高一数学《集合与不等式》测试题
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭ B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .34.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-25.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .06.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个7.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .48.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B CD .39.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =10.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<12.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________. 14.已知集合(){|221,}A k k k Z απαπ=≤≤+∈,{|55}B a α=-≤≤,则A B ⋂=__________.15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.17.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________18.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是___________.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由. 23.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.24.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤. (1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值; (2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 25.已知集合A ={x |a -1<x <2a +1},B ={x |x 2-x <0} (I )若a =1,求AB ,()R AB ;(II )若A B =∅,求实数a 的取值范围26.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0, 即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RAB ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.4.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.5.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题6.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.7.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.8.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.9.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,AB =∅,符合题意.当0a >时,由于A B =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤.故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可. 【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =,故21,1a a =≠,解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1- 【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.14.或【分析】分别讨论时集合A 与集合B 的交集即可求解【详解】当时当时当时当时或故答案为: 或【点睛】本题主要考查了集合的交集分类讨论的思想属于中档题解析:{|5ααπ-≤≤- 或0}απ≤≤ 【分析】分别讨论1,0,k =-时集合A 与集合B 的交集即可求解. 【详解】(){|221,}A k k k Z απαπ=≤≤+∈,∴当1k =-时,2παπ-≤≤-,当0k =时,0απ≤≤, 当1k时,5α<,当2k ≤-时,5α<-{|55}B a α=-≤≤,A B ∴={|5ααπ-≤≤-或0}απ≤≤故答案为:{|5ααπ-≤≤- 或0}απ≤≤ 【点睛】本题主要考查了集合的交集,分类讨论的思想,属于中档题.15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即P Q 解不等式所以0P Q 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条解析:9m ≥【分析】解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围. 