2011年26中一摸考试数学试题
- 格式:doc
- 大小:350.50 KB
- 文档页数:13
2023—2024学年度第二学期学业水平诊断性测试九年级数学试题(考试时间:120分钟满分:120分)本试题分第Ⅰ卷和第Ⅱ卷两部分,共26道题.第Ⅰ卷1~10题为选择题,共30分:第Ⅱ卷11~16题为填空题,17题为作图题,18~26题为解答题,共90分,要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ卷一、选择性(本题满分30分,共有10道小题。
每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论。
其中只有一个是正确的。
每小题选对得分:不选、选错或选出的标号超过一个的不得分.1.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的,在不考虑图中阴影及拼接线的情况下,下列由七巧板拼成的图案中,属于轴对称图形的是()A .B .C .D .2.据新闻网报道:截止2023年12月底,我国在轨运行的北斗系列卫星已经达到48颗,完成组网已覆盖全球。
北斗导航系统的建成,是我国经济增长的催化剂,预计2025年,北斗导航对我国经济的贡献可达156亿美元。
将“156亿”用科学记数法表示为:( )A .B .C .D .3.如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .4.下列计算正确的是( )AB .100.15610⨯91.5610⨯101.5610⨯915.610⨯20212︒-=842a a a +=C .D .5.如图,在中,直角顶点C 的坐标为,点A 在x 轴正半轴上,且,将先绕C 顺时针旋转,再向左平移2个单位,则点A 的对应点的坐标是()A .B .C .D .6.小亮在网上销售某种笔记本,最近一周,每天销售该笔记本的本数为:12,13,14,15,14,16,21.关于这组数据,小亮得出如下结果,其中错误的是( )A.方差是B .众数是14本C .平均数是15本D .中位数是14本7.如图,在中,,点D 为BC 中点,过点D 作BC 的垂线,交AB 于点E ,连接CE ,作的平分线,与DE 的延长线交于点F ,则的度数为()A .B .C .D .8.如图,四边形ABCD 内接于,连接BD ,若,,则的度数是()A .B .C .D .9.如图,,,点A 在OB 上,四边形ABCD 是矩形,连接AC ,BD 交于点E ,连接OE 交AD 于点F ,下列4个判断:①;②;③;④若点G 是线段OF 的中点,则为等腰直角三角形.其中,判断正确的是()235a a a +=3256(3)8a a a a -⋅=Rt ABC △()1,03AC =ABC △90︒A '()1,3()1,3-()1,3--()1,3-447ABC △70A ∠=︒ACE ∠F ∠30︒35︒40︒55︒O AC BC =50BDC ∠=︒ADC ∠125︒130︒135︒150︒45BOD ∠=︒BO DO =OE BD ⊥30ADB ∠=︒DF =AEG △A .①②B .②③④C .①③④D .③④10.二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)11______.12.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务。
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅰ卷第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k =(A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A)13(B)3(C)6(D)9(6)已知直二面角α− ι−β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D 为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(A)23(B)33(C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种(B)10种(C)18种(D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14-(C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于(A)2 (B)3 (c)2 (D)1绝密★启用前2011年普通高等学校招生全国统一考试 理科数学(必修+选修II) 第Ⅱ卷 注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
137 页200 套真题+模拟)2011 年全国各地中考(100
套真题+100 套模拟
2011 全国各地中考数学100 套真题分类汇编第13 章二次函数
一、选择题
1. (2011 山东滨州,7,3 分)抛物线可以由抛物线平移得到,则下列平移过程正确的是( )
A.先向左平移2 个单位,再向上平移3 个单位
B.先向左平移2 个单位,再向下平移3 个单位
C.先向右平移2 个单位,再向下平移3 个单位
D.先向右平移2 个单位,再向上平移3 个单位
【答案】B
【答案】D
2. (2011 广东广州市,5,3 分)下列函数中,当x>0 时y 值随x 值增大而减小的是().
A.y = x2 B.y = x-1C.y = x D.y =
【答案】D
3. (2011 湖北鄂州,15,3 分)已知函数,则使y=k 成立的x 值恰好有三个,则k 的值为()
A.0 B.1 C.2 D.3
4. (2011 山东德州6,3 分)已知函数(其中)的图象
如下面右图所示,则函数的图象可能正确的是
【答案】D
5. (2011 山东菏泽,8,3 分)如图为抛物线的图像,A、B、C 为抛物线。
1、普陀区答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(D); 2.(B); 3.(D); 4.(C); 5.(C) ; 6.(B). 二、填空题:(本大题共12题,每题4分,满分48分)7. ()1,0; 8. -1; 9. ()2345y x =-+ ; 10. 3; 11.1: 12. 1 13.9; 14.83; 15.3; 16.51:4; 17. 13b a -; 18.7或25或32.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式11++………………………………………………………………5′=32 ……………………………………………………………3′=5+…………………………………………………………………2′20.解:原式=22a b a b +-+…………………………………………………………2′=3a b +. ……………………………………………………………2′………………………5′∴=3a b +. ……………1′21.解:(1)设所求的二次函数解析式为c bx ax y ++=2()0a ≠.由这个函数的图像过()0,1A ,可知1c =.