1圆的基本性质
- 格式:doc
- 大小:56.00 KB
- 文档页数:3
2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心,线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。
圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。
圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。
以A、B为端点的弧记作ABAB或弧AB。
等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。
弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点一、圆的有关概念及圆的确定要点一、圆的定义1、圆的描述概念(1)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;(2)圆是一条封闭曲线.2、圆的集合概念(1)圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.(2)平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.(3)圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:(1)定点为圆心,定长为半径;(2)圆指的是圆周,而不是圆面;(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系(1)点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.(2)若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:(1)点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1、弦:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.要点诠释:(1)直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.(2)为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.要点诠释:(1)半圆是弧,而弧不一定是半圆;(2)无特殊说明时,弧指的是劣弧.3、等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:(1)等弧成立的前提条件是在同圆或等圆中,不能忽视;(2)圆中两平行弦所夹的弧相等.4、同心圆与等圆(1)圆心相同,半径不等的两个圆叫做同心圆.(2)圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5、圆心角:顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.二、图形的旋转要点一、旋转的概念(1)一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.要点诠释:(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点.点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.要点二、旋转的性质一般地,图形的旋转有下面的性质:(1)图形经过旋转所得的图形和原图形全等;(2)对应点到旋转中心的距离相等;(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图(1)在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.三、垂径定理知识点一、垂径定理1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,几何语言为:CD 是直径要点诠释:2、推论(1)定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(2)定理2:平分弧的直径垂直平分弧所对的弦.要点诠释:(1)分一条弧成相等的两条弧的点,叫做这条弧的中点.