【详解】 由题:“Ux P ∈”是“∈Ux Q ”的必要不充分条件,UQUP ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤, (){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q , 所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥.故答案为:9m ≥ 【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.17.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中解析:4m >或2m < 【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解. 【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-, 若,121,2A m m m =∅+>-<,满足题意; 若,A AB ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩,解得4m >或m ∈∅; 综上:4m >或2m <. 故答案为:4m >或2m < 【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.18.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>【分析】根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P 集合,y =2,2x ,[]0,2y ∈,即{}=02P y y ≤≤ 对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y =>{}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤>故答案为:{}01,2y y y ≤≤> 【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题. 19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛 解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.6【分析】利用集合的相等关系结合(1);(2);(3);(4)有且只有一个是正确的通过分析推理即可得出结论【详解】若(1)正确则(2)也正确不合题意;若(2)正确则(1)(3)(4)不正确即则满足条解析:6利用集合的相等关系,结合(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,通过分析推理即可得出结论.【详解】若(1)正确,则(2)也正确不合题意;若(2)正确,则(1)(3)(4)不正确,即1,1,3,4a b c d ≠≠≠=,则满足条件的有序组为: 2,3,1,4a b c d ====;或3,2,1,4a b c d ====;若(3)正确,则(1)(2)(4)不正确,即1,1,3,4a b c d ≠===,则满足条件的有序组为: 2,1,3,4a b c d ====;若(4)正确,则(1)(2)(3)不正确,即1,1,3,4a b c d ≠=≠≠,则满足条件的有序组为: 2,1,4,3a b c d ====或3,1,4,2a b c d ====或4,1,2,3a b c d ====,所以符合条件的有序数组(,,,)a b c d 的个数是6个.故答案为6【点睛】本题考查集合的相等关系,考查分类讨论思想,正确分类是关键,属于中档题.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞.结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件, 则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 23.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解.【详解】 (1)因为集合423(1,5]1a A a a ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-. (2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意,②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.24.(1)12-;(2)答案见解析. 【分析】(1)首先求出集合A 、B ,再根据并集的结果得到方程,解得即可;(2)若选①,则A B ,若选②,B A ,若选③,A B =,得到不等式组,解得即可;【详解】解:(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤ 即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦ 11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =- 经检验满足题意.