EDA实验4
- 格式:doc
- 大小:1.02 MB
- 文档页数:9
EDA实验报告4_ADC采样控制电路引言:ADC(模数转换器)是将模拟信号(连续电压)转换为数字信号(离散电压)的一种设备。
在实际应用中,ADC采样控制电路是非常重要的,它可以通过控制采样频率和采样时间来保证采样的准确性和稳定性。
本实验旨在设计并实现一种ADC采样控制电路,以提高ADC的性能表现。
一、实验目的:1.了解ADC采样控制电路的工作原理;2.学习采样频率和采样时间的设置方法;3.提高ADC采样的准确性和稳定性。
二、实验器材:1.ADC模数转换器;2.电压源;3.可调电阻;4.示波器;5.杜邦线。
三、实验步骤:1.将ADC模数转换器与电压源连接,并通过示波器观察转换后的数字信号;2.调节可调电阻,改变采样频率和采样时间;3.分别记录不同采样频率和采样时间下的ADC转换结果;4.分析实验数据,并总结ADC采样控制电路的工作特点。
四、实验原理:ADC采样控制电路的主要作用是控制ADC的采样频率和采样时间。
采样频率是指单位时间内采样次数,采样时间是每次采样持续的时间。
采样频率和采样时间的设置直接影响到ADC转换的准确性和稳定性。
五、实验结果:根据实验数据统计,我们可以得到不同采样频率和采样时间下的ADC 转换结果,进一步分析实验结果。
通过对比实验数据,我们可以发现,采样频率越高,转换结果的准确性越高,但同时也会增加系统的复杂度和功耗;而采样时间越长,可以减少ADC转换时的噪声干扰,但也会增加转换所需的时间。
六、实验总结:本实验利用ADC采样控制电路,通过控制采样频率和采样时间,提高了ADC的转换准确性和稳定性。
实验结果表明,采样频率和采样时间的设置对ADC转换结果具有重要影响。
在实际应用中,根据需要选择合适的采样频率和采样时间,以实现满足系统要求的ADC采样控制电路。
1."ADC采样控制电路设计与实施",XXX,XX出版社;2.“ADC采样控制电路设计要点分析”,XXX,XXX杂志,20XX年,第XX期,第XX-XX页。
E D A 技术及应用实验报告实验一:八位全加器的设计一、实验要求1、用VHDL设计一个四位并行全加器;2、用图形方式构成一个八位全加器的顶层文件;3、完成八位全加器的时序仿真。
二、实验原理加法器是数字系统中的基本逻辑器件。
例如:为了节省资源,减法器和硬件乘法器都可由加法器来构成。
但宽位加法器的设计是很耗费资源的,因此在实际的设计和相关系统的开发中需要注意资源的利用率和进位速度等两方面的问题。
多位加法器的构成有两种方式:并行进位和串行进位方式。
并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。
通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。
实验表明,4 位二进制并行加法器和串行级联加法器占用几乎相同的资源。
这样,多位数加法器由 4 位二进制并行加法器级联构成是较好的折中选择。
因此本实验中的8 位加法器采用两个4位二进制并行加法器级联而成。
将两个四位并行全加器串联得到八位全家器,设计框图如下图所示:三、实验内容1、4位全加器的VHDL语言设计源程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY FULLADDER4 ISPORT(C4: IN STD_LOGIC;A4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);B4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);S4: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO4:OUT STD_LOGIC);END ENTITY FULLADDER4;ARCHITECTURE ART OF FULLADDER4 ISSIGNAL S5,A5,B5: STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINA5<='0' & A4;B5<='0' & B4;S5<=A5+B5+C4;S4<=S5(3 DOWNTO 0);CO4<=S5(4);END ARCHITECTURE ART;时序仿真:输入A4=1101;B4=1010;C4=0;输出CO4=1;S4=0111;结果正确。
EDA实验模4计数器的设计和仿真一、实验目的:熟练使用quartersⅡ软件,学会使用逻辑图设计模4计数器并进行仿真。
二、实验内容:用逻辑图设计模4计数器并进行仿真与分析。
三、实验方法:实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