………………1′ 再由这个函数的图像过点()1,3B 、()1,1C -,得3ba3a b + BA Cba(第20题图)∴31,1 1.a b a b =++⎧⎨=-+⎩……………………………………………………2′∴1,1.a b =⎧⎨=⎩ ……………………………………………………………2′所以这个二次函数的解析式为:21y x x =++ . ……………1′ (2)21y x x =++213()24y x =++. ……………………………………………2′∴这个二次函数的顶点坐标为13(,)24-. …………………………2′22.解:(1)DH =0.43⨯=1.2(米). ……………………………………2′(2)过点B 作BM ⊥AH ,垂足为M . ……………………………1′由题意得:MH =BC =AD= 1,66A ∠=.∴AM =AH -MH =1 1.21+-=1.2. ……………………………2′ 在Rt △AMB 中,∵cos AMA AB =, ………………………………………………1′ ∴AB = 1.22.92cos 660.41AM ≈=︒(米). …………………………2′∴l =AD +AB +BC 1 2.921 4.9≈++≈(米). …………………1′答:点D 与点C 的高度差DH 为1.2米;所用不锈钢材料的总长度约为4.9米. ……1′23.(1)证明:在ADC △和EGC △中,AD 是BC 边上的高, EG AC ⊥,∴90ADC EGC ∠=∠= , …………………………………1’又 C ∠为公共角,ADC EGC ∴△∽△.…………………………………1’ EG CGAD CD∴=.………………………………………………2′ (2)证明:在四边形AFEG 中,G F90FAG AFE AGE ∠=∠=∠= ,∴四边形AFEG 为矩形. ……………………1′AF EG ∴=. ………………………………………1′由(1)知EG CGAD CD =, AF CGAD CD ∴=. AF ADCG CD∴=.………………………………………1′ ABC △为直角三角形,AD BC ⊥,FAD C ∴∠=∠.……………………………………1′ AFD CGD ∴△∽△.……………1′………………………1′又90CDG ADG ∠+∠=,90ADF ADG ∴∠+∠= .即90FDG ∠=…………………………………1′FD DG ∴⊥.…………………………1′24.解:(1) ∵点B 坐标为(3,m )(m >0),∴3OC =,BC m =. ∵AC BC =, ∴AC m =,∴点A 坐标为()3,0m -.…………………………2′ 由题意得:AO OD =,∴点D 坐标为()0,3m -. ……………………………2′ (2)设以P (1,0)为顶点的抛物线的解析式为()21y k x =-()0k ≠,………1′∵抛物线过点B 、D ,∴()()2231,301.m k m k ⎧=-⎪⎨-=-⎪⎩解得:4,1.m k =⎧⎨=⎩ ………………………………2′所以二次函数的解析式为()21y x =-. …………………1′ 即:221y x x =-+.(3)设点Q 的坐标为(x ,y ),显然1<x <3,y >0. 据题意,3y x =-,即x 2-2x +1=3-x ,整理得 x 2-x -2=0.解得2x =,1x =-(舍去).所以1y =,点Q 的坐标为(2,1),点Q 到边AC 、BC 的距离都等于1.……2′ 联结CQ ,四边形ABQP 的面积=△ABC 的面积-四边形CBQP 的面积=△ABC 的面积-(△CBQ 的面积+△CPQ 的面积)=12×4×4-(12×4×1+12×2×1)=5.………… 2′25.解:(1)由勾股定理得:5AB =.……………………1′∵过动点D 的直线l 与射线BC 相交于点F ,即DE 不平行于BC , ∴只可能DE ⊥AB ,即△ADE ∽△ABC (如图1).……………1′由AD AE AB AC =,解得125AE =, ………………………………1′ ∴135BE =.………………………………………………………1′(2)如图2,过点D 的直线l 交线段AB 于点E , 交BC 的延长线于点F , ∵A B ∠≠∠,2A ∠≠∠,如果BEF △与EAD △相似,那么只能1A ∠=∠.又∵34∠=∠,∴FDC △∽ABC △.……………………2′ ∴CD CF CB CA =. ∴334x y -=.∴493x y +=(0<x <4).……………………………………2′+1′(3) 如图2,当直线l 交线段AB 于点E ,交BC 的延长线于点F 时,1CD =时,133BF =,3AD =. 由EBF △∽EDA △得:△△EBFEAD S S =2BF AD ⎛⎫⎪⎝⎭=16981.…………2′ 如图3,当直线l 交线段AB 的延长线于点E 、 交线段BC 于点F 时,CD =1,AD =3. 由1A ∠=∠得EBF △∽EDA △, 进而,由FDC △∽ABC △,得CD CFCB CA=. C B AD E如图1l4321FE DABC 如图2如图3321F ED ABCl由134CF =,得CF =43. ∴BF =53.…………………………1′由EBF △∽EDA △得::△△EBFEAD S S =2BF AD ⎛⎫⎪⎝⎭=2581. ……………2′ 综上所述,:△△EBF EAD S S 的值等于16981或2581.2、黄浦区答案与评分标准一、选择题1、C ;2、B ;3、B ;4、A ;5、B ;6、C . 二、填空题7、172; 8、1206; 9、2∶3; 10、1;11、256; 12、2; 13; 14、95;15、92; 16、225y x =+; 17、<; 18、1100. 三、解答题 19、解:(1)作AH ⊥BC ,H 为垂足,-------------------------------(1分)则在△ABH 中,∠AHB =90︒,∠B =45︒, AB =,∴AH =AB sin 45⋅︒=6,---------------------------------(2分)∴11962722ABC S BC AH ∆=⋅=⨯⨯=.--------------------(2分) (2)由(1)可知BH =AB cos45⋅︒=6,------------------------(1分) 在△ACH 中,∠AHC =90︒,CH =BC -BH =3,AH =6,则AC ==---------------------------(2分)∴cos ∠C 5CH AC ==.-----------------------------------(2分) 20、解:(1)由条件得1292b cb c =++⎧⎨=-+⎩,-------------------------------(2分)解得43b c =-⎧⎨=⎩,-------------------------------------------(2分)B D∴解析式为2243y x x =-+.------------------------------(1分)(2)2243y x x =-+()222132x x =-++--------------------------------(2分) ()2211x =-+--------------------------------------(2分)∴顶点坐标为(1,1). --------------------------------(1分)21、解:(1)∵AB ∶CD =4∶3,E 是CD 的中点,∴AB ∶CE =8∶3,--------------------------------------(2分) 又∵AB ‖CD ,∴83AF AB FC CE ==.