(2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立 选②,110213m B A m m -≤-⎧⇒⇒≤≤⎨+≤⎩ 选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立; 【点睛】本题考查一元二次不等式的解法,并集的结果求参数的值,以及集合的包含关系求参数的取值范围,属于中档题.25.(I )(0,3),AB =()[1,3)R A B =;(II )12a ≤-或2a ≥ 【分析】(I )先解不等式得集合B ,再根据并集、补集、交集定义求结果;(II )根据A =∅与A ≠∅分类讨论,列对应条件,解得结果.【详解】(I )2{|0}(0,1)B x x x =-<=a =1,A ={x |0<x <3},所以(0,3),AB = (,0][1,)()[1,3)R R B A B =-∞+∞∴=;(II )因为A B =∅,所以当A =∅时,1212a a a -≥+∴≤-,满足题意;当A ≠∅时,须212112*********a a a a a a a a >-⎧-<+⎧⎪∴∴-<≤-⎨⎨+≤-≥≤-≥⎩⎪⎩或或或2a ≥ 综上,12a ≤-或2a ≥ 【点睛】本题考查集合交并补运算、根据并集结果求参数,考查基本分析求解能力,属中档题. 26.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.。
2019-2020学年高中数学新教材必修一第二章《等式与不等式》测试试卷(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a >1>b >-1,则下列不等式中恒成立的是( ) A.1a <1b B.1a >1b C .a >b 2D .a 2>2bC [取a =2,b =-12,满足a >1>b >-1,但1a >1b ,故A 错;取a =2,b =13,满足a >1>b >-1,但1a <1b ,故B 错;取a =54,b =56,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.]2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >ab 2 B.a b 2>a b >a C.a b >ab 2>aD.a b >a >a b 2C [∵a <0,b <-1,∴a b >0,b 2>1,∴1b 2<1. 又∵a <0,∴0>a b 2>a ,∴a b >ab 2>a . 故选C.]3.不等式-x 2-x +2≥0的解集为( ) A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1}D .∅C [不等式-x 2-x +2≥0可化为x 2+x -2≤0,即(x +2)(x -1)≤0,所以-2≤x ≤1,即解集为{x |-2≤x ≤1}.]4.已知集合M ={x |0≤x <2},N ={x |x 2-2x -3<0},则M ∩N =( ) A .{x |0≤x <1}B .{x |0≤x <2}C .{x |0≤x ≤1}D .{x |0≤x ≤2}B [由于N ={x |x 2-2x -3<0}={x |-1<x <3},又因为M ={x |0≤x <2},所以M ∩N ={x |0≤x <2}.]5.下列方程,适合用因式分解法解的是( ) A .x 2-42x +1=0 B .2x 2=x -3 C .(x -2)2=3x -6D .x 2-10x -9=0C [C 中方程化简后可以用因式分解法求解.]6.求方程组⎩⎨⎧11x +3z =9,3x +2y +z =8,2x -6y +4z =5的解集时,最简便的方法是( )A .先消x 得⎩⎨⎧22y +2z =61,66y -38z =-37B .先消z 得⎩⎨⎧ 2x -6y =-15,38x +18y =21C .先消y 得⎩⎨⎧11x +7z =29,11x +3z =9D .得8x -2y +4z =11,再解C [第一个方程中没有y ,所以消去y 最简便.]7.若不等式4x 2+(m -1)x +1>0的解集为R ,则实数m 的取值范围是( ) A .m >5或m <-3 B .m ≥5或m ≤-3 C .-3≤m ≤5D .-3<m <5D [依题意有(m -1)2-16<0,所以m 2-2m -15<0,解得-3<m <5.] 8.已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是( )A .1B .2C .3D .4B [∵x 2-6x +k =0的两根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,∴1x 1+1x 2=x 1+x 2x 1x 2=6k =3,解得k =2.经检验,k =2满足题意.]9.某种产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本时的最低产量是( )A .200台B .150台C .100台D .50台B [要使生产者不亏本,则应满足25x ≥3 000+20x -0.1x 2,整理得x 2+50x -30 000≥0,解得x ≥150或x ≤-200(舍去),故最低产量是150台.]10.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D .a <b <a +b2<abB [因为0<a <b ,所以由均值不等式可得ab <a +b 2,且a +b 2<b +b2=b ,又a =a ·a <a ·b ,所以a <ab <a +b2<b .]11.