(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:(1)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)四、圆心角要点一、圆心角与弧的定义1、圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB 就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB 所对的弦为线段AB,所对的弧为弧AB.2、1°的弧的定义:1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.CD ⊥ABAE=BE(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2、圆心角定理的推论:(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:(1)在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.五、圆周角要点一、圆周角1、圆周角定义:(1)像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2、圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)3、圆周角定理的推论1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、圆周角定理的推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.六、圆内接四边形要点一、圆内接四边形(1)如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.要点二、圆内接四边形性质定理(1)圆内接四边形的对角互补.(2)圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点诠释:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.七、正多边形和圆知识点一、正多边形的概念(1)各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点二、正多边形的重要元素1、正多边形的外接圆和圆的内接正多边形(1)正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2、正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3、正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点三、正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形.(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.(4)边数相同的正多边形相似。
第1讲圆的基本性质一、【教学目标】1.理解圆、弦、弦心距、直径、弧、圆心角、圆周角等有关的概念.2. 理解圆的对称性,知道圆既是轴对称图形,又是旋转对称图形.3. 掌握圆中“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”的性质,以及“弧、弦、弦心距、圆心角”四量之间的“等对等”关系,并能运用这些性质进行有关的计算与证明.4. 理解圆周角与圆心角的关系,直径所对圆周角的特征,并能灵活运用于有关问题的解决.二、【教学重难点】1.教学重点:“垂径定理”、圆周角与圆心角的关系的灵活运用2.教学难点:三、【考点聚焦】考点一.圆的基本元素1.弦和直径:连结圆上任意两点的线段叫弦,如图,线段AC、AB、BC都是⊙O的弦,其中AB是直径,直径是圆中最长的弦.圆心到弦的距离叫此弦的弦心距,如图中的线段OM的长,表示圆心到弦AC的弦心距.注意:直径是过圆心的弦,凡直径都是弦,但弦不一定都是直径.2.弧和半圆:圆心任意两点间的部分叫做弧,弧可分为劣弧、半圆、优弧三种.一条直径把圆分成了两个半圆,大于半圆的弧叫优弧,在表示时必须用三个大写字母表示,如图中的优弧,小于半圆的弧叫劣弧,如图中的劣弧.注意:(1)半圆是一种特殊的弧;(2)在同圆或等圆中,能够完全重合的弧叫等弧,等弧成立的前提首先是存在于“同圆或等圆中”.3.圆周角和圆心角.顶点在圆上,且角的两边都与圆相交的角叫圆周角;顶点在圆心上的角叫圆心角;如图中的∠ABC是圆周角,∠AOD是圆心角.注意:圆周角具备两大特征:(1).顶点在圆周上,(2).角的两边都与圆相交,二者缺一不可,如图中的∠ABE就不是圆周角.考点二. 圆的基本性质1.弧、弦、弦心距与圆心角之间的关系:圆是旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,其旋转中心即为圆心.