】 4.00 0.50 2.00【解析】 设相邻相等时间内的位移之差为Δx ,则AB =x 1+Δx ,BC =x 1+2Δx ,OC =OA +AB +BC =3(x 1+Δx )=18.00 cm ,故AB =6.00 cm ,x 1=4.00 cm ;由Δx =aT 2=2.00 cm 可得a =2.00 m/s 2;A 点的速度v A =OA +AB2T=0.50 m/s.※知识点五、追及相遇问题★追及问题的解题思路:(1)根据对两物体运动过程的分析,画出两物体运动的示意图.(2)根据两物体的运动性质,分别列出物体的位移方程,注意要将两物体运动时间的关系反映在方程中.(3)由运动示意图找出两物体位移间的关联方程,这是关键.(4)联立方程求解,并对结果进行简单分析.【典型例题】【例题4】A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B正以v2=10m/s 速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动。
第2单元 匀变速直线运动的规律 (本栏目内容,在学生用书中以活页形式分册装订!) (45分钟,100分) 一、选择题(本大题共10个小题,每小题7分,共70分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得7分,选对但不全的得3分,有选错的得0分) 1.以35 m/s的初速度竖直向上抛出一个小球.不计空气阻力,g=10 m/s2,以下判断不正确的是( ) A.小球到达最大高度时的速度为0 B.小球到达最大高度时的加速度为0 C.小球上升的最大高度为61.25 m D.小球上升阶段所用的时间为3.5 s 【解析】 小球到达最大高度时的速度一定为零,否则该点不是最大高度,A正确;小球上抛过程中只受重力作用,故加速度始终为g,B错;
由v2-v20=2(-g)h⇒h=-v20-2g=61.25 m,C正确;
由v=v0-gt⇒t=v0g=3.5 s,D正确. 【答案】 B 2.(2010年济南模拟)一个小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的一个段轨迹AB.该爱好
者用直尺量出轨迹的长度,如下图所示.已知曝光时间为11 000 s,则小石子出发点离A点约为( )
A.6.5 m B.10 m C.20 m D.45 m 【解析】 小石子到达A点时的速度为
vA=xt=0.0211 000 m/s=20 m/s
h=v2A2g=2022×10 m=20 m. 【答案】 C 3.美国“肯尼迪号”航空母舰上有帮助飞机起飞的弹射系统,已知“F—A15”型战斗机在跑道上加速时产生的加速度为4.5 m/s2,起飞速度为50 m/s,若该飞机滑行100 m时起飞,则弹射系统必须使飞机具有的初速度为( ) A.30 m/s B.40 m/s C.20 m/s D.10 m/s 【解析】 由v2-v20=2ax得v20=v2-2ax=2 500-2×4.5×100=1 600,即v0=40 m/s. 【答案】 B 4.两物体分别从不同高度自由下落,同时落地,第一个物体下落时间为t,第二个物体下落时间为t/2,当第二个物体开始下落时,两物体相距( ) A.gt2 B.3gt2/8 C.3gt2/4 D.gt2/4
【解析】 当第二个物体开始下落时,第一个物体已下落t2时间,此时离地高度h1=12gt2
-12gt22,第二个物体下落时的高度h2=12gt22,则待求距离Δh=h1-h2=gt24. 【答案】 D 5.如右图所示,在一条倾斜的、静止不动的传送带上,有一个滑块能够自由地向下滑动,该滑块由上端自由地滑到底端所用时间为t1,如果传送带向上以速度v0运动起来,保持其他条件不变,该滑块由上端滑到底端所用的时间为t2,那么( ) A.t1=t2 B.t2>t1 C.t2
【解析】 传送带不动时,滑块自由滑下的时间t1满足x=12at21,传送带向上以v0的速
度运动,滑块下滑时的受力不变,加速度不变,t2满足x=12at22,所以t1=t2,应选A. 【答案】 A 6.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中运动.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网所受的压力,并在计算机上做出压力—时间图象,假如做出的图象如下图所示.设运动员在空中运动时可视为质点,则运动员跃起的最大高度是(g取10 m/s2)( )
A.1.8 m B.3.6 m C.5.0 m D.7.2 m 【解析】 从F-t图象中可以看出,运动员脱离弹性网后腾空的时间为2.0 s,则运动
员上升到最大高度所用的时间为1.0 s,上升的最大高度h=12gt2=5.0 m,选项C正确. 【答案】 C 7.一物体做匀变速直线运动,当t=0时,物体的速度大小为12 m/s,方向向东;当t=2 s时,物体的速度大小为8 m/s,方向仍向东,则当t为多少时,物体的速度大小变为2 m/s( ) A.5 s B.4 s C.7 s D.8 s
【解析】 该质点运动的加速度a=ΔvΔt=8-122 m/s2=-2 m/s2,由v=v0+at得±2=12-2t,解得t=5 s或7 s. 【答案】 AC 8.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g值,g值可由实验精确测定.近年来测g值的一种方法叫“对称自由下落法”,它是将测g归于测长度和时间,具体做法是:将真空长直管沿竖直方向放置,自其中O点向上抛小球又落到原处的时间为T2,在小球运动过程中经过比O点高H的P点,小球离开P点到又回到P点所用的时间为T1,测得T1、T2和H,可求得g等于( )
A.8HT22-T21 B.4HT22-T21
C.8H(T2-T1)2 D.H4(T2-T1)2 【解析】 小球从O点能上升的最大高度为12gT222,小球从P点能上升的高度为12g
T1
2
2,所以有:H=12gT222-12gT122,由此得g=8HT22-T21.