若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A .a 2+b 2+c 2≥2 B .a +b +c ≤ 3 C.1a +1b +1c ≤2 3D .(a +b +c )2≥3D [由均值不等式知a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,于是a 2+b 2+c 2≥ab +bc +ca =1,故A 错;而(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca )=3,故D 项正确,B 项错误;令a =b =c =33,则ab +bc +ca =1,但1a +1b +1c =33>23,故C 项错误.]12.若x >1,则4x +1+1x -1的最小值等于( ) A .6 B .9 C .4 D .1B [由x >1,得x -1>0,于是4x +1+1x -1=4(x -1)+1x -1+5≥24+5=9,当且仅当4(x -1)=1x -1,即x =32时,等号成立.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若{(x ,y )|(2,1)}是关于x ,y 的方程组⎩⎨⎧ax +by =2,bx +ay =7的解集,则(a +b )(a-b )=________.-15 [∵{(x ,y )|(2,1)}是关于x ,y 的方程组⎩⎨⎧ax +by =2,bx +ay =7的解集,∴⎩⎨⎧ 2a +b =2,2b +a =7,解得⎩⎨⎧a =-1,b =4,∴(a +b )(a -b )=(-1+4)×(-1-4)=-15.]14.若关于x 的不等式ax 2-6x +a 2<0的解集为(-∞,m )∪(1,+∞),则m =________.-3 [由已知可得a <0且1和m 是方程ax 2-6x +a 2=0的两根,于是a -6+a 2=0,解得a =-3,代入得-3x 2-6x +9=0,所以方程另一根为-3,即m =-3.]15.若关于x 的不等式组⎩⎨⎧x -1>a 2,x -4<2a的解集不是空集,则实数a 的取值范围是________.(-1,3) [依题意有⎩⎨⎧x >a 2+1,x <2a +4,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.]16.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. [9,+∞) [∵ab =a +b +3≥2ab +3, ∴ab -2ab -3≥0,即(ab -3)(ab +1)≥0, ∴ab -3≥0,即ab ≥3,∴ab ≥9.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或。
一,选择题1. 设a 为给定的实数,则集合{x|x 2-3x-a 2+2=0,x ∈R}的子集的个数是( )A.1B.2C.4D.不确定2.若A ={1,3,X},B ={X 2,1}.且A U B=A,这样X 的不同值有几个( )A.1个B.2个 C,3个 D.4个3.不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .a >b 2 D .a 2>2b 5.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( )A .-3<a <1B .-2<a <0C .-1<a <0D .0<a <26.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。
A. 10 B. -10 C. 14 D. -147.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ).A .4-≤m 或4≥mB . 45-≤<-mC .45-≤≤-mD . 25-<<-m8.若c a >且0>+c b ,则不等式0))((>-+-ax b x c x 的解集为( ) A .{}c x b x a x ><<-或,| B . {}b x c x a x ><<-或,|C .{}c x a x b x ><<-或,|D . {}a x c x b x ><<-或,|二、填空题1,设A ={(x,y)|y=1-3x},B={(x,y)|y=(1-2k 2)x+5}, 若A W B=Ø,则k 的取值范围是____________2.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________。
高2015级集合、解不等式测试题满分100分,考试时间60分钟注意:请在答卷上作答一、 选择题(每小题只有一个正确的答案,每小题5分共50分)1、已知集合 {1,3,5,7,9}{0,3,6,9,12}A B == 则N A C B ⋂= ( ) A 、{1,5,7} B 、{3,5,7} C 、{1,3,9} D 、{1,2,3}2、集合{}0,1,2的非空真子集的个数是 ( ) A 、6 B 、7 C 、8 D 、 93、 满足集合{}12⊂≠, ,3M {}1,2,3,4,5,6⊆的集合M的个数为 ( ) A 、5 B 、6 C 、7 D 、 84、集合A= {}0,2,a , B= {}21,a 若{}0,1,2,4,16A B = 则a=( )A 、0B 、1C 、2D 、 45、若集合21{213},{3x A x x B xx+=-<=<0}- ,则A B ⋂= ( ) A 、1{123}2x x x -<<-<<或 B 、{23}x x <<C 、1{}2x x -<<2D 、1{1}2x x -<<-6、b a <时,不等式1x ax b->-的解是 ( ) A 、{}x x b < B 、{}x x b > C 、R D 、 空集7、已知全集U=A B 中有m个元素,()()U U C A C B 中有n个元素。