---------------------------------(2+1分) (2) ∵AB ‖CD ,AB ∶CD =4∶3,AB m =,∴34DC m =,-------------------------------------(2分)∴34AC AD DC n m =+=+,----------------------(1分)又83AF FC =,则811AF AC =,----------------------(1分) ∴886111111AF AC n m ==+ .----------------------(1分)22、解:(1)∵BD =BC ,∴∠DCB =∠D . -----------------------------------(1分) 又∵CE ⊥CD ,∠ACB =90︒,∴∠DCB +∠BCE =90︒, ∠ACE +∠BCE =90︒,∴∠D =∠DCB =∠ACE ,-----------------------------(2分) 又∵∠A =∠A ,-----------------------------------(1分) ∴△ACE ∽△ADC . --------------------------------(1分)(2)∵∠DCB +∠BCE =90︒, ∠D +∠DEC =90︒,又∠DCB =∠D ,∴∠BCE =∠BEC ,-----------------------------------(1分) ∴BE =BC . ----------------------------------------(1分) 又BE ∶EA =3∶2,令BE =3k ,EA =2 k , ----------------(1分) 在△ABC 中,∠ACB =90︒,BC =3k ,AB =5k ,-----------(1分)∴sin ∠A =35BC AB =.---------------------------------(1分) 23、解:(1)B ;----------------------------------------------(4分)(2)02sadA <<;------------------------------------(4分)(3) 如图,在△ABC 中,∠ACB =90︒,sin ∠A 35=. 在AB 上取点D ,使AD =AC ,作DH ⊥AC ,H 为垂足,令BC =3k ,AB =5k ,则AD = AC =4k ,-------(1分)又在△ADH 中,∠AHD =90︒,sin ∠A 35=.∴12sin 5DH AD A k =⋅∠=,165AH k ==.则在△CDH 中,45CH AC AH k =-=,CD ==. ------------------------------------------------------(2分)于是在△ACD 中,AD = AC =4k ,5CD k =.由正对定义可得:sadA =5CD AD =,即sad α5=.------(1分) 24、解:(1)令2230ax ax a --=----------------------------------(1分) 解得11x =-,23x =----------------------------------(2分) 所以A (1-,0),B (3,0). ----------------------------(1分)(2)①易知()0,3C a -,由△AOC ∽△COB ,------------------(1分) 则O A O C O C O B =,即1333aa =,------------------------------(2分)解得a =. ----------------------------------(1分)②此时函数解析式为2y x x =--设函数图像上两点2()t ,2(()(3)t t t -----,----------------------------------------------------------(1分)由两点关于原点中心对称,得:233-2))t t ---------------(1分)解得t =------------------------------------------(1分)∴这两个点的坐标为),2-与(),2.------------------(1分)25、解:(1)当点E 与D 重合时,由∠ABD =∠BDC ,∠DBC =∠A , 得△ABD ∽△BDC ,则AB BDBD DC=,---------------------(2分)∴BD =-----------------------------------------(1分) 则3AD ==.------------------------------(1分)(2)作BH ⊥DC ,H 为垂足,则∠ABE +∠EBH =90︒, ∠EBH +∠HBC =90︒,∴∠HBC =∠ABE ,又∠BHC =∠A =90︒,∴△ABE ∽△HBC ,------------------------------------(2分) 又AB ‖CD ,得HB =AD =x ,HC =633CD DH -=-=,∴AE HC AB HB =,即33x y x-=,--------------------------(2分)解得9y x x=-,定义域为()3x >.----------------------(1分)(3)假设能使△ABE 、△CDE 与△BCE 都相似, 当点E 在边AD 上时,(如图1)易知∠EBC =∠A =∠D =90︒,考虑∠1的对应角,容易得到∠1ABE ≠∠,∠1D C E ≠∠, 所以必有∠1=∠2=∠3=60︒,于是在△ABE 、△CDE中,易得AE =DE=∴AD =(2分)此时,BE =,CE =, BC =6, --------------------(1分) 即能使△ABE 、△CDE 与△BCE 都相似;当点E 在边AD 的延长线上时,(如图2)类似分析可得∠1=∠2=∠3=30︒,可求得AD =(2分)同样能使△ABE 、△CDE 与△BCE 都相似.(图1) (图2)3、宝山区答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C. 2. B . 3. D . 4. B . 5. D. 6. A .二、填空题:(本大题共12题,每题4分,满分48分)7. 68a . 8. . 9. ()()11--b a . 10. 22-.11. 22+=x y . 12. ()1,2-. 13.x x y 22-=(答案不唯一). 14.()2,3-.15. 4. 16.. 17. 2. 18. .三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分)19. 解:0122=-+x x ……………………3分 ()()0112=+-x x ……………………2分 ……………………2分经检验: 是增根舍去, 是原方程的根。
