循迹小车毕业设计
- 格式:pdf
- 大小:2.56 MB
- 文档页数:63
目录目录 0摘要: (1)1.任务及要求 (2)1.1任务 (2)2.系统设计方案 (2)2.1小车循迹原理 (2)2.2控制系统总体设计 (2)3.系统方案 (3)3.1 寻迹传感器模块 (3)3.1.1红外传感器ST188简介 (3)3.1.2比较器LM324简介 (4)3.1.3具体电路 (4)3.1.4传感器安装 (5)3.2控制器模块 (5)3.3电源模块 (6)3.4电机及驱动模块 (7)3.4.1电机 (7)3.4.2驱动 (7)3.5自动循迹小车总体设计 (8)3.5.1总体电路图 (8)3.5.2系统总体说明 (10)4.软件设计 (10)4.1 PWM控制 (10)4.2 总体软件流程图 (11)4.3小车循迹流程图 (11)4.4中断程序流程图 (12)4.5单片机测序 (13)5.参考资料 (16)自动循迹小车摘要:本设计是一种基于单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。
小车以AT89C51 为控制核心, 用单片机产生PWM波,控制小车速度。
利用红外光电传感器对路面黑色轨迹进行检测,并将路面检测信号反馈给单片机。
单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹的目的。
关键词:单片机AT89C51 光电传感器直流电机自动循迹小车Abstract :This design is a Simple Design of a smart auto-tracking vehicle which based on MSC control.The construction of the car ,and methods of hardware and software design are included. The car use AT89C51 as heart of centrol in this system. Then using PWM waves Produced by MCU to control car speed. By using infraraed sensor to detect the information of black track. The smart vehicle acquires the information and sends t hem to the MSC.Then the MSC analyzes the signals and controls the movements of t he motors. Which make the smart vehicle move along the given black line antomaticly.Keywords :infrared sensor ;MSC ;auto-tracking1.任务及要求1.1任务设计一个基于直流电机的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。
循迹小车毕业论文循迹小车毕业论文引言:在如今科技高速发展的时代,机器人技术逐渐走入人们的生活,成为了一种热门的研究领域。
其中,循迹小车作为机器人的一种,具有广泛的应用前景。
本文将围绕循迹小车展开讨论,探索其原理、设计以及未来发展。
一、循迹小车的原理循迹小车是一种能够根据特定轨迹行驶的机器人。
它通过搭载的传感器,如红外线传感器或摄像头,实时感知周围环境,并根据预设的循迹算法进行行驶。
该算法能够分析传感器所接收到的信号,并判断车辆应该如何转向,从而保持在特定轨迹上行驶。
二、循迹小车的设计1. 传感器设计循迹小车的传感器设计是关键之一。
红外线传感器是常用的传感器之一,它能够通过接收反射的红外线信号,判断车辆是否偏离轨迹。
除此之外,摄像头也是一种常见的传感器选择,它能够实时捕捉车辆周围的图像,并通过图像处理算法判断车辆的位置和方向。
2. 控制系统设计循迹小车的控制系统设计是确保车辆按照预设轨迹行驶的核心。
控制系统通常由微控制器、电机驱动器和电源组成。
微控制器负责接收传感器的信号,并根据循迹算法控制电机驱动器实现车辆的转向和速度调整。
电源则提供所需的电能。
3. 车体结构设计循迹小车的车体结构设计需要考虑到载重能力、稳定性和机动性。
车体通常由轮子、底盘和支撑结构组成。
轮子的选择要考虑到摩擦力和抓地力,底盘的设计要考虑到重心的稳定性,支撑结构的设计则要保证车体的整体稳定性。
三、循迹小车的应用循迹小车作为一种机器人技术,有着广泛的应用前景。