若A B 非空,则A B 的元素个数为( )A 、mnB 、m+nC 、n-mD 、m-n8、设A 、B 是全集U 的两个子集,且A B ⊆,则下列式子正确的是 ( )A、U U C A C B ⊆ B、()()U U C A C B U = C、Φ=)(B C A U D、()U C A B =Φ 9、集合A={x |2<x ≤5},B={}|x x a <若A B ≠∅ 则a 的取值范围为( )A、a<2 B 、a>2 C、a≥2 D、a≤210、已知集合},,312{},,61{Z n n x x N Z m m x x M ∈-==∈+==},612{Z p p x x P ∈+==则集合M 、N 、P 满足关系( ) A、M N P ⊂=≠ B 、M N P ⊂=≠ C、M N P ⊂⊂≠≠ D、N P M ⊂⊂≠≠二、 填空题(每小题4分共20分)11、已知全集U=Z,A={}1,0,1,2-,B={}2|x x x =则()U A C B =______ ___ 12、设全集U={}1,2,3,4且A={}2|50x U x x m ∈-+=若U C A ={}2,3则实数m=___________13、已知A={}0,2,4,6,S C A ={}1,3,1,3--,S C B ={}1,0,2- 则B=__________ 14、若不等式03)1(4)54(22>+---+x m x m m 对一切实数x 恒成立,则实数m 的取值范围是三、 解答题(每小题10分共30 分)15、设2{54}{2A x x x x a =-<=-<},B ,若B 是A 的真子集,a 求实数的取值范围.16、设全集U R =,集合222{120}{280}A x x ax B x x bx b =+-==++-=,,若{2}U A C B ⋂=,,a b 求的值.a=4,b=217、已知A={}|20x ax +>,B={}|22x x -<<①若A⊇B,求a的取值集合-1<=a<=1 ②若{}|2A B x x =>- 求a的取值集合高2015级集合、解不等式测试题答卷班级 姓名11. 12.13. 14.15、设2{54}{2A x x x x a =-<=-<},B ,若B 是A 的真子集,a 求实数的取值范围.16、设全集U R =,集合222{120}{280}A x x ax B x x bx b =+-==++-=,,若{2}U A C B ⋂=,,a b 求的值.17、已知A={}|20x ax +>,B={}|22x x -<<①若A⊇B,求a的取值集合②若{}|2A B x x =>- 求a的取值集合。
高一数学竞赛 2018.10.28班级_______________姓名_________________学号__________________得分____________一.填空题(每题8分,共56分)1.不等式23(1)(2)0(4)(6)x x x x -+≤+-的解集为_____________________。
(,4){2}[1,6)-∞-- 2.不等式111x-<<的解集为____________________。
(,1)(1,)-∞-+∞ 3.已知集合U R =,且2{||1|2},{|680}A x x B x x x =->=-+<,则U C A B =____。
(2,3]4.已知命题:25x α-≤<,命题:121m x m β+≤≤-,且α是β的必要条件,则实数m 的取值范围是__________________。
3m <5.已知,,a b c 为非零实数,则代数式||||||||a b c abc a b c abc +++的值的集合为____。
{4,0,4}- 6.若集合22{|23,},{|43,},A y y x x x R B y y x x x R ==+-∈==-+∈则A B=______。
[1,)-+∞7.有四个命题:(1)若0a b >>,则11a b <;(2)若0a b <<,则22a b >;(3)若11a >,则1a >;(4)若12,a <<且03b <<,则22a b -<-<。
上述命题正确的序号为______________________。
(写出所有正确的序号)(1)(2)(3)(4)二.选择题(每题8分,共16分)8.设集合2{|10},{|440P m m Q m mx mx =-≤≤=+-< 对任意x 恒成立},则P 与Q 的关系是( ) BA .P Q ≠⊂B .Q P ≠⊂C .P Q =D .P Q φ=9.设数集31{|},{|}43M x m x m N x n x n =≤≤+=-≤≤,且,M N 都是集合{|01}x x ≤≤的子集,如果b a -叫做集合{|}x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是( )CA .13B .23C .112D .512三.解答题(每题14分,共28分) 10.已知全集22,{|120},{|50},{2}u U R A x x px B x x x q C AB ==++==-+==,求p q +的值。