实验步骤:1、绘制逻辑图。
打开QuartusII软件平台,点击File中得New建立一个文件。
编写的文件名与实体名一致,点击File/Save as以“.vhd”为扩展名存盘文件。
2、按照实验箱上FPGA的芯片名更改编程芯片的设置。
操作是点击Assign/Device,选取芯片的类型。
3、编译与调试。
确定逻辑图文件为当前工程文件,点击Complier进行文件编译。
编译结果有错误或警告,则将要调试修改直至文件编译成功。
4、波形仿真及验证。
在编译成功后,点击Waveform开始设计波形。
点击“insert the node”,按照程序所述插入q[1..0],clk,任意设置各输入节点的输入波形…点击保存按钮保存。
5、时序仿真。
(具体过程,操作细节以及实验过程截图见下面具体操作,都有说明。
)6、FPGA芯片编程及验证。
(具体细节和过程看后续的实验过程的说明)四、实验过程:1、编译过程(可先绘制逻辑图再建工程,也可先建工程再建文件)a)绘制逻辑图。
打开QuartersII软件平台,点击file中的New新建一个文件。
弹出一个窗口,选择Block Diagram选项;新建文件,然后绘制实验要用到的逻辑图,双击空白处,选择要用到的器件并用适当的线把各元件连接好并进行命名,绘制的模4计数器的逻辑图如下:接着保存文件,点击File/Save as,接着建一个工程,并保存。
b)按照实验箱上FPGA的芯片名更改芯片的设置,选取芯片类型。
设置如下图所示:c)工程建好后,进行编译和调试。
实验一组合电路的设计1. 实验目的:熟悉MAX + plus II 的VHDL 文本设计流程全过程,学习简单组合电路的设计、多层次电路设计、仿真和硬件测试。
2. 实验内容:设计一个2选1多路选择器,并进行仿真测试,给出仿真波形。
3. 实验程序如下:library ieee;use ieee.std_logic_1164.all; entity mux21a isport(a,b,s:in std_logic;y:out std_logic); end entity mux21a; architecture one of mux21a is beginy<=a when s='0' else b ; end architecture one ;4. 仿真波形(如图1-1所示)图1-1 2选1多路选择器仿真波形5. 试验总结:从仿真波形可以看出此2选1多路选择器是当s为低电平时,y输出为b, 当s为高电平时,y输出为a(y<=a when s='0' else b ;),完成2路选择输出。
实验二时序电路的设计1. 实验目的:熟悉MAX + plus II VHDL文本设计过程,学习简单的时序电路设计、仿真和测试。
2. 实验验内容:设计一个锁存器,并进行仿真测试,给出仿真波形。
3. 实验程序如下:library ieee;use ieee.std_logic_1164.all;entity suocun7 isport(clk: in std_logic;en: in std_logic;D: in std_logic_vector(7 downto 0);B:out std_logic_vector(7 downto 0)); end suocun7;architecture one of suocun7 issignal K: std_logic_vector(7 downto 0); beginprocess(clk,en,D)beginif clk'event and clk='1' thenif en ='0'thenK<=D;end if;end if;end process;B<=K;end one;4.仿真波形(如图2-1所示)图2-1 8位锁存器仿真波形此程序完成的是一个8位锁存器,当时钟上升沿到来(clk'event and clk='1')、使能端为低电平(en ='0')时,输出为时钟上升沿时的前一个数,从仿真波形看,实现了此功能。
电子设计自动化(EDA)实验引言电子设计自动化(EDA)是一种利用计算机技术来辅助电子系统设计的工具和方法。
传统的电子设计过程通常需要进行大量的手工操作,但由于电子系统的复杂性不断增加,现代电子设计已经无法满足快速、高效、准确开发产品的需求。
因此,EDA成为了现代电子设计的关键技术。
本实验将介绍EDA的基本概念和相关工具,以帮助大家更好地理解和应用EDA技术。
1. EDA的定义EDA,即Electronic Design Automation,是指利用计算机和相关工具来辅助进行电子系统设计的一种技术。
它采用了计算机辅助设计(CAD)的概念和方法,结合了电路设计、逻辑设计、物理设计等多种技术,可大大提高电子系统设计的效率和可靠性。
EDA技术已经广泛应用于各个层次的电子系统设计中,包括电路设计、芯片设计、电路板设计等。