2011年中考数学试题汇编---一元一次不等式-(1)2011年中考数学试题汇编---一元一次不等式-(1)2011年中考数学试题汇编---一元一次不等式-(1)2011年中考数学试题汇编---一元一次不等式-(1)一元一次不等式(组)一、知识导航图二、中考课标要求三、中考知识梳理1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向.2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)的解集是x<a,即“小小取小”.(2)的解集是x>b,即“大大取大”.(3) 的解集是a<x<b,即“大小小大取中间”.(4)的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.一元一次不等式(组)一、选择题1、(2011年浙江杭州二模)已知()0+myxx++32=3+中,y为负数,则m的取值范围是()A. m>9B. m<9C. m>-9D. m<-9答案:A2、(2011年浙江杭州七模)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .a >-1B .a ≥-1C .a ≤1D .a <1 答案:A1、(2011重庆市纂江县赶水镇)不等式组10,354x x -+≤⎧⎨+<-⎩的解集在数轴上可表示为( )A .x≤0 B.-3<x≤1 C .x≤1 D .x<-3 答案:D2、(2011年北京四中四模)不等式组⎩⎨⎧<-<-133042x x 的解集为( ) (A )x< 1(B )x >2 (C )x <1或x >2 (D )1<x <2 答案:D3、(2011年北京四中四模)已知a >b ,则下列不等式中,正确的是( ) (A )―3a >―3b (B )3a ->3b-(C )3-a>3-b (D )a -3>b -3 答案:D4、(2011年北京四中模拟26)不等式组112x x ≤⎧⎨+>-⎩答案:A5、(2011年浙江省杭州市模拟)把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D . 答案:B6.(2011年江苏连云港)不等式112x ->的解集是 A .12x >-B .2x >-C .2x <-D .12x <- 答案C7、(2011山西阳泉盂县月考)如图,直线y=kx+b 交坐标轴于两点,则不等式kx+b <0的解集是( ) A 、x >—2 B 、x >3 C 、x <—2 D 、x <3【答案】C 8、(2011浙江杭州模拟14)若点A (m -3,1-3m )在第三象限,则m 的取值范围是( ).A .31>mB .3<mC .3>mD . 331<<m 【答案】D9、(2011浙江杭州模拟) 关于x 的不等式12-≤-a x 的解集如图所示 ,则a 的取值是( )A .0B .-3C .-1 0 1-1 0 1- 1 0 1- 1 0 1- 第12 D .-1 【答案】D10、(2011浙江杭州模拟16)函数42-+-=x xx y 中自变量x 的取值范围是( )A 、2≤xB 、42≠≤x x 且C 、4≠xD 、42≠<x x 且 【答案】A11、(2011年北京四中中考模拟19)如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( ) 答案C12.(2011.河北廊坊安次区一模)不等式组的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 答案:B13.(2011浙江杭州模拟7)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )第3题图-1 01A -1 01BC-1 01DA .a >-1B .a ≥-1C .a ≤1D .a <1 答案:C14.(河北省中考模拟试卷)把不等式组⎩⎨⎧>+≤-01x 01x 的解集表示在数轴上,正确的是…………………………………( ) 答案:BB 组1、( 2011年杭州三月月考)不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为( )(B)(C)(D) 答案:D2、(2011北京四中二模)把不等式组110x x +⎧⎨-≤的(A )(B ) (C ) (D )0 1 2 3 4 0 1 2 3 4 -0 1-0 1 -0 1 -0 1A .B . 252-525253、(2011年海宁市盐官片一模)把不等式组110x x+⎧⎨-≤⎩( ▲ ) A BC D答案: B4、(2011年浙江省杭州市模2)已知()0332=++++m y x x 中,y为负数,则m 的取值范围是( )A. m >9B. m <9C. m >-9D. m <-9答案:A5、(河南新乡2011模拟)不等式组2461x x >⎧⎨-≥⎩的解集在数轴上可表示为( ) 答案:A6、(2011杭州市模拟)若55x x -=-,下列不等式成立的是( )A .50x ->B .50x -<C. 5x -≥0 D .5x -≤0-0 1 -0 1 -0 1 -0 17、(2011年广东省澄海实验学校模拟)用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为( ) A .B . C . D . 答案:A8、(2011深圳市模四)一元一次不等式组⎩⎨⎧->≤-3312x x 的解集在数轴上的表示正确的是( ) A BC D答案:C9、(2011深圳市模四)若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )A.k >-1B. k >-1且k ≠0C. k <1D. k <1且k ≠0 答案:B10、(2011杭州模拟20)若55x x -=-,下列不等式成立的是( )b ac a b c a b c a b c a b c 第7题图第8题图A .50x ->B .50x -<C. 5x -≥0 D .5x -≤0 答案:D 二、 填空题A 组1、(衢山初中2011年中考一模)不等式组40320x x ->⎧⎨+>⎩的解集是 答案:432〈〈-x 2、(2011年北京四中五模)不等式2131-<+x x 的解集是____________. 答案:x >53.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)请你写出一个满足不等式2x —1<10的正整数x 的值:_____. 答案:1(或者2)4.(2011年浙江省杭州市城南初级中学中考数学模拟试题)已知a ,b 为实数,若不等式组2223x a x b -<⎧⎨->⎩的解集为—1<x <1,那么(a —1)(b —1)的值等于. 答案:35.(2011年江苏连云港)不等式组2494x xx x-<⎧⎨+>⎩的解集是. 答案3x <6、(2011山西阳泉盂县月考)已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是【答案】-5<a≤-47.(2011武汉调考模拟)已知关于z 的一元二次方程a 2x -5x+1=0有两个不相等的实数根,则a 的取值范围是_____.【答案】a<425且a ≠0 8、(2011杭州模拟)关于x 的方程12mx x -=的解均为非负数,则m 的取值范围是 答案:m >29.(2011湖北省天门市一模)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是。