1 中职数学基础模块《集合与不等式》测试题(满分150分,时间:90分钟)一、选择题:(每小题5分,共10小题50分) 题号1 2 3 4 5 6 7 8 9 10 答案1、已知集合{}{}8,4,2,5,4,3,2,1==N M 。
则=ÇN M ()A 、{}2B 、{}5,2C 、{}4,2D 、{}8,4,22、不等式21££x 用区间表示为用区间表示为: ( ) : ( ) A (1,2)B (1,2]C [1,2)D [1,2] 3、设{}|7M x x =£,4=x ,则下列关系中正确的是()A 、Mx ÎB 、x MÏC 、{}x MÎD 、{}Mx Ï4、设集合{}{}1,1,1,0,1-=-=N M ,则()A 、NM ÍB 、NM ÌC 、NM =D 、MN Ì5、若a >b, c >d ,则()。
A 、a -c >b -d B 、a +c >b + d C 、a c >bd D 、dbc a >6、不等式22--x x <0的解集是( ) A .(-2,1) B .(-∞,-2)∪(1,+∞) C .(-1,2) D .(-∞,-1)∪(2,+∞) 7、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(A C u )È(B C u )= ()A 、{0} B 、{0,1} C 、{0,1,4} D 、{0,1,2,3,4} 8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、已知全集U = {0,1,2,3,4},集合M= {1,3}, P= {2,4}则下列真命题的是( ) A .M ∩P={1,2,3,4} B .P MC U = C .=ÈP C M C U U φD .=ÇP C M C U U {0} 10、10.设集合M = {x │x+1>0},N = {x │-│-x+3>0},则M ∩N =( )。
高一集合测试卷1、已知集合A={-2,-1,0,1,2},B={1},则A∩B={1},A-B={-2,-1,0,2},B-A=∅,A∪B={-2,-1,0,1,2}。
2、U={1,2,3,4},A={1,2},B={1,3},则C=U-A={3,4}。
3、设非空集合P、Q满足P⊆B,B⊆Q,则对于任意x∈Q,若x∈P,则x∈B,故Q⊆P∪C,其中C为B-P。
4、正确答案为B,因为命题(2)和(3)都是正确的。
5、命题①和③都是正确的,故正确命题的个数为2,选项C。
6、B={1},故B={1}。
7、A={1,2,4},B={x|x-4x+m=0},即4x-m=x,故B={1,0},故正确答案为B。
8、解不等式2x-1≤0得x≤1/2,故A={x|2x-1>0}={x|x>1/2},故C=U-A={x|x≤1/2},正确答案为D。
9、A-B={-a-3,-a-2,-a,-a+1},故|A-B|=4,且A-B≤1,故a的所有可能值为-2,-1,0,1.10、非空集合A中元素个数用|A|表示,则(A-B)={x|x=a+1或x=a-1},故|A-B|=2,且(A-B)≤1,故a的所有可能值为3或4.正确答案为D。
11、设集合A为所有满足4x+y=6的点的集合,集合B为所有满足3x+2y=7的点的集合。
则满足C⊆(A∩B)的集合C的个数是______。
12、已知集合A为所有不属于集合C并且不是集合A的子集的集合的集合,集合B为空集。
则m=_____。
13、设U为实数集,集合A为所有满足x+3x+2=0的实数的集合,集合B为所有满足x+(m+1)x+m=0的实数的集合。
若B⊆A,则m=_____。
14、若集合A是一个“和谐”集合,即若和属于A,则A是“和谐”的。
则在集合M={-1,0,1,2,3,4}的所有非空子集中,是“和谐”集合的个数为______。
15、若集合A1和A2满足(A1,A2)是集合A的同一种分拆,且集合A有三个元素,则集合A的不同分拆种数为______。
2019年-2020年 人教B 版高一数学第二章《等式与不等式》 综合测试题满分100分 时间90分钟一、选择题(本题共10道小题,每小题4分, 共40分) 1. 若a b >,则不等式关系中一定成立的是( )A .a n b n +<+B .11a b < C . 0a b -> D .1ab> 2. 集合A =2230{|}x x x ≤﹣﹣,{|20}B x x =﹣>则A B ⋂=( ) A. [12﹣,) B. 23](, C. [32﹣,)D. 12(﹣,)3. 若2230x mx n -+=的两根分别是-3与5,则多项式23690x mx n -+=可以分解为( )A.()()35x x +- B.()()35x x -+ C.()()335x x +- D.()()335x x -+4. A .2 B .4 C.8 D.165. 不等式1021x x +≤-的解集为( )A .[11,)2- B .[]11,2- C .(]1()21+,-∞-⋃∞, D (],1[1+)2-∞-⋃∞, 6. 已知0,0,2a b a b >>+=,则14y a b=+的最小值是( ) A.92B.72C. 5 D . 47. 下列不等式:①212a a ≥+;②2≤;③221 11x x ≥++,其中正确的个数是( ) A .0 B .1 C .2 D .3.8. 小王从甲地到乙地往返的时速分别为m 和n (0m n <<),其全程的平均时速为x ,则( C )A. m x <<B.x = 2m n x +<<D.2m nx += 9. 设1a >,则关于x 的不等式()()(1)10a x a x a---<的解集是( ) A, ()),,( a -∞⋃+∞ B.(),a +∞ C ()1,a a) D. ()1 ,,()a a-∞⋃+∞)10. 