1. 工业领域循迹小车在工业领域可以应用于自动化生产线上,实现物料的自动搬运和分拣。
它能够减轻人力负担,提高生产效率。
2. 物流领域循迹小车在物流领域可以应用于仓储管理,实现货物的自动存储和取出。
它能够提高物流效率,减少人为错误。
3. 教育领域循迹小车在教育领域可以应用于机器人教育和编程教育。
学生可以通过操控循迹小车,学习机器人技术和编程知识。
四、循迹小车的未来发展随着科技的不断进步,循迹小车也将不断发展和创新。
循迹小车毕业论文本文介绍了一个基于单片机的循迹小车设计。
该系统主要由两个模块组成:传感器模块和控制模块。
传感器模块使用红外线传感器和光敏电阻来检测黑色轨道和白色背景之间的反差,从而确定小车运动的轨迹。
控制模块使用PID 控制算法来调整小车的方向和速度,以保持小车在轨道上运动。
该系统通过语音识别模块和蓝牙通信模块与外部设备交互,具有较好的可扩展性和交互性。
关键词:循迹小车;单片机;传感器;PID 控制算法一、引言随着科技的不断发展,智能控制系统在各个领域得到了广泛应用。
循迹小车作为一种常见的智能控制系统,已经成为了学生课程设计、科技展览、科普教育等方向的研究热点。
本文基于单片机设计了一个循迹小车,以介绍该系统的设计思路和实现细节。
二、系统设计循迹小车的设计主要分为两个模块:传感器模块和控制模块。
传感器模块通过红外线传感器和光敏电阻来检测轨道,控制模块使用PID 控制算法来调整小车的方向和速度,以保持小车在轨道上运动。
该系统还加入了语音识别模块和蓝牙通信模块,增强了其可扩展性和交互性。
1. 传感器模块循迹小车的传感器模块主要用于检测小车运动的轨迹,以实现自动驾驶。
本文采用了两种传感器:红外线传感器和光敏电阻。
红外线传感器(Infrared Sensor)是一种能够感知红外线辐射并将其转化为电信号的传感器。
其原理是利用红外线反射率的不同,通过发射和接收红外线来判断物体的位置、距离或者形状。
在本文中,我们使用红外线传感器来检测黑色轨道和白色背景之间的反差,从而确定小车运动的轨迹。
光敏电阻(Photoresistor)是一种可以感知光强度变化并将其转化为电信号的传感器。
其原理是利用半导体材料的光电效应,当光照射在其表面时,其电阻值会发生变化。
在本文中,我们使用光敏电阻来检测环境中的光线强度,从而判断小车是否处于黑色轨道上。
2. 控制模块循迹小车的控制模块主要用于控制小车的方向和速度,以保持小车在轨道上运动。
基于STM32的循迹小车设计-毕业论文摘要本文介绍了基于STM32的循迹小车设计。
首先,对循迹小车的背景和意义进行了阐述,并分析了目前市场上常见的循迹小车的设计方案和存在的问题。
接着,详细介绍了本文的设计思路和具体实现方法,包括硬件设计和软件编程。
最后,对设计进行了测试和验证,并对测试结果进行了分析和总结。
实验结果表明,本文设计的循迹小车具有良好的循迹性能和稳定性,可以广泛应用于工业生产、物流配送等领域。
引言随着科技的不断进步和社会的发展,智能机器人被广泛应用于各个领域。
循迹小车作为智能机器人的一种,具有自主移动、感知环境等功能,受到了越来越多的关注。
循迹小车是一种可以根据指定的路径进行移动的智能机器人。
它能够利用传感器和控制算法,实现沿着特定轨迹行驶的功能。
循迹小车在工业生产、物流配送、仓储管理等领域具有广阔的应用前景。
目前市场上常见的循迹小车设计方案存在一些问题,如循迹精度不高、稳定性差、成本较高等。
因此,设计一种基于STM32的循迹小车成为了当今研究的热点之一。
本文旨在设计一种基于STM32的循迹小车,以提高循迹精度、增强稳定性、降低成本。
通过对循迹小车相关技术的研究和实验验证,可以为循迹小车的进一步发展和应用提供参考。
设计思路本文设计的基于STM32的循迹小车主要包括硬件设计和软件编程两个部分。
硬件设计硬件设计部分主要包括传感器选型、电路设计和机械结构设计。
首先,为了实现循迹功能,选择了红外线传感器作为循迹小车的感知模块。
红外线传感器具有反射率高、响应快的特点,适合用于循迹小车的设计。
其次,根据传感器的特性和需求,设计了传感器与电路之间的连接方式。
通过合理布置电路板和传感器,可以有效提高循迹小车的循迹精度和稳定性。
最后,设计了循迹小车的机械结构。
机械结构应具有稳固性、灵活性和可拓展性,以适应不同场景的应用需求。
软件编程软件编程部分主要包括传感器数据处理、控制算法设计和系统化编程。
首先,通过学习和理解红外线传感器的工作原理,编写了传感器数据采集和处理的程序。
自动循迹小车毕业设计毕业设计:自动循迹小车摘要:本毕业设计致力于设计和制作一种自动循迹小车。
该小车能够在给定的路径上自动行驶,并根据环境中的线路进行循迹操作。