2011年普通高校单独招生模拟考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共48分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的)1.已知集合}0,{a M =,{}2,1=N ,若Φ≠N M ,则a 等于 ( ) A..1 B. 2 C. 1或2 D. 1或2.5 2.已知复数iiz 21-=,则|z |=( ) A .55B . 35C .25 D .5 3.已知命题50:〈〈x p , 52:<-x q ,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.下列函数在指区间内为单调减函数的是 ( )A. x y 5.0log = ),0(+∞∈xB. y x=1- )0,(-∞∈xC. xy 2= ),(+∞-∞∈x D. 32+=x y ),(+∞-∞∈x5.若甲、乙中靶概率分别为21,P P ,则甲、乙两人独立打靶,目标被击中的概率为( ) A. 21P P + B. 21P P ⋅ C. 211P P ⋅- D. )1()1(121P P -⋅--6.已知向量)2,0(),4,3(==b a ,则a 和b夹角的余弦值为( )A .54 B. 53 C. 54- D. 53- 7. 若ααcos 2sin =,则α2tan 的值为 ( )A.34-B. 54C. 4-D. 32-8.设函数)1,0)((log )(≠〉+=a a b x x f a 的图像过点(2,1),其反函数的图像过点(2,8),则b a +=( )A .3B .4C .5D .6 9.8)1(xx -的展开式中5x 的系数为( )A .56B .-56C .28D .-28510.设椭圆14922=+y x 的焦点21,F F ,直线l 过点1F ,且与椭圆相交于B A ,两点, 则2ABF ∆的周长为 ( )A . 6 B. 9 C. 12 D. 13 11.1cos sin 22=+ααy x 表示双曲线,则α所在的象限是 ( )A.第一象限B. 第二象限C. 第二或第四象限D. 第三或第四象限 12.设随机变量的概率分布为 则ξ的数学期望的最小值是( ) A . 0 B .21C .2D .随p 的变化而变化 Ⅰ卷的答题纸第Ⅱ卷(共102分)二、填空题:(本大题共6小题,每小题4分,共24分,把答案填在题中的横线上) 13.若函数))(1(a x x y -+=为偶函数,则=a14.函数x x x x x f cos sin 2sin cos )(22+-=的最大值是 .15.若直线043=++k y x 与圆4)3(22=+-y x 相切,则k 的值是 . 16.函数2322-+-=x x y 的单调递增区间是____ ______.17. 圆柱的一个底面积是s ,侧面展开图是一个正方形,则该圆柱的侧面积是____ _____18.ABC 的两个顶点A,C 是2212516x y +=的左,右焦点,点B 在椭圆上,则sin sin sin A CB+_____ .三、解答题:(本大题共7题,共78分)19.(本题满分8分)已知函数)6(log )(22++-=x x x f , (1)求函数的定义域;(2)解不等式02)(≤-x f .20.(本题满分10分)已知ABC ∆是锐角三角形,c b a ,,分别是内角C B A ,,所对边长,并且B B B A 22sin )3sin()3sin(sin +-⋅+=ππ.(1)求角A 的值; (2)若32sin sin =C B ,72=a ,求c b ,.21.(本题满分10分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为80004852+-=x x y ,已知此生产线年产量最大为210吨。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。
吉林市2023—2024学年度初中毕业年级第一次阶段性教学质量检测数学本试卷包括六道大题,共26道小题.共8页.全卷满分120分.考试时间为120分钟.考试结束后,上交答题卡.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.3-的绝对值是()A.3-B.3C.D.1 32.我国古代典籍《周易》用“卦”描述万物的变化,下图为部分“卦”的符号,其中是中心对称图形的是()A.B.C.D.3.下列命题:①对顶角相等;②同旁内角互补;③同角的余角相等;④垂线段最短.其中真命题的个数是()A.1个B.2个C.3个D.4个4.已知关于x的一元二次方程214x m-+=有两个相等的实数根,若n=,则m与n的大小关系为()A.m n>B.m n=C.m n<D.无法确定5.如图,AB,AC是O的弦,OB,OC是O的半径,点P为OB上任意一点(点P不与点B重合),连接CP,若45BAC∠=︒,则BPC∠的度数可能是()(第5题)A.50︒B.90︒C.110︒D.150︒6.某数学兴趣小组借助数学软件探究函数()2y ax x b=-的图象,输入了一组a,b的值,得到了它的函数图象如图所示,借助学习函数的经验,可以推断输入的a,b的值满足()A . 0a <,0b <B . 0a >,0b <C . 0a <,0b >D . 0a >,0b >二、填空题(每小题3分,共24分)7.分解因式:322a a a -+=______.8在实数范围内有意义,则x 的取值范围是______.9.2023年12月31日晚,“新时代新江城”吉林市2024迎新年大型烟花秀精彩上演,约有41万人前往现场观看,在线观看更是达到了1222.7万人次.数据1222.7万用科学记数法表示为______.10.若边长为5cm 的正多边形的一个外角是72︒,则该正多边形的周长为______cm .11.如图,在矩形ABCD 中,AB AD >,按以下步骤作图:①以点A 为圆心,AD 长为半径画弧,交AB 于点E ;②分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ;③画射线AF ,交D C 于点G ,则AGC ∠______︒.(第11题)12.小莹计划购买一台圆形自动扫地机,有以下6种不同的尺寸可供选择,直径(单位:cm )分别是:34,34.5,37,39.5,40,42.如图是小莹家衣帽间的平面示意图,扫地机放置在该房间的角落(鞋柜、衣柜与地面均无缝隙),在没有障碍物阻挡的前提下,扫地机能从底座脱离后打扫全屋地面,小莹可选择的扫地机尺寸最多有______种.(第12题)13.如图是浩洋老师办公桌上的2024年台历,台历上显示的是2024年1月的月历,通过此月历,可以推算出2025年1月1日是星期______.14.如图,AD 平分BAC ∠,AE 平分BAD ∠,AF 平分DAC ∠,点O 为射线AF 上一点,以点O 为圆心,AO 长为半径画圆.若80BAC ∠=︒,3AO =,则图中阴影部分的面积是______(结果保留π).(第14题)三、解答题(每小题5分,共20分)15.先化简,再求值:2211x x x x+⋅-,其中521x =.16.舒兰大米种植区域处于北纬43度世界黄金水稻带.舒兰大米具有营养丰富、绵软柔糯等特点.某校食堂计划采购甲、乙两种舒兰大米,若购进甲种大米500千克和乙种大米300千克需花费11000元;若购进甲种大米200千克和乙种大米600千克需花费9200元.求每千克甲种大米和每千克乙种大米的价格.17.以下内容节选自人教版初中数学教材八年级上册.请说明内容中的尺规作图的原理,即求证O O '∠=∠.图12.2—4作法:(1)如图12.2—4,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';(3)以点C '为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D ';(4)过点D '画射线O B '',则A O B AOB '''∠=∠.18.如图,在左边托盘A (固定)中放置一个重物,在右边托盘B (可左右移动)中放置一定质量的砝码,可使得仪器左右平衡.