2. EDA的基本流程EDA的基本流程包括以下几个主要步骤:2.1 电路设计电路设计是EDA的首要步骤之一。
在电路设计阶段,需要通过选择合适的元器件和器件参数来构建电路图,并进行电路仿真和性能评估。
常用的电路设计工具包括Altium Designer、Cadence 等。
2.2 逻辑设计逻辑设计是EDA的核心步骤之一。
在逻辑设计阶段,需要将电路图转化为逻辑电路图,并进行逻辑仿真、逻辑综合等操作,以验证电路功能和性能的正确性。
常用的逻辑设计工具包括Verilog、VHDL等。
2.3 物理设计物理设计是EDA的重要步骤之一。
在物理设计阶段,需要进行芯片布局、布线规划、时钟树设计等操作,以实现电路的物理布局和布线,最终生成物理设计数据。
常用的物理设计工具包括Cadence、Synopsys等。
2.4 验证与验证验证与验证是EDA的关键步骤之一。
在验证与验证阶段,需要进行电路功能验证、时序验证、功耗验证等操作,以保证电子系统设计的正确性和可靠性。
常用的验证与验证工具包括Mentor、Cadence等。
EDA实验报告书姓名 XXX 学号 XXXXXXX 实验时间课题名称全加器实验目的1.掌握MAX+plusⅡ的使用方法。
2.掌握原理图输入的设计方法。
3.学习利用一位全加器设计多位全加器的方法。
设计要求1.利用MAX+plusⅡ软件进行原理图输入设计一位全加器。
2.进行编译、仿真、测试。
3.在一位全加器的基础上设计四位全加器,进行编译、仿真、测试、观察实验结果。
设计思路计算机中的加法器一般就是全加器,它实现多位带进位加法。
图中的“进位入”Ci-1指的是低位的进位输入,“进位出”指的是本位的进位输出。
一位全加器的真值表见下表:111111------⋅+⋅+⋅=⋅⋅+⋅⋅++⋅=iiiiiiiiiiiiiii iiiiiCBCABACCBACBAC B AC BAS输入输出Ci-1Bi Ai Si Ci0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1设计原理图及源程序仿真波形图实验结果问题讨论1.试比较利用卡诺图直接设计四位全加器和利用一位全加器设计四位全加器这两种方法的优缺点。
答:卡诺图直接设计四位全加器的优点是:没有进行产生逻辑,运算速度快。
一位全加器设计四位全加器是串行进位方式是将全加器级联构成多位加法器。
通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。
2.本实验中设计的4位全加器有何缺陷?答:这种全加器的最大缺点是运算速度慢。
在最不利的的情况下,做一次加法运算需要经过四个全加器的传输延迟时间才能得到稳定可靠的运算结果教师评分教师签名日期操作成绩报告成绩。
EDA技术4选1多路选择器实验报告实验报告:EDA技术4选1多路选择器实验一、实验目的本实验旨在通过EDA(Electronic Design Automation)技术,利用4选1多路选择器实现数据选择功能,加深对数字电路设计基础知识的理解,掌握EDA技术的实际应用。
二、实验原理4选1多路选择器是一种数字逻辑电路,它有4个数据输入端,1个数据输出端和2个选择端。
通过控制选择端的状态,可以选择其中一个数据输入端的数据输出到输出端。
三、实验步骤1.实验准备在实验前,需要准备以下设备和软件:•数字逻辑实验箱•EDA软件(如Quartus II)•连接线若干•万用表•实验电路板•4选1多路选择器芯片(如74LS153)•发光二极管及限流电阻(用于显示输出结果)2.实验操作(1)将4选1多路选择器芯片连接到实验电路板上,并按照要求连接发光二极管及限流电阻。
(2)使用EDA软件创建新项目,并选择合适的FPGA芯片型号。
(3)在新项目中添加4选1多路选择器模块,并将其与FPGA芯片连接。
(4)根据实验要求,编写控制逻辑的VHDL或Verilog代码。
(5)将控制逻辑代码编译并下载到FPGA芯片中。
(6)使用万用表检查连接是否正确,发光二极管是否亮起。
(7)通过改变选择端的输入状态,观察发光二极管亮灭情况,验证4选1多路选择器的数据选择功能。
四、实验结果与分析通过本次实验,我们成功地利用4选1多路选择器实现了数据选择功能。
在EDA软件中,我们设计了合适的控制逻辑,将选择的输入数据传送到输出端,并通过发光二极管显示输出结果。
当改变选择端的输入状态时,观察到发光二极管的亮灭情况随之改变,证明了4选1多路选择器的数据选择功能。
通过本次实验,我们深入了解了数字电路设计的基本知识,掌握了EDA技术在实践中的应用。
通过使用EDA软件进行设计、编译和下载程序,我们能够更加便捷地进行数字电路实验。
此外,通过实际操作,我们学会了使用数字逻辑实验箱、万用表等实验设备,提高了实践操作能力。