设计方案基于Arduino控制器和红外传感器实现,小车能够感知到路径上的线路,并据此进行正确的行驶操作。
此外,设计还包括电机驱动,电源供应和用户界面等功能模块。
实验结果表明,该自动循迹小车能够高效准确地行驶在指定的路径上。
关键词:1.引言2.设计原理自动循迹小车的设计方案基于Arduino控制器和红外传感器。
红外传感器能够感知到路径上的线路,从而确定小车的行驶方向。
Arduino控制器能够接收传感器的数据并根据预先编写的程序进行控制操作,例如调整电机速度和方向等。
整个设计系统的模块主要包括传感器模块,控制器模块,电机驱动模块和电源供应模块。
3.系统设计3.1传感器模块本设计中使用红外传感器来感知路径上的线路。
传感器模块负责采集红外传感器的数据,并将其传输给控制器模块进行处理。
3.2控制器模块控制器模块由Arduino控制器组成。
它通过连接传感器模块和电机驱动模块来接收传感器数据,并根据编写的程序进行控制操作。
控制器模块具有高度灵活性和可编程性,使得小车能够按照预先设定的规则行驶。
3.3电机驱动模块电机驱动模块负责控制小车的速度和方向。
根据传感器数据,控制器模块会发送相应的指令给电机驱动模块,以控制小车的行驶。
3.4电源供应模块电源供应模块为整个系统提供所需的电力。
它负责将来自电池或电源适配器的直流电源转换为小车所需的电压和电流。
4.实验结果和讨论通过设置合适的传感器感应距离,测试了自动循迹小车在给定路径上的行驶性能。
实验结果表明,该小车能够稳定地沿着给定的路径行驶,并根据环境中的线路进行循迹操作。
5.结论本毕业设计成功地设计和制作了一种自动循迹小车。
该小车能够准确地沿着给定的路径行驶,并根据环境中的线路进行循迹操作。
通过这个设计,我们可以更深入地理解自动控制和传感器应用的原理和实践。
目录 3 循迹小车设计 . ..........................摘要........................................................... 2 3.1 硬件设计 . ........................引言 (2)3.1.1 单片机最小系统 . ................1 Arduino 智能小车设计方案与参3.1.2 灰度传感器模块 . ................数 .............................................................33.1.3 电机驱动电路 . ..................1.1 Arduino 智能小车设计方3.2 软件设计 . ........................案简介....................................................... 3 3.2.1 系统主程序 . ....................1.1.13.2.2 本系统编译器 . .................. 功能要求 (3)1.1.23.3 实物展示 . ........................ 基本原理 (3)1.23.4 部分程序展示 . .................... 循迹小车参数 . (4)2 Arduino 与 51结论 . .................................. 单片机的区别 . (5)2.1 Arduino致谢 . .................................. 单片机 . .. (5)2.1.1 Arduino参考文献 . ................................ 单片机的介绍 . (5)2.1.2 Arduino单片机的特色. (5)2.1.3 Arduino单片机的功能.Arduino 循迹小车 (5)2.2 51 单片机 (6)设计与实现2.2.1 51 单片机的介绍 . (6)摘要:循迹小车是 Arduino 单2.2.2 51 单片机的功能 . (6)片机的一种典型应用。