托盘B 中的砝码质量m 随着托盘B 与点O 的距离d 变化而变化,已知m 与d 是反比例函数关系,下面是它们的部分对应值:托盘B 与点O 的距离d /厘米510152025托盘B 中的砝码质量m /克3015107.56(1)根据表格数据求出m 关于d 的函数解析式.(2)当砝码质量为12克时,求托盘B 与点O 的距离.(第18题)四、解答题(每小题7分,共28分)19.在2023年高考期间,吉林市委“爱在江城温馨高考”的暖心举措温暖着江城每一位考生和家长.其中吉林市第一中学校考点设置了家长休息区,共搭建了121个遮阳篷.图①是一个遮阳篷的实物图,图②是它的侧面示意图,AD 长为2.13m ,太阳光线AB 与地面BC 的夹角为44︒时,求BD 的长(结果精确到0.01m ).(参考数据:sin 440.69︒≈,cos 440.72︒≈,tan 440.97︒≈)图①图②(第19题)20.游神民俗文化活动,主要在中国的闽台地区流行,是一项流传了数百年的习俗,在甲辰龙年春节爆火出圈,无数网友对游神前的掷筊杯仪式感到好奇.掷筊杯是民间一种问卜的方式,每次将两个筊杯掷向地面,根据筊杯落地后的状态来推测行事是否顺利.每个筊杯都有一个平面,一个凸面.筊杯落地的结果如图所示,如果是两个平面称之为笑杯,表示行事状况不明;如果是两个凸面称之为阴杯,表示不宜行事;如果是一个平面和一个凸面称之为圣杯,表示行事会顺利.假设每个筊杯形状大小相同,掷筊杯落地后平面朝上和凸面朝上的可能性也相同.笑杯阴杯圣杯(第20题)(1)笑笑同学想要计算将两个筊杯连续掷两次都得到圣杯的概率,她采用面树状图的方法,请将她的求解过程补充完整.解:根据题意,可以画出如下的树状图:(2)在中国台湾电影《周处除三害》中有一段场景,主角陈桂林用签杯问卜,将两个筊杯连续掷九次.请问连续掷筊杯九次都出现圣杯的概率是______.21.图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,C 均在格点上.只用无刻度的直尺,在给定的网格中,分别按要求画图,保留作图痕迹,不要求写面法.(1)在图①中画线段EF 平分AB ,且点E ,F 均在格点上.(2)在图②中画线段CD ,线段CD 平分ABC △的面积.(3)如图③,点P ,Q 均在格点上,连接PQ 交AC 于点M ,连接BM ,则BCM △的面积是______.图①图②图③(第21题)22.书籍是人类进步的阶梯,中国图书出版已有十多年保持着持续、稳定、快速发展的良性态势.下面的统计图反映了2013年到2022年国家图书总印数和图书总印数年变化率的情况.说明:图书总印数年变化率100%-=⨯当年图书总印数上一年图书总印数上一年图书总印数.根据图中信息,解答下列问题:(1)计算2018年到2022年这五年国家图书总印数的平均数.(2)下列说法正确的是______(下列选项中,有多项符合题目要求,全部选对得满分,部分选对得部分分,选错或未选得0分).A .2013年到2022年国家图书总印数变化率最低的是2022年,所以2022年国家图书总印数最少.B .2013年到2022年国家图书总印数出现增长量最大的是2021年.C .2013年到2022年国家图书总印数变化率的中位数是4.65%.D .2013年到2017年国家图书总印数的方差记为21s ,2018年到2022年国家图书总印数的方差记为22s ,则2212s s <.五、解答题(每小题8分,共16分)23.新能源汽车中的油电混合动力汽车,兼具纯电动汽车和燃油汽车的优势.某油电混合动力汽车先采用锂电池工作,当锂电池电量耗完后自动转换为油路工作,汽车油路工作时不能为锂电池进行充电.该汽车一次充满电,可以行驶最大里程是120千米;油电混合行驶时,满电满油可以行驶最大里程是720千米.下图为该汽车仪表盘显示电量1y (单位:%),仪表盘显示油量2y (单位:%)与某次行驶里程x (单位:千米)之间的函数图象.(1) m =______,n =______.(2)求2y 关于x 的函数解析式,并写出自变量x 的取值范围.(第23题)24.【实践操作】操作一:如图①,将正方形纸片ABCD 对折,使点A 与点D 重合,点B 与点C 重合,再将正方形纸片ABCD 展开,得到折痕PQ .操作二:如图②,将正方形纸片ABCD 的左上角沿AP 折叠,得到点B 的对应点为B ',AB '交PQ 于点E .操作三:如图③,将正方形纸片ABCD 的右上角沿PB '折叠再展开,折痕PB '交CD 于点M .【问题解决】(1)求证B M DM '=.(2)tan EAQ ∠=______·【拓展应用】(3)在图③中延长AB '交CD 于点N ,则MNCD=______.图①图②图③(第24题)六、解答题(每小题10分,共20分)25.如图,四边形ABCD 是矩形,6AB =,BC =,连接AC .点G 从点D 出发,以每秒2个单位长度的速度沿着边DC 向终点C 匀速运动,线段DG 绕点D 逆时针方向旋转60︒得到线段DE ,以线段DG ,DE 为边作菱形DEFG .设菱形DEFG 与ABC △重叠部分图形的面积为y (0y >),点G 运动的时间为x 秒.(1)ACD ∠=______︒.(2)当点F 落在AC 上时,x =______秒.(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(第25题)(备用图)26.如图,在平面直角坐标系中,点O 为坐标原点,点P 为抛物线211:262W y x x =--上任意一点.连接OP ,设点P '为线段OP 的中点,通过求出相应的点P ',再把相应的点P '用平滑的曲线连接起来,可以得到一条新的抛物线记为W .(1)求抛物线1W 与x 轴的交点坐标.(2)求抛物线2W 的解析式.(3)过点P 作线段PQ x ∥轴,点P 在点Q 的右侧,6PQ ,设点P 的横坐标为m .①当线段PQ 与抛物线2W 没有公共点时,直接写出m 的取值范围.②当线段PQ 与抛物线1W 和2W 一共有3个公共点时,直接写出m 的取值范围.(第26题)吉林市2023—2024学年度初中毕业年级第一次阶段性教学质量检测数学参考答案一、单项选择题1.B2.B3.C4.A5.C6.D二、填空题7. ()21a a -8. 1x ≥9. 71.222710⨯10.2511.13512.213.三14.3π+三、解答题15.解:原式()()21111x x xx x x x +=⋅=+--当521x =时,原式5215215211520==-16.解:设每千克甲种大米价格是x 元,每千克乙种大米价格是y 元.500300110002006009200x y x y +=⎧⎨+=⎩,解得1610x y =⎧⎨=⎩答:每千克甲种大米价格是16元,每千克乙种大米价格是10元.17.证明:由作图得DC OD O C O D ''''===,CD C D ''=,在COD △和C O D '''△中OC O C OD O D CD C D ''=⎧⎪''=⎨⎪''=⎩,∴()SSS COD C O D '''≌△△,∴O O'∠=∠(第17题)18.解:(1)设m 关于d 的函数解析式为()0kmk d=≠当5d =时,30m =,所以305k=,解得150k =∴m 关于d 的函数解析式为150m d=.(2)把12m =代入150m d =得15012d=,解得12.5d =答:托盘B 与点O 的距离为12.5厘米.19.解:在Rt ABD △中,44ABD ∠=︒, 2.13AD =,∵tan AD ABD BD ∠=,∴ 2.132.20tan tan 44AD BD ABD ==≈∠︒答:BD 的长约为2.20m .20.