根据圆的这一特性,可以得出关于“弧、弦、弦心距与圆心角”之间的“等对等”关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两弦的弦心距中,有一组量相等,那么它们所对应的其余各组量也分别相等.注意:(1)运用本知识点时,应注意其成立的条件:“同圆或等圆中”.(2)本知识是证明弦相等、弧相等的常用方法.2.圆的轴对称性:圆是轴对称图形,它的任意一条直径所在的直线都是它的对称轴,利用“圆是轴对称图形”可以得到:“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.”注意:(1)此性质必须具备两个条件:直径;此直径垂直于弦,两者缺一不可.(2)常用此知识点进行一类计算题:在弦长、弦心距、半径三个量中,只需知道其中任意两个,都可求出第三个,此时需构造Rt△,利用勾股定理求解.3.圆周角的性质:(1)一条弧所对的圆周角等于该弦所对的圆心角的一半;(2)同圆内,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧相等;(3)半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径.注意:性质(1)的得出应分三种情况讨论:圆心在角的一边长;圆心在角的内部;圆心在角的外部,后两种情况可转化成第一种情况来说明.性质(2)是证明圆周角相等或弧相等的常用方法:“由角找弧”“由弧找角”.利用性质(3)可确定一个圆的圆心;已知直径时,常构造直径所对的圆周角,这是圆中一种常见的辅助线.四、【典例分析】题型1基本概念和定理的考查【示例一】⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离.变式1 圆的一条弦长等于它的半径,那么这条弦所对的圆周角度数是___________变式2 如图,AB、CD是⊙O的两条直径,弦BE=BD,则与是否相等?为什么?变式3 如图,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试说明.变式4 如图23-1-12,已知AB是⊙O的直径,AC是弦,且AB=4,AC=2,点D为上任意一个动点,求∠D的度数.题型2 各知识综合考查【示例二】在图23-1-13,AB是⊙O的直径,C为的中点,CD⊥AB于D,交AE于F,连结AC.试说明AF=CF.变式1 如图23-1-17所示,A、B、C、D是⊙O上四点,且D是的中点,CD交OB于E,∠AOB=100°,∠OBC=55°,则∠OEC=_________.变式2如图23-1-19所示,AB是⊙O上的两点,且∠AOB=70°,C是⊙O上不与AB重合的一点,则∠ACB的度数是___________.变式3 已知⊙O中,,则AB与CD的关系是( )A.AB=2CD B.AB>2CDC.AB<2CD D.无法确定变式4 AB为⊙O的弦,自圆上一点C向AB作垂线CD,垂足为D,如图所示,则∠ACD 与∠BCO是否相等?为什么?题型3 垂径定理、圆周角与圆心角的关系结合相似三角形【示例三】如图所示,△ABC的三个顶点都在⊙O中,∠BAC的平分线与BC边和⊙O分别交于点D、E.(1)试找出图中的相似三角形,并说明理由;(2)若CE=4,DE=2,求AD的长.变式2 如图23-1-35所示,△ABC 三个顶点在圆上,AB =AC ,D 是BC 边上一点,E 是直线AD 和圆的交点.(1)试说明AE AD AB 2⋅=;(2)当D 为BC 延长线上一点时,第(1)题结论还成立吗? 如果成立,请说明为什么;不成立,说出理由.BDOEOE AC五、【课后习题】1.如图,AB 是⊙O 的直径,CD 交⊙O 于G ,OE ⊥CD 于E ,AC ⊥CD 于C ,BD ⊥CD 于D ,则下列结论错误的是( ) A .CG =HD B .CE =EDC .E 是GH 的中点D .2.如图,∠E =40°,,则∠ACD =()A .10°B .15°C .20°D .12.5°3.如图,A 是半径为5的⊙O 内一点,且OA =3,过点A 且长小于8cm 的弦共有( )A .0条B .1条C .2条D .4条4.如图,AB 是⊙O 的直径,∠C =30°,∠ABD =()A .30°B .40°C .50°D .60°6. 同心圆中,大圆的弦AB 交小圆于C 、D 两点,试说明AC =BD .。
专题:圆形相关的二级结论及推导-讲解
(最全、最经典)
圆形作为几何学的基础,有很多重要结论和推导。
本文将为您总结和讲解圆形相关的二级结论和推导,以帮助您更好地理解和掌握。
1.圆的基本性质
圆是指平面上所有点到圆心的距离相等的点的集合。
圆的基本性质包括:
- 圆的直径是圆上任意两点之间的最长距离,且等于圆的半径的两倍。
- 圆心角是指圆心所在的角,它的度数等于圆弧所对的圆心角的一半。
- 弧长是指圆上的一段弧的长度。
圆弧所对的圆心角越大,对应的弧长也越大。