自动避障循迹小车毕业论文自动避障循迹小车毕业论文目录1 绪论 (1)1.1智能小车的研究与意义 (1)1.2智能小车的现状 (3)1.2.1国外移动机器人研究 (3)1.2.2国移动机器人的状况 (4)1.2.3小车避障现状综诉 (4)1.2.4智能小车的现状 (4)1.3论文研究容与主要结构 (5)1.3.1基于单片机控制的智能循迹避障小车 (5)1.3.2文章主要结构 (5)2 方案选型设计 (6)2.1车体设计 (6)2.2电机驱动设计 (6)2.2.1电机选择 (6)2.2.2驱动选择 (7)2.2.3H桥式电路工作原理 (9)2.2.4PWM调速技术 (9)2.3循迹模块 (9)2.3.1光电传感器的工作原理 (9)2.3.2光电传感器的分类和工作方式 (9)2.3.3光电传感器的选择 (10)2.4避障模块 (11)2.4.1超声波测距的原理 (11)2.4.2超声波传感器的分类 (12)2.4.3超声波测距特点 (12)2.4.4超声波模块选择 (13)2.5显示模块 (14)2.5.1数码管的结构及工作原理 (14) 2.5.2数码管的选择 (15)2.6控制系统模块 (15)2.6.1单片机的发展 (15)2.6.2AT89C52单片机的简单介绍 (17)2.7电源模块 (17)3 硬件设计 (18)3.1总体设计 (18)3.1.1小车总体概述 (18)3.1.2小车总体设计框图 (19)3.2驱动电路设计 (19)3.3信号检测模块电路设计 (21)3.3.1循迹模块信号检测电路 (21)3.3.2壁障模块和显示信号检测电路 (22) 3.4显示模块电路设计 (24)3.5主控电路设计 (27)3.5.1单片机最小系统设计 (27)3.5.2主控电路图 (30)4 软件设计 (31)4.1主程序设计 (31)4.1.1主程序框图 (31)4.1.2主程序流程图 (32)4.2循迹模块程序设计 (33)4.3显示模块程序设计 (33)4.4避障模块程序设计 (34)5 制作安装与调试 (35)5.1小车的安装 (35)5.2小车的调试 (35)5.3智能小车的功能 (36)结论 (37)参考文献 (38)附录: (40)中文译文 (44)致谢 (52)1 绪论1.1智能小车的研究与意义移动机器人是机器人领域的一个分支,他的研究始于60年代末期,斯坦福研究院(SRI)的Nits Nilssen和Charles Rosen 等人,在1966年至1972年间研制出了名为Shake的自主移动机器人[1]。
沈阳理工大学课程名称:基于单片机智能循迹小车姓名:魏玉柱指导教师:程磊催宁海摘要本文论述了基于单片机的智能循迹小车的控制过程。
智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。
智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。
该技术已经应用于无人驾驶机动车,无人工厂,仓库,服务机器人等多种领域。
本设计采用STC89C52单片机作为小车的控制核心;采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号;采用驱动芯片L298N构成双H桥控制直流电机,其中软件系统采用C程序,本设计的电路结构简单,容易实现,可靠性高。
关键词:STC89C52 智能循迹小车TCRT5000传感器电机驱动目录1引言 (4)2 需求分析 (4)2.2 循迹小车的发展历程回顾 (5)2.3智能循迹小车的应用 (5)2.4 智能循迹小车研究中的关键技术 (8)3系统设计 (9)4详细设计 (8)4.1 硬件设计 (8)4.1.1电路原理图 (9)4.1.2 器件选择 (10)4.1.2.1 智能循迹小车的主控芯片的选择 (10)4.1.2.2 智能循迹小车电源模块的选择 (10)4.1.2.3 智能循迹小车电机驱动电路的选择 (11)4.1.2.4 智能小车循迹模块的选择 (11)4.1.3 模块设计 (12)4.1.3.1电机驱动模块电路 (12)4.1.3.2光电传感器模块 (12)4.2 软件设计 (14)4.2.1程序流程图 (14)4.2.2实现主要代码 (14)5 实验结果 (16)5.1设计实现 (16)5.2出现的问题和解决的方法 (17)6 结束语 (18)7.参考文献 (19)1引言随着控制技术及计算机技术的发展,寻迹小车系统将在未来工业生产和日常生活中扮演重要的角色。
摘要80C51单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。
这里介绍的是如何用80C51单片机来实现长春工业大学的毕业设计,该设计是结合科研项目而确定的设计类课题。
本系统以设计题目的要求为目的,采用80C51单片机为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
整个系统的电路结构简单,可靠性能高。
实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。
采用的技术主要有:(1)通过编程来控制小车的速度;(2)传感器的有效应用;(3)新型显示芯片的采用。
关键词:80C51单片机;光电检测器;PWM调速;电动小车。