解:(1)根据题意,可以画出如下的树状图:由树状图可以看出,所有等可能出现的结果共有16种,其中两次都得到圣杯的情况有4种,所以()41164P ==两次都得到圣杯;(2)151221.解(1)图①(2)图②(3)23.22.解:(1)()1100.1106103.7119.6114108.685++++=(亿)答:2018年到2022年国家图书总印数的平均数为108.68亿.(2)B ,C ,D23.解:(1)120,270.(2)当120270x <≤时,设()20y kx b k =+≠,将()120,25和()270,0代入得120252700k b k b +=⎧⎨+=⎩,解得1645k b ⎧=-⎪⎨⎪=⎩∴()1451202706y x x =-+<≤.(第23题)24.(1)证明:∵四边形ABCD 是正方形,∴90B D ∠=∠=︒,AB AD =,由折叠得90AB P B '∠=∠=︒,AB AB '=,∴18090AB M AB P ''∠=︒-∠=︒,AB AD '=,连接AM ,在Rt AB M '△和Rt ADM △中,AM AMAB AD=⎧⎨'=⎩,∴()Rt Rt HL AB M ADM'≌△△,∴B M DM '=.(2)34.(3)512.(第24题)25.解:(1)30.(2)1.(3)当312x <≤时,622332x x x --=-,()))21333312y x x x =⨯--=-当322x <≤时,()2123332y x x x =-+-=-.当23x <≤时,)())2111613333222y x x x =⨯-⨯-⨯-=-.综上,)))2223102322323x x y x x x x ⎛⎫-<≤ ⎪⎝⎭⎛⎫=-<≤ ⎪⎝⎭⎪⎪-<≤⎪⎩(第25题)备用图26.解:(1)把0y =代入21262y x x =--,得212602x x --=,解得12x =-,26x =,∴抛物线1W 与x 轴的交点坐标为()2,0-,()6,0.(2)把0x =代入21262y x x =--,得6y =-.∴抛物线1W 与y 轴交点为()0,6-∴()1,0-,()3,0,()0,3-均为点P '的坐标.设抛物线2W 的解析式为()20y ax bx c a =++≠,把()1,0-,()3,0,()0,3-代入2y ax bx c =++得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线2W 的解析式为223y x x =--.(3)①2m <+12m >+.②2+或512m <≤-.(第26题。
2011年苏州市初中毕业暨升学考试试卷数 学一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上。
...........1.12()2⨯-的结果是 A .-4 B .-1 C .14- D .32【答案】B 。
【考点】有理数乘法。
【分析】利用有理数运算法则,直接得出结果数。
2.△ABC 的内角和为A .180°B .360°C .540°D .720°【答案】A 。
【考点】三角形的内角和定理。
【分析】利用三角形的内角和定理,直接得出。
3.已知地球上海洋面积约为316 000 000km 2,316 000 000这个数用科学记数法可表示为A .3.61×106B .3.61×107C .3.61×108D .3.61×109 【答案】C 。
【考点】科学记数法。
【分析】利用科学记数法的计算方法,直接得出结果。
4.若m ·23=26,则m 等于A .2B .4C .6D .8【答案】D .【考点】指数运算法则。
【分析】利用指数运算法则,直接得出结果,6363322228m -=÷===。
5.有一组数据:3,4,5,6,6,则下列四个结论中正确的是A .这组数据的平均数、众数、中位数分别是4.8,6,6B .这组数据的平均数、众数、中位数分别是5,5,5C .这组数据的平均数、众数、中位数分别是4.8,6,5D .这组数据的平均数、众数、中位数分别是5,6,6【答案】C 。
【考点】平均数、众数、中位数。
【分析】平均数=34556 4.85++++=,众数6, 中位数5。
6.不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是 A .9 B .12 C .13 D .15【答案】B 。
【考点】不等式组。
你的首选资源互助社区2011 高考数学模拟试卷数学试题(理科)22 道题。
考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共满分值: 150 分,考试时间:120 分钟。
考生只须交答题卷!★祝考试顺利★第Ⅰ卷(选择题共 50分)一、选择题:本大题共10 小题,每题 5 分,共 50 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的,把答案填在答题卷的相应地点。
1.()A.B. C .D.2.已知会集,, 则()A. B.C. D.3.抛物线 y=x2的准线方程是()A. 2 x+1=0x+1=0 C.2 y+1=0 D. 4y+1=0Z4.设,则使函数的定义域为R且为奇函数的全值为 ()部A. B. C. D.5.5 名志愿者分到 3 所学校支教,每个学校最少去一名志愿者,则不一样的分派方法共有 ( )种 B.180 种 C.200 种种6.函数的定义域是()A. B. C. D.7. 设f (x)=则不等式 f ( x)>2的解集为 ()A.( 1,2)(3,+∞) B.(, +∞)你的首选资源互助社区C.(1,2)(,+∞) D.(1,2)8. 若的睁开式中的系数是,则实数 a 的值是( )80A .-2 B. C. D. 2是双曲线的右支上一点,M、N 分别是圆(x+5)2+y2=4 和(x-5)2+y2=1 上的点,则|PM|- |PN| 的最大值为()A. 610.已知函数是上的奇函数,函数是上的偶函数,且,当时,,则的值为()A.B.C.D.第Ⅱ卷(非选择题共 100 分)二、填空题:本大题共 5 小题,每题 4 分,共 20 分,把答案填在答题卷的相应地点。
11.函数在区间上的最小值是____.12.在条件下,的最大值是______13.已知定义在R 上的奇函数满足,则的值为 ________.14.如图,空间有两个正方形ABCD和ADEF,M、N分别为BD、AE的中点,则以下结论中正确的选项是..有正确结论对应的序号)(填写所① MN⊥AD;② MN与BF的是对异面直线;你的首选资源互助社区③MN//平面 ABF④ MN与 AB的所成角为60°15.定义“等积数列”:在一个数列中,假如每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做数列的公积。
九年级数学试题第1页(共12页) 0.1625—32
青岛26中 2010-2011(2)九年级期中测查
数学试题 (本试题满分:120分,考试时间:120 分钟) 友情提示:仔细审题,沉着答卷,相信你会成功! 题号 一 二 三 四 总分 15 16 17 18 19 20 21 22 23 24
得分 一、选择题:(本题满分24分,共有8道小题,每小题3分) 请将1—8各小题所选答案的标号填写在第8小题后面的表格中. 1.在下列计算中,正确的是( ) A.x3+x2=x5 B.x4÷x=x4 C.x3·x2=x5 D.(x3)2=x5 2.下列各图中,不是..中心对称图形的是( )
3.据统计, 2010年山东省参加新型农村合作医疗的人数为3785.3万人, 用科学记数法表示为(保留两位有效数字)( ) A. 37.8×106人 B. 3.8×107人 C. 3.8×108人 D. 3.7×107人