若a 0>,0b >是正数,则的411b a a a ⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭最小值为( ) A .8 B .9 C .10 D .11二、填空题(本题共5道小题,每小题4分,共20分)11. .某地规定本地最低生活保障x 元不低于800元,则这种不等关系写成不等式为(800x ≥) 12. 若正实数,x y 满足1x y +=,则411x y++的最小值为_________________. 13. 若x R ∈,且20x x -<,则22,,,x x x x --从小到大的排列顺序是_________________.14. 如果关于x 的不等式组2142x t x t⎧-≥⎨-≤⎩有解,那么实数t 的取值范围为_________________15. 如果命题p:40,957x x m x∀>++…为真命题,则实数m 的取值范是_________________. 三、大题本题共10道小题,每小题4分,共40分16. 某公司建造一间背面靠墙的房屋,地面面积为12m 2,房 屋正面每平方米造价为1200元房屋侧面每平方米造价为800元,屋顶的造价为5800元,如果墙高为3m ,且不计房屋背面和地面的费用,设房屋正面地面的边长为xm ,房屋的总造价为y 元.(1)求y 用x 表示的函数关系式;(2)怎样设计房屋能使总造价最低?最低总造价是多少?17. 解不等式组233(1)(5)0x xx x -<⎧⎨---≥⎩,并把它的解集在数轴上表示出来.18. 已知二次函数2221y x tx t =-+-()t ∈R(1) 若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥.(2)2221x tx t -+-的两个实根均大于-2且小于4,求实数t 的取值范围的两个实数根于-2与4之间,求t 的取值范围.19. 设命题p:方程2(24)0x m x m +-+=有两个不相等的实数根;命题q 对所有的23x剟,不等式22413x x m -+≥恒成立(1) 若命题p 为真命题,求实数m 的取值范围; (2)若命题p,q 一真一假,求实数m 的取值范围.答 案一、选择题(本题共10道小题,每小题4分, 共40分) 1. 若a b >,则不等式关系中一定成立的是( C )A .a n b n +<+B .11a b < C . 0a b -> D .1ab> 2. 集合A =2230{|}x x x ≤﹣﹣,{|20}B x x =﹣>则A B ⋂=( A ) A. [12﹣,) B. 23](, C. [32﹣,)D. 12(﹣,)3. 若2230x mx n -+=的两根分别是-3与5,则多项式23690x mx n -+=可以分解为( C )A.()()35x x +- B.()()35x x -+ C.()()335x x +- D.()()335x x -+4. A .2 B .4 C.8 D.165. 不等式1021x x +≤-的解集为(A )A .[11,)2- B .[]11,2- C .(]1()21+,-∞-⋃∞, D (],1[1+)2-∞-⋃∞, 6. 已知0,0,2a b a b >>+=,则14y a b=+的最小值是( A ) A.92B.72C. 5 D . 47. 下列不等式:①212a a ≥+;②2≤;③221 11x x ≥++,其中正确的个数是( D ) A .0 B .1 C .2 D .3.8. 小王从甲地到乙地往返的时速分别为m 和n (0m n <<),其全程的平均时速为x ,则( C )A. m x <<B.x = 2m n x +<<D.2m nx += 9. 设1a >,则关于x 的不等式()()(1)10a x a x a---<的解集是( D ) A, ()),,( a -∞⋃+∞ B.(),a +∞ C ()1,a a) D. ()1 ,,()a a-∞⋃+∞)10. 若a 0>,0b >是正数,则的411b a a a ⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭最小值为(B ) A .8 B .9 C .10 D .11二、填空题(本题共5道小题,每小题4分,共20分)11. .某地规定本地最低生活保障x 元不低于800元,则这种不等关系写成不等式为(800x ≥) 12. 若正实数,x y 满足1x y +=,则411x y ++的最小值为____92__. 13. 若x R ∈,且20x x -<,则22,,,x x x x --从小到大的排列顺序是22x x x x -<-<<.14. 如果关于x 的不等式组2142x t x t⎧-≥⎨-≤⎩有解,那么实数t 的取值范围为()1,3-.15. 如果命题p:40,957x x m x∀>++…为真命题,则实数m 的取值范是_{|1}m m …. 三、大题本题共10道小题,每小题4分,共40分16. 某公司建造一间背面靠墙的房屋,地面面积为12m 2,房 屋正面每平方米造价为1200元房屋侧面每平方米造价为800元,屋顶的造价为5800元,如果墙高为3m ,且不计房屋背面和地面的费用,设房屋正面地面的边长为xm ,房屋的总造价为y 元.(1)求y 用x 表示的函数关系式;答:1216y 3x 12003800258003600x 5800(x 0)x x ⎛⎫=⋅+⨯⨯⨯+=++> ⎪⎝⎭(2)怎样设计房屋能使总造价最低?最低总造价是多少?16y 3600x 580028800580034600x ⎛⎫=+++= ⎪⎝⎭….当且仅当x=4时取等号.