ABSTRACT80C51 is a 8 bit single chip computer. Its easily using and multi-function suffer large users. This article introduces the CCUT graduation design with the 80C51 single chip computer. This design combines with scientific research object. This system regards the request of the topic, adopting 80C51 for controlling core, super sonic sensor for test the hinder. It can run in a high and a low speed or stop automatically. It also can record the time, distance and the speed or searching light and mark automatically the electric circuit construction of whole system is simple, the function is dependable. Experiment test result satisfy the request, this text emphasizes introduced the hardware system designs and the result analyze.The adoption of technique as:(1) Reduce the speed by program the engine;(2) Efficient application of the sensor;(3) The adoption of the new display chip.Key words:80C51 single chip computer; light electricitydetector;PWM speed adjusting;Electricity motive small car.目录1 绪论 (4)1.1本课题研究的背景和意义 (4)1.2智能循迹小车设计原理 (5)2 方案设计与论证 (5)2.1直流调速系统 (5)2.2检测系统 (6)3 智能寻迹小车模块设计 (10)3.1总体方案 (10)3.2传感检测单元 (11)3.2.1小车循迹原理 (11)3.2.2传感器的选择及检测电路设计 (11)3.2.3传感器的安装 (12)3.3软件控制单元 (13)3.3.1单片机选型及程序流程 (13)3.3.2车速的控制 (13)3.3.3电机驱动单元 (14)3.3.4蜂鸣器电路设计 (15)3.3.5稳压电源设计 (15)4 系统功能测试 (15)4.1测试仪器及设备 (16)4.2功能测试 (16)5 结束语 (17)致谢 (18)参考文献 (19)附录 (20)1相关芯片介绍 (20)1.1单片机概述 (20)1.2LM339芯片介绍 (24)1.3L298N芯片介绍 (27)1.47805芯片介绍 (28)2小车控制程序源代码(C) (30)1 绪论1.1 本课题研究的背景和意义随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。
摘要本设计是一种基于传感器和单片机的数据采集系统,用于实现智能小车的自主循迹功能。
采用反射式红外传感器来识别白色路面中央的黑色导引线,输出相应模拟电压信号,通过信号处理电路将模拟信号转化为可供单片机识别的数字信号;采用反射式激光传感器来判断小车前方一定距离处是直道还是弯道,并直接输出相应的数字信号;采用STC89C52RC单片机作为主控器,对采集到的信号予以分析判断,并控制小车产生相应的动作。
经过总体方案设计、硬件选择、程序编写以及实际调试后,最终的测试结果表明,该数据采集系统工作稳定,算法可靠。