4.⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 无法确定 5.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是( )
A.12 B.14 C.34 D.1 6.已知三点11(,)xy、22(,)xy、33(,)xy均在双曲线4yx上,且1230xxx,则下列各式正确的是( ) 九年级数学试题第2页(共12页)
A.123yyy B.213yyy C.312yyy D.321yyy 7.现有边长相等的正三角形,正四边形,正六边形,正八边形的地砖选其中的两种铺平整的地面,那么选择的两种地砖不能镶嵌的是( ) A. 正三角形, 正四边形 B. 正三角形, 正六边形 C. 正四边形, 正六边形 D. 正四边形, 正八边形
8.已知一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同一坐标系内的大致图象是( )
请将1—8小题各小题所选答案的标号填写在下面的表格内 二、填空题(本题满分18分,共有6道小题,每小题3分) 请将9—14各小题所选答案的标号填写在第14小题后面的表格中. 9.分解因式:a3-4ab2= 。 10.如图,身高为1.5m的某学生想测量一棵大树的高度,她沿着树影BA由B到A
走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3m , CA=1m, 则树的高度为 m 。
题号 1 2 3 4 5 6 7 8 答案
AyxOB
yxOC
yxOy
xDO
第10题 第13题
第11题 九年级数学试题第3页(共12页)
11.如图,⊙O中OABC,25CDA,则AOB的度数为 ° 12.某班四个绿化小组植树的棵数如下: 8, x, 10, 10. 已知这组数据的众数和平均数相等, 那么这组数据的中位数是 。 13.已知△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移5个单位得△A1B1C1,再把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,则点C2的坐标是 . 14.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n的正方形图案,则其中完整的圆共有 个.
请将9—14小题的答案填写在下表中相应的位置上: 题号 9 10 11 12 13 14 答案
三、作图题:用圆规直尺作图,不写做法但要保留作图痕迹(本题满分4分) 15.如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上。
结论: C B O A 九年级数学试题第4页(共12页)
四、解答题(共9个题,74分) 16.(本题满分8分,每小题4分)
(1)化简:23()224xxxxxx (2)解二元一次方程组35821.xyxy, 【解】 【解】
17.(本题满分6分)某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图(近视程度分为轻度、中度、高度三种)。 (1)求这1000名小学生患近视的百分比; (2)求本次抽查的中学生人数; (3)该市有中学生8万人,小学生10万人,分别估计该市的中学生与小学生患“中度近视”的人数。
【解】 (1) 九年级数学试题第5页(共12页)
(2) (3)
18.(本题满分6分)将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数;将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差. (1)请你用画树状图或列表的方法,求这两数差为0的概率;
(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平。
【解】 (1) 九年级数学试题第6页(共12页)
(2) 19.(本题满分6分)如图,线段ABDC、分别表示甲、乙两建筑物的高,ABBCDCBC⊥,⊥,从B点测得D点的仰角为60°从A点测得D点的仰角
为30°,已知甲建筑物高36AB米.
(1)求乙建筑物的高DC; (2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米). (参考数据:21.41431.732≈,≈) 【解】
D 乙 C B
A
甲 九年级数学试题第7页(共12页)
20.(本题满分8分)某企业接到一批生产甲种板材24000㎡和乙种板材12000㎡的任务。 (1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30㎡或乙种板材20㎡.若两种板材需要同时完成,人员应该如何安排? (2)某厂计划用该企业生产的板材搭建A、B两种型号的板房共400间用于安置人员,在搭建的过程中,按实际需要调运这两种板材。已知搭建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示: 板房型号 甲种板材 乙种板材 安置人数 A型板房 54㎡ 26㎡ 5 B型板房 78㎡ 41㎡ 8 问:这400间板房最多能安置多少人员? 【解】(1)
(2) 九年级数学试题第8页(共12页)
21.(本题满分8分)如图,在梯形ABCD中,ADBC∥,对角线BD平分ABC,BAD的平分线AE交BC于EFG,,分别是ABAD,的中点.
(1)求证:EFEG; (2)当AB与EC满足怎样的数量关系时,EGCD∥?并说明理由.
(1)【证明】
(2)【解】 B E
C
D G A
F
(第21题) 九年级数学试题第9页(共12页)
22.(本题满分10分)东方专卖店专销某种品牌的计算器,进价l2元/只,售价20元/只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低O.10元(例如:某人买20只计算,于是每只降价O.10×(20-10)=1元,就可以按19元/只的价格购买),但是最低价为16元/只. (1)求顾客一次至少买多少只,才能以最低价购买? (2)若x表示顾客购买计算器的数量,y表示专卖店获得的利润,求y与x的函数关系式。并求出专卖店一次共获利润180元时,该顾客此次所购买的计算器的数量。 (3)有一天,一位顾客买了46只,另一位顾客买了50只,专卖店发现卖了50只反而比卖46只赚的钱少.为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/只至少要提高到多少? 【解】
(1)
(2)
(3) 九年级数学试题第10页(共12页)
23.(本题满分10分) 问题背景: 在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积. (1) 请你将△ABC的面积直接填写在横线上.__________________ 思维拓展: (2) 我们把上述求△ABC面积的方法叫做构图法....若△ABC三边的长分别为5
a、22a、17a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出..它的面积.
探索创新: (3) 若△ABC三边的长分别为m2+16n2、9m2+4n2、2m2+n2(m>0,n>0,
且m≠n),试运用构图法求出.....这三角形的面积.
【解】 (2)
图① 图②
A C B