2.切线与切点
- 切线是指与圆相切的直线。
切点是切线与圆相交的点。
- 在圆上,切线与切点之间满足垂直关系。
即切线与半径的夹
角为直角。
3.正多边形外接圆的性质
- 正 $n$ 边形是指有 $n$ 条边长度相等,内角为 $\frac{(n-
2)×180^\circ}{n}$ 的多边形。
- 正 $n$ 边形外接圆的半径长为 $R =
\frac{a}{2sin\frac{180^\circ}{n}}$,其中$a$ 为正$n$ 边形的边长。
- 正 $n$ 边形外接圆的周长长为$C = 2πR =
a×n×sin\frac{180^\circ}{n}$。
4.圆锥曲线
- 圆锥曲线是指在圆锥上切割的曲线。
圆锥曲线包括四种类型:圆、椭圆、抛物线和双曲线。
- 圆锥曲线的方程可以表示为二次方程
$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$。
这些是关于圆形相关的二级结论和推导的基本内容,希望对您有所帮助。
圆的所有定理公式大全圆是几何学中一个重要的基本图形,它具有许多特殊的性质和定理。
在这篇文章中,我们将介绍一些圆的定理和公式,帮助读者更好地理解圆的性质和应用。
1. 圆的基本性质:- 圆是一个平面上所有到圆心距离相等的点的集合。
- 圆心到圆上任意一点的距离称为半径(r)。
- 圆的直径(d)是通过圆心的一条线段,它等于半径的两倍。
2. 圆的周长和面积:- 圆的周长(C)等于圆的直径(d)乘以π(圆周率)。
C = πd 或C = 2πr- 圆的面积(A)等于半径(r)的平方乘以π(圆周率)。
A = πr²3. 弧长和扇形面积:- 弧长(L)是圆的一部分的弧长。
它等于弧度(θ)乘以半径(r)。
L = θr (其中θ 的单位为弧度)- 扇形面积(A)等于角度(θ)比上360度再乘以圆的面积。
A = (θ/360)πr² (其中θ 的单位为角度)4. 圆的相交性质:- 弦:圆上连接两个点的线段称为弦。
如果一个弦通过圆心,它称为直径。
- 弦切角:如果两个弦的端点相连成一个角,则这个角叫做弦切角。
- 切线:与圆相切且与半径垂直的线段称为切线。
切线与半径的交点称为切点。
- 切线切割定理:一个切点与切点外的任意一点相连,此线段与切线的交点与切点相连的线段平方等于此直线与切线相交的两条弦构成的弧的两个弧度之积。
5. 圆的角度定理:- 圆心角:以圆心为顶点的角叫做圆心角。
圆心角的度数等于所对弧所对应的圆周角度数。
- 直径角:直径所对的角称为直径角,它的度数为 180 度。
- 弧角定理:圆上的两条弦所对的圆心角等于它们所对弧所对应的圆周角的一半。
6. 圆的判定定理:- 定理 1:如果一个点到圆心的距离等于圆的半径,那么这个点在圆上。
- 定理 2:如果一个点在圆上,那么它到圆心的距离等于圆的半径。
7. 圆的位置关系:- 外切圆:与一个三角形的三边都相切的圆,叫做该三角形的外切圆。
- 内切圆:与一个三角形的三条边都相切于一个点的圆,叫做该三角形的内切圆。
圆的基本性质复习课及课后反思第三章圆的基本性质(复习课)及课后反思⼀、学情与教材分析:学⽣普遍对学习不感兴趣,为了使⼤部分学⽣都能有所收获,还是应把重点放在基础上。
本节课是以复习基本概念为主,让学⽣对本章知识形成⼀个完整的知识连。
⼆:教学⽬标:熟悉本章所有的定理。
三、教学重点:圆中有关的定理四、教学难点: 圆中有关的定理的应⽤五、教学过程:1、2、在⼀个平⾯内,线段OA绕它固定的⼀个端点O旋转⼀周,另⼀个端点A随之旋转所形成的图形叫做圆。
固定的端点O叫做圆⼼,线段OA叫做半径,以点O为圆⼼的圆,记作☉O,读作“圆O3、篮球是圆吗?–圆必须在⼀个平⾯内以3cm为半径画圆,能画多少个?以点O为圆⼼画圆,能画多少个?由此,你发现半径和圆⼼分别有什么作⽤?–半径确定圆的⼤⼩;圆⼼确定圆的位置圆是“圆周”还是“圆⾯”?–圆是⼀条封闭曲线圆周上的点与圆⼼有什么关系?4、点与圆的位置关系圆是到定点(圆⼼)的距离等于定长(半径)的点的集合。
圆的内部是到圆⼼的距离⼩于半径的点的集合。
圆的外部是到圆⼼的距离⼤于半径的点的集合。
由此,你发现点与圆的位置关系是由什么来决定的呢?5、圆的有关性质思考:确定⼀条直线的条件是什么?类⽐联想:是否也存在由⼏个点确定⼀个圆呢?讨论:经过⼀个点,能作出多少个圆?经过两个点,如何作圆,能作多少个?经过三个点,如何作圆,能作多少个?6、经过三⾓形的三个顶点的圆叫做三⾓形的外接圆,外接圆的圆⼼叫做三⾓形的外⼼,三⾓形叫做圆的内接三⾓形。
7、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
如图,P为⊙O的弦BA延长线上⼀点,PA=AB=2,PO=5,求⊙O的半径。