答:当底面的长宽分别为4m ,3m 时,可使房屋总造价最低,总造价是34600元.17. 解不等式组233(1)(5)0x xx x -<⎧⎨---≥⎩,并把它的解集在数轴上表示出来.答案:不等式组的解集为13x -≤<18. 已知二次函数2221y x tx t =-+-()t ∈R(2) 若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥.故不等式的解集为{x1x ≥1或x ≤-1}.(2)2221x tx t -+-的两个实根均大于-2且小于4,求实数t 的取值范围的两个实数根于-2与4之间,求t 的取值范围. 答:t 的取值范围:13t -<<19. 设命题p:方程2(24)0x m x m +-+=有两个不相等的实数根;命题q 对所有的23x剟,不等式22413x x m -+≥恒成立(2) 若命题p 为真命题,求实数m 的取值范围;答:实数m 的取值范围:{| 4 1}m m m ><或 (2)若命题p,q 一真一假,求实数m 的取值范围.答:实数m 的取值范围为{|334}m m m m <->或1或剟。
高一数学集合试题答案及解析1.已知全集,A是U的子集,且,,则的值为()A.2B.8C.3或5D.2或8【答案】D【解析】因为全集,A是U的子集,且,,,所以A={2,3},,解得或,故选D。
【考点】本题主要考查子集、并集、补集的概念。
点评:基本题型,首先应从条件出发,建立a的方程,列举法直观,易于理解。
2.已知集合M={},P={},则M P=()A.B.(3,)C.{3,}D.{(3,)}【答案】D【解析】即求两个一次函数与图象的交点,并用点集形式给出.因为M={(x,y)|x+y=2},P={(x,y)|x-y=4},所以M∩P=={(3,-1)},故选D。
【考点】本题主要考查交集的概念、二元一次方程组解法。
点评:本题主要考查交集的概念、二元一次方程组解法。
应特别注意结合中元素是有序数对。
3.已知全集,,,,则集合A=____________,B=_____________.【答案】{2,3},{2,4}【解析】依题意可填充韦恩图如图,所以A={2,3},B={2,4}。
【考点】本题主要考查交集、并集、补集的概念、集合的表示方法。
点评:此题考查了集合的交、并、补集等运算,结合韦恩图逐步填空可得解。
4.设集合A=,B=,当时,求.【答案】【解析】由已知必有,∴,或,当时集合B中的元素,且,与集合中元素的互异性矛盾,当时集合B适合题意,∴时得到.【考点】本题主要考查交集、并集的概念、集合中元素的性质。
点评:此题考查了集合的交、并运算,探究求得a,利用集合中元素的互异性,确定取舍。
细心解方程。
5.已知A={1,2},B={x|x A},则中的元素个数是()A.1B.2C.3D.4【答案】D【解析】集合中的元素可以是任意具有确定性的对象,如本题,集合B中的元素即是集合A的子集,即B={,{1},{2},{1,2}}.故选D【考点】本题主要考查补集的概念。
点评:理解补集的概念,将B中属于集合A的元素“去掉”,有余下的B中元素构成的集合就是。
1
《集合与不等式》测试题
(时间120'分值120+10)
姓名: 得分:
一、单选题(10*4′=40′)
1. 设集合M={x | 0≤x<2},集合N={x | -1
2. “24x”是“2x”的( )条件。
A、充分而不必要 B、必要而不充分
C、充分必要 D、既不充分也不必要
3. 设aA、a+b>0 B、a-b>0 C、|a|<|b| D、b-a>0
4. 已知∁A=[a,∞),∁B=(-∞,b],(∁A)∪(∁B)=(-∞,b]∪[a,∞),则∁(A∩B)=( )。
A、[a,∞) B、(-∞,b] C、(-∞,∞) D、(-∞,b]∪[a,∞)
5. 设a>0,U=R,若A={x| |x|>a},B={x| |x|A、Ф B、{-a,a} C、∁{-a,a} D、(-∞,∞)
6. A=(0,∞),B=(-2,3),则A∩B=( )。
A、(-2,∞) B、(-2,0) C、(0,3] D、(0,3)
7. 不等式(x-3a)(x+2a)>0 (a<0)的解集为( )。
A、(3a,-2a) B、(-∞,3a)∪(-2a,+∞)
C、(-2a,3a) D、(-∞,-2a)∪(3a,+∞)
8. A=[-4,2),B=[0,4), 则A∪B=( )。
A、[-4,4) B、[0,2) C、[-4,0] D、(2,4)
9. 一元二次方程042mxx有实数解的条件是m∈( )。
A、(-4,4) B、[-4,4]
C、(-∞,-4)∪(4,∞) D、(-∞,-4]∪[4,∞)
10. 0212yy的充要条件是( )。
A、y=0 B、y=1 C、y=-1 D、y>0
2
二、填空题(5*4′=20′)
11. 若a12. 不等式|1-2x|<3的解集为 。
13. 当x 时,221xx有意义。
14. 当a 时,代数式2412a的值不小于0
15. 比较大小:a2+b2 2ab。
三、解答题(6*10′=60′,要求除空集用Ф表示外,其他解集使用区间表示)
16. 设U=(-∞,+∞),A=(-∞,6),B=[-4,∞),求(∁A)∩(∁B)、∁(A∪B)。
17. 设a∈R,比较4(a-4)+1与(a+2)(a-2)的大小。
3
18. 解不等式(2*5′=10′)
(1) x2+2x-3≥0 (2) x2-2x+3<0
19. 解不等式(2*5′=10′)
(1) 7<|6x-5| (2) |5-6x|<7
20. 若abd。
4
21. 给出下列各式有意义的a的取值范围(2*5′=10′)
(1)aa11 (2)a1
(附赠题10′)解不等式组)32(215|)9(|0123222xxxxxx