【答案】 A 9.(2009年高考江苏卷)如右图所示,以8 m/s匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18 m.该车加速时最大加速度大小为2 m/s2,减速时最大加速度大小为5 m/s2.此路段允许行驶的最大速度为12.5 m/s.下列说法中正确的有( ) A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D.如果距停车线5 m处减速,汽车能停在停车线处
【解析】 如果立即做匀加速直线运动,t1=2 s内的位移x=v0t1+12a1t21=20 m>18 m,此时汽车的速度为v1=v0+a1t1=12 m/s<12.5 m/s,汽车没有超速,A项正确,B项错误;如果立即做匀减速运动,速度减为零需要时间t2=v0a2=1.6 s,此过程通过的位移为x2=12a2t22=6.4 m,C项正确,D项错误. 【答案】 AC 10.从地面竖直上抛物体A,同时,在某高度处有一物体B自由落下,两物体在空中相遇时的速率都是v,则( ) A.物体A的上抛初速率是两物体相遇时速率的2倍 B.相遇时物体A已上升的高度和物体B已下落的高度相同 C.物体A和物体B落地时间相等 D.物体A和物体B落地速度相同 【解析】 由题意知A、B相遇时,A正处于上升阶段,又因为A、B两物体加速度相同,均为g,则由Δv=gt得,A、B相遇时,速度变化量相同,即Δv=vA-v=v,所以vA=2v,A对;A、B相遇前任一时刻vA>vB,所以相遇时xA>xB,B错;物体B比物体A先落地,C错;由v2-v20=2ax得A、B落地时速度相同,D对. 【答案】 AD 二、计算题(本大题共两个小题,共30分.解答时请写出必要的文字说明、方程式和重要的演算步骤,有数值计算的题,答案中必须明确写出数值和单位) 11.(15分)“10米折返跑”的成绩反应了人体的灵敏素质.测定时,在平直跑道上,受试者以站立式起跑姿势站在起点终点线前,当听到“跑”的口令后,全力跑向正前方10米处的折返线,测试员同时开始计时,受试者到达折返线处时,用手触摸折返线处的物体(如木箱),再转身跑向起点终点线,当胸部到达起点终点线的垂直面时,测试员停表,所用时间即为“10米折返跑”的成绩.如下图所示,设受试者起跑的加速度为4 m/s2,运动过程中的最大速度为4 m/s,到达折返线处时需减速到零,加速度的大小为8 m/s2,返回时达到最大速度后不需减速,保持最大速度冲线.受试者在加速和减速阶段的运动均可视为匀变速直线运动.求该受试者“10米折返跑”的成绩为多少秒?
【解析】 对受试者,由起点终点线向折返线运动的过程中 加速阶段:
t1=vma1=1 s,x1=12vmt1=2 m 减速阶段: t3=vma2=0.5 s,x3=12vmt3=1 m
匀速阶段:t2=l-(x1+x3)vm=1.75 s 由折返线向起点终点线运动的过程中 加速阶段:
t4=vma1=1 s,x4=12vmt4=2 m 匀速阶段:t5=l-x4vm=2 s 受试者“10米折返跑”的成绩为: t=t1+t2+„+t5=6.25 s. 【答案】 6.25 s 12.(15分)如右图所示,一平板车以某一速度v0匀速行驶,某时刻一货箱(可视为质点)无初速度地放置于平板车上,货箱离车后端的距离为l=3 m,货箱放入车上的同时,平板车开始刹车,刹车过程可视为做a=4 m/s2的匀减速直线运动.已知货箱与平板车之间的动摩擦因数为μ=0.2,g=10 m/s2.为使货箱不从平板车上掉下来,平板车匀速行驶的速度v0应满足什么条件? 【解析】 设经过时间t,货箱和平板车达到共同速度v,以货箱为研究对象,由牛顿第二定律得,货箱向右做匀加速运动的加速度a1=μg.
货箱向右运动的位移x箱=12a1t2 又v=a1t 平板车向右运动的位移x车=v0t-12at2 又v=v0-at 为使货箱不从平板车上掉下来,应满足:x车-x箱≤l 联立得:v0≤2(a+μg)l 代入数据:v0≤6 m/s. 【答案】 v0≤6 m/s