微专题二:圆的基本性质【知识点扫描】1. 圆上各点到圆心的距离都等于.2. 圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.6. 半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.8.圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .9.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .10.圆锥的侧面积公式:S=rlπ.(其中为的半径,为的长);圆锥的全面积:S全=S侧+S底=πrl+πr2.【难点突破】重难点1垂径定理及其应用一.选择题:1.如图,AB是⊙O的直径,弦CD⊙AB于点G,点F是CD上一点,且满足CF:FD =3:7,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=3,给出下列结论:⊙FG=2;⊙5 tanE;⊙495DEFS=;其中正确的是( )A. ⊙⊙B. ⊙⊙C. ⊙⊙D.⊙⊙⊙二、填空题:1.在半径为1的⊙O中,两条弦AB,AC的长分别为3和2,则弧BC的长度为.三、解答题:1.已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊙CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:⊙ADG⊙⊙AFD;(3)当点G是弧AD的中点时,求⊙ADG得面积与⊙AFD的面积比.重难点2圆周角定理及其推论一、选择题1. 如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设⊙BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α2.如图,点C为⊙ABD外接圆上的一点(点C不在上,且不与点B,D重合),且⊙ACB=⊙ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5B.5C.4D.二、填空题1.如图,⊙O是⊙AB C的外接圆,AD⊙B C于D,CE⊙AB于E,AD交CE于H点,交⊙O于N,OM⊙B C于M,BF为⊙O的直径,下列结论:⊙四边形AH CF为平行四边形;⊙AH=2OM,⊙BF=2F C;⊙DN=DH;其中正确的有______(第1题) (第2题)2.如图,在平面直角坐标系中,已知点A (0,2)、B(0,2+m)、C(0,2-m)(m>0),点P 在以D(4,6)为圆心,1 为半径的圆上运动,且始终满足⊙BPC=90°,则m的最大值是3.如图,AB,BC是⊙O的弦,⊙B=60°,点O在⊙B内,点D为上的动点,点M,N,P 分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是三.解答题1.请完成以下问题:(1)如图1,=,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.2.如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是⊙ABP 的外接圆⊙O 的直径.(1)求证:⊙APE 是等腰直角三角形; (2)若⊙O 的直径为2,求PC 2+PB 2的值.3.如图1,已知四边形ABCD 内接于圆0,AD=BC ,延长AB 到E ,使BE=AB ,连接EC ,F 是EC 的中点,连接BF(1)若圆0的半径为3,⊙DAB=120°,求劣弧BD 的长; (2)如图2,连接BD ,求证:BF=21BD ; (3)如图3,G 是BD 的中点,过B 作AE 的垂线交圆0于点P ,连接PG ,PF ,求证:PG=PF图1 图2 图34.如图1,圆O的两条弦AC、BD交于点E,两条弦所成的锐角或者直角记为⊙α(1)点点同学通过画图和测量得到以下近似数据:的度数30.2°40.4°50.0°61.6°的度数55.7°60.4°80.2°100.3°⊙α的度数43.0°50.2°65.0°81.0°猜想:、、⊙α的度数之间的等量关系,并说明理由﹒(2)如图2,若⊙α=60°,AB=2,CD=1,将以圆心为中心顺时针旋转,直至点A与点D 重合,同时B落在圆O上的点,连接CG﹒⊙求弦CG的长;⊙求圆O的半径.重难点3 三角形的外接圆及圆内接四边形 一、选择题1.如图,点A 的坐标为A (8,0),点B 在y 轴正半轴上,且AB=10,点P 是⊙AOB 外接圆上一点,且⊙BOP=45°,则点P 的坐标为( )A .(7,7)B .(7,7)C .(5,5)D .(5,5)2.如图所示,四边形ABCD 中,DC⊙AB ,BC=2,AB=AC=AD=3.则BD 的长为( ) A.13 B.5 C.23 D.243.如图,⊙ABC 内接于圆O ,延长AO 交BC 于点P ,交圆O 于点D ,连结OB ,OC ,BD ,DC ( )A .若AB=AC ,则BC 平分ODB .