关键词:数据采集系统;传感器;单片机;循迹AbstractThis design is a data acquisition system based on sensors and Single-Chip Microcomputer, it is used to realize the function of tracking line for the intelligent vehicle. The reflecting infra-red sensors are used to identify the black guiding line in the center of the white road, they output corresponding analog voltage signals which will be transformed into digital signals by the signal processing circuit, then the Single-Chip Microcomputer can read the digital signals. The reflecting laser sensor is used to judge that if the road in front of the car is curve or straight, it outputs a corresponding digital signal. The Single-Chip Microcomputer STC89C52RC is used to analyze the signals acquired and control the intelligent vehicle to move accordingly.After designing the overall solutions, choosing the hardware devices, writing the program, and the actual debugging, the final testing result shows that the system works stably and the program runs reliably.Key words: data acquisition system; sensor; Single-Chip Microcomputer; tracking line目录摘要 (I)Abstract....................................................................................................................................... I I 1绪论 . (1)1.1选题的背景和意义 (1)1.2发展现状与趋势 (1)1.3本论文主要研究内容 (2)2 总体方案 (3)2.1 底盘的选择 (3)2.2 智能车整体模块设计 (5)2.3 信息采集模块设计 (5)2.3.1 如何判断车头位置 (6)2.3.2 如何判断弯道直道 (8)2.3.3 如何判断十字路口 (9)3 硬件设计 (10)3.1 传感器的选择及改进 (10)3.1.1 四路红外传感器 (10)3.1.2 一路激光传感器 (13)3.2 信号处理电路的设计 (14)3.3 单片机最小系统设计 (17)3.3.1 供电电路 (17)3.3.2 振荡电路 (18)3.3.3 复位电路 (19)3.4 硬件的安装 (19)4 软件设计 (22)4.1 主函数流程 (22)4.2 循迹流程 (23)4.3 调速流程 (24)4.4 程序的烧录 (24)4.4.1 程序烧录的前提 (25)4.4.2 烧录步骤 (25)5 系统调试与改进 (27)5.1 车模测试 (27)5.2 激光传感器测试 (27)5.3 红外传感器测试 (28)5.4 简单循迹测试 (29)5.5 调速循迹测试 (29)5.6 最终循迹测试 (29)6 结论 (31)致谢 (32)参考文献 (33)附录A 英文原文 (34)附录B 中文翻译 (38)附录C 测试程序 (46)C.1 车模测试程序 (46)C.2 激光传感器测试程序 (47)C.3 循迹测试程序 (48)C.3.1 简单循迹测试程序 (48)C.3.2 调速循迹测试程序 (50)C.3.3 最终循迹测试程序 (53)附录D 跑道 (59)D.1 跑道A (59)D.2 跑道B (59)1绪论1.1选题的背景和意义智能车在生活中有着广泛的应用,例如自动化生产线上的物料陪送机器人,医院的机器人护士,商场的导游机器人等[1]。
循迹小车是智能小车的一种,它属于机器人的范畴。
2006年8月20-21日在清华大学成功举办了由清华大学承办、“飞思卡尔”公司协办的第一届“飞思卡尔”杯全国大学生智能汽车邀请赛。
赛后队员们反映热烈,众多媒体竞相报导[2]。
近些年来,循迹小车的身影频频出现在一些电子设计大赛上,循迹小车渐渐开始大出风头。