实验课程名称:EDA技术与应用实验项目名称4位全加器实验实验成绩实验者专业班级组别同组者实验日期一、实验目的1.进一步加深理解全加器的工作原理及电路组成,加深对EDA技术的掌握。
2.熟悉利用Quartus Ⅱ的原理图输入方法设计简单组合电路,掌握层次化设计的方法,并通过一个四位全加器的设计把握原理图输入方式设计的详细流程。
二、实验内容实验内容1:按照书本4.5.1节完成半加器和1位全加器的设计,包括用原理图输入,编译,综合,适配,仿真,实验板上的硬件测试,并将此全加器电路设置成一个元件符号入库。
实验内容2:建立一个更高层次的原理图,利用以上获得的1位全加器构成4位全加器,并完成编译,综合,适配,仿真和硬件测试。
三、实验仪器1.计算器及操作系统2.Quartus II软件四、实验原理一个4位全加器可以由4个1位全加器构成,加法器间的进位可以串行方式实现,即将低位加法器的进位输出cout与相邻的高位加法器的最低进位输入信号cin相接。
1、半加器描述根据半加器真值表可以画出半加器的电路图。
a b so Co0 0 0 00 1 1 01 0 1 01 1 0 1表1半加器h_adder真值表图1 半加器h_adder电路图2、1位全加器描述一位全加器可以由两个半加器和一个或门连接而成,因而可以根据半加器的电路原理图或真值表写出1位全加器的VHDL 描述。
图2 1位全加器电路图3、4位全加器设计描述4位全加器可以看做四个1位全加器级联而成,首先采用基本逻辑门设计一位全加器,而后通过多个1位全加器级联实现4位全加器。
其中,其中cin 表示输入进位位,cout 表示输出进位位,输入A 和B 分别表示加数和被加数。
S 为输出和,其功能可用布尔代数式表示为:S=A+B+Ciii i i o ABC ABC ABC ABC C +++=首先根据一位全加器的布尔代数式应用基本逻辑门设计一位全加器,而后仿真验证一位全加器设计,准确无误后生成元件,供4位全加器设计用。
信号产生与变换电路设计
1、桥式 RC 正弦波振荡器
电路图:
原理及起振条件:RC f π21==1016 Hz ;3134≥+==R R U U A p o u 元件参数:
串并联网络:21R R ==10 K Ω,21C C ==15.565 nF
运算放大器:TLC272CP ;3R =50 Ω,4R =101 Ω
失真仪:XFC1;频率计:XDA1;示波器:XSC1
仿真结果图:
起振时间:
从电路运行到输出波形稳定:T t =541.508 ms
输出信号频率:
误差:%1%39.0%100101610121016<=⨯-=d 输出波形:
幅度:A=3.766 V > 2.4V
失真分析:
失真度:%3%564.1<=λ
元件参数终值:
1021==R R K Ω,21C C ==15.58nF ,3R =50 Ω,4R =102 Ω
t=682.187 ms
起振时间:
T
失真度:d=2.495 % 频率:f=1016 Hz
输出波形:幅度A= 3.782 V
2、方波产生电路
电路图:
原理:101621ln 2213=⎪⎪⎭
⎫ ⎝⎛
+=R R C R f Hz 元件参数:
22321===R R R K Ω ,361.201=C nF ,
稳压管D1、D2均为3V ,频谱分析仪XSA1,频率计XFC1,示波器XSC1
输出信号频率:
误差:%02.2%1001016
441.9951016=⨯-=d
上升沿与下降沿:
由频率计得:上升沿:2.478 us 下降沿:2.592 us
实际测量得:上升沿:2.917 us 下降沿:2.924 us
输出波形:
方波幅度:A = 3.625V > 2 .4V
频谱分析:
元件参数终值:
22321===R R R K Ω ,96.191=C nF ,1016=f Hz ,输出幅度:A=3.628 V
3、方波-三角波变换电路
电路图:
原理:积分运算电路
元件参数:
函数发生器XFG1:方波,1V ,1016 Hz
1021==R R K Ω,665.151=C nF
波特仪XBP1,频率计XFC1,示波器XSC1
频率计:1016=f Hz
输出波形:方波幅度:00.21=A V 三角波幅度:151.32=A V
波特图:
幅频特性曲线: —3dB 时:
如图可知:
314.87lg 20=u A dB ,
上限截止频率:008.42=H f mHz
相频特性曲线:
4、三角-正弦波变换电路
电路图:
元件参数:
函数发生器:XFG1,三角波:3V ,1016Hz
301=R K Ω,10432===R R R KΩ,665.1521==C C nF 波特仪XBP1,失真分析XDA1,示波器XSC1,频率计XFC1
频率计:1016=f Hz 失真分析:%540.2=d
输出波形:
波特图:
幅频特性曲线: —3dB 时:
如图可知: 042.12lg 20-=u A dB ,上限截止频率:054.779=H f Hz
相频特性曲线:。