若OCBD ,则CD :AB=:3C .若⊙ABO=30°,则OC BDD .若BC 平分OD ,则AB=AC二.填空题1.在⊙ABC 中,45AB =5AC =,11BC =,则⊙ABC 的外接圆半径为____________2、如图,⊙ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊙AC于M,下列结论中正确的是.⊙DB=DC;⊙AC+AB=2CM;⊙AC﹣AB=2AM;⊙S⊙ABD=S⊙ABC.重难点4弧长及扇形面积的有关计算一.选择题1.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.2π﹣2D.π﹣2二.填空题1、如图,一根长为a的竹竿AB斜靠在墙上,竹竿AB的倾斜角为α,当竹竿的顶端A下滑到点A'时,竹竿的另一端B向右滑到了点B',此时倾斜角为β.(1)线段AA'的长为.(2)当竹竿AB滑到A'B'位置时,AB的中点P滑到了P',位置,则点P所经过的路线长为(两小题均用含a,α,β的代数式表示)2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为_ __3、如图,AB为半圆O的直径,C为AO的中点,CD⊙AB交半圆与点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分面积为cm2.三、简答题1、在⊙O中,己知弦BC所对的圆周角⊙BAC与圆心角⊙BOC互补.(1)求⊙BOC的度数.(2)若⊙O的半径为4,求弦BC和劣弧BC组成的弓形面积.。
第三章 圆的基本性质 第一单元
一、选择题(每小题4分,共20分)
1. 已知⊙O的半径为4㎝,A为线段OP的中点,当OP=6㎝时,点A与⊙O的位置关系是( )
A、A在⊙O内 B、A在⊙O上 C、A在⊙O外 D、不能确定
2. 在同圆中,弦长为,ab的两弦所对的劣弧长分别为,cd,如果cd ,那么( )
A、ab B、ab C、ab D、ab
3. 在⊙O 中,AB,AC是互相垂直的两条弦,AB=8㎝,CD=6㎝,则⊙O的半径OA的长为( )
A、4㎝ B、5㎝ C、6㎝ D、8㎝
4. 下列命题中,正确的是( )
A、 平分一条弧的直径垂直平分这条弧所对的弦。
B、 平分弦的直径垂直于弦,并且平分弦所对的弧。
C、 AB,CD是⊙O 的弦,若ABCD,则AB∥CD。
D、 圆是轴对称图形,对称轴是圆的每一条直径。
5. 如图,AB,CD是⊙O的两条直径,且∠AOC=500,过点A作AE∥CD,交⊙O于点E,则
AE
的度数为( )。
A.650 B.700 C.750 D.800
二、选择题(每小题4分,共32分)
6. A,B是半径为R的⊙O上的不同两点,则AB长的取值范围是 ;
7. 已知⊙O的半径是5㎝,圆心到弦AB的距离是3㎝,则弦AB= ㎝;
8. 过⊙O内一点A的最长弦为10㎝,最短弦为8㎝,则OA= ㎝;
9. 已知AB是⊙O的弦,AB=OA,则∠AOB=度;
10. 如图,同心圆中,大圆弦AB交小圆于点C、D。如果AC=CD=1㎝,那么
AB= ㎝
O
D
B
C
A
D
B
C
A
11. 已知:如图,在△ABC中,∠ACB=900,∠B=350,以C为圆心CA为半径的圆交AB
于点D,则AD的度数为 。
O
E
DBC
A
12. 已知⊙O的半径为10,AB,CD是⊙O的两条弦,且AB∥CD,若AB=12,CD=16,则
AB于CD间的距离为 。
13. 在矩形ABCD中,AB=3,BC=4,以A为圆心画圆,若B,C,D三点中至少有一个在
圆内,且至少有一个在圆外,则⊙A的半径r的取值范围是 。
三、选择题(共48分)
14. (6分)在⊙O中,弦AB=9,∠AOB=1200,求⊙O的半径。
15. (6分)车间工人要将如图一个破损的圆湓复原,需要知道圆湓半径的大小。你有什么
办法?(画出图形,保留作图痕迹,不写作法)
16. (8分)如图,OB,OC的⊙O上一点,且∠B=200,∠C=300,求∠A的度数。
O
B
C
A
F
O
E
D
B
C
A
P
O
D
B
C
A
17. (8分)如图,弓形弦AB的长为8㎝,弓形的高(弧的中点到弦的距离)DC为10㎝。
求此弓形所在圆的半径。
18. (10分)已知:如图,⊙O的直径AB和CD相交于点E。已知AE=1㎝,EB=5㎝,∠
DEB=600,求CD的长。
19. (10分)已知:如图,O是∠EPF的角平分线上一点,以O为圆心的圆和角的两边分别
交于点A,B和C,D,求证:PA=PC。
20.附加题(10分)
如图,⊙O的半径为1,BC是⊙O的直径,点A在⊙O上,且AB=500,点D在AB上,且
BD
=400,你能否在BC上找到一点P,使AP+DP最小?若能找到,请画出这个点,并求出AP+DP
的最小值;若不能找到,请说明理由。
O
D
B
C
A
O
D
B
C
A
E