循迹小车是一个集环境感知、规划决策、自动行驶等功能于一体的综合控制系统,它应用了微处理器、传感器、自动控制、测量控制、信息处理、机械设计、模式识别等技术[3],完整地体现了探测、制导、控制整个体系,很好地联系了探测制导与控制技术专业所学的课程知识,如自动控制原理、控制电机、传感器技术基础、探测与识别基础、嵌入式原理与基础、计算机语言、数字电子技术、数字信号处理、伺服系统等等课程。
将循迹小车的工作原理搞明白,并且在现有某些产品的基础上利用所学知识去做一些改进创新,这样的实际联系理论,对于加强自己专业知识是大有裨益的。
并且透过整个设计过程,可以更好地了解产品的开发思路,对于将来的学习和发展也是十分有益的。
1.2 发展现状与趋势在我国,各地的大学也在广泛地开展智能小车的研究。
清华大学汽车研究所是国内最早成立的主要从事智能汽车及智能交通的研究单位之一,在主动避撞、车载微机、汽车导航等领域有广泛而深入的研究。
吉林大学(原吉林工业大学)在1992年就开始了智能小车的研究,其中自主研发的图像识别自动引导小车为我国提供了一种新型的自动引导车辆系统,为我国生产组织模式向柔性或半柔性生产组织转化提供了有意义的技术支撑和关键设备。
吉林大学先后研制出4代JUTIV-3型实验型视觉导航小车,现已进入商品化开发阶段[4]。
中国“一汽”集团和国防科技大学联合研制了CITA VT型自主导航车,并已经开发到第四代,此型号的智能车在长沙市绕城公路上进行了自主试验,最高车速可达75.6 km/h,并具备超车功能,其技术性能指标已经达到了世界先进水平[5]。
沈阳新松机器人自动化股份公司研制出的智能机器人名叫“亮亮”,身高0.8米,体重25公斤,釆用锂电池和铅酸电池作为电源,可以持续运行12小时。
它具备教育、娱乐、安全和个人助理四大功能,可以自动行走并能智能躲避障碍物,联网后还可以下载新闻、天气预报等,并能接受语音指令并做出相应反馈[6]。
2006年,我国开始举办“飞思卡尔”全国智能小车竞赛,该赛事是由教育部高等学校自动化专业教学指导委员会主办,在飞思卡尔半导体公司资助下举办的[7]。
2013年8月25日第八届“飞思卡尔杯”智能汽车竞赛全国总决赛上,冠军小车最终以24.807秒跑完100米的成绩成为全国“跑得最快”的小车。
目前,智能小车的研究呈现出新的特点。
首先,随着计算机硬件技术的提高,硬件结构由最初的专用板卡或芯片逐渐向通用板卡或芯片过渡,为了提高运算速度,出现了专用的运算指令[8]。
其次,在控制系统方面,随着网络的发展和传输速度的提高,出现了基于网络传输信号控制的智能小车,而不再是以往一成不变的“单机式”控制模式[8]。
而且,在探测技术方面,由简单的红外探测、电磁探测过渡到激光探测、摄像头探测等,采集的信息更丰富,前瞻性更好,也更加稳定[9]。
1.3 本论文主要研究内容国内智能循迹小车已经发展到较高的水平,但由于资金和研究水平有限,本论文只针对一般循迹小车的“信息采集”方面,做了一些研究学习,以及改进。
本论文第一章对智能小车的发展历史和趋势做了简单介绍,也说明了一下本次毕业设计的主要任务。
第二章介绍了小车整体的设计,包括底盘和信息采集模块等。
第三章重点说明了信息采集模块的硬件部分。
第四章具体讲述了对信息采集模块的算法,相当于软件部分。
第五章具体说明了对信息采集系统实物的实际调试与测试过程。
2总体方案2.1 底盘的选择目前常见的可供选择的车模底盘主要有以下三种:三轮、四轮驱动、四轮舵机。
三轮车模底盘,如图2.1所示,主要由两个动力标准轮差分驱动对称放置,辅助一个小脚轮支撑,这是目前小车中最多的形式之一,有的用前面的球形万向轮来代替小脚轮,或者干脆用半个圆的支点当作万向轮使用[10]。
图2.1 三轮车模底盘其实物如图2.2所示。
图2.2 三轮车模底盘实物这种底盘的优点是转弯灵活、效率高,缺点是走直线难。
走直线的前提是保持两个差分驱动轮的速度一样,略有差异就会造成转向。
而作为支撑的万向轮则无侧向阻力,不能抵消驱动速度差产生的转向力,除非使用固定标准轮作为支撑,但那样又将使转向变得困难,可控性变差。
考虑到要使小车能快速沿直线循迹,本次设计放弃了这种方案。
四轮驱动底盘,主要有两种,如图2.3所示。
图2.3 四轮驱动底盘左边这个“四驱底盘”结构上还是比较精致的,需要两套直角齿轮传动机构,在机械上有些技术含量。
右边这类“四驱底盘”就简单多了,直接用四个减速电机固定在一块板上即可,机构上基本没有技术含量,方便手工制作,但要做到控制自如并非易事。
针对上面这两种“四驱底盘”分析:当其采用两侧方向相反、转速相同驱动时,可实现原地转向,此时车轮的运动轨迹是沿着车轮轴向滑动形成一个圆形。
仔细分析此时和地面的关系,车轮在滚动方向上也是处于打滑状态,如果车轮与地面之间的摩擦力较大,电机的负荷会很大,能量都消耗于克服摩擦力,驱动效率极低,对车胎磨损也较大。