8.2.1消元-代入法解二元一次方程组
- 格式:ppt
- 大小:2.41 MB
- 文档页数:15
8.2.1 消元——二元一次方程组的解(一)编写:衡帅杰 审核:衡帅杰 复审:蔡俊豪 审批:刘俊华一、学习目标:会运用代入消元法解二元一次方程组.二、学习重难点:1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.三、学习过程:(一)探索新知:①独立探索1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。
我们可以先求出一个未知数,然后再求另一个未知数,。
这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程.4.将下列方程写成用含x 的式子表示y 的形式.(1) 22=+y x (2) 013=-+y x5、用代人法解方程组,把____代人____,可以消去未知数______,方程变为:6、参照课本97页例1的格式 试着用代入法解下列方程。
⑴⎩⎨⎧=+=5x y 3x ⑵⎩⎨⎧==+y 3x 2y 32x②合作探究1.思考:课本97页例1中的③能不能代入①?如果不能,为什么?x =y+3 ① 3x -8y =14 ②2、若⎩⎨⎧-=-=+⎩⎨⎧-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。
(三)学以致用1.用代入法解下列方程组⑴⎩⎨⎧=++=.83,23y x y x ⑵ ⎩⎨⎧=+=+1737y x y x2、已知方程组⎩⎨⎧=-=-1y 7x 45y x 3的解也是方程组⎩⎨⎧==-5by -x 34y 2ax 的解,求a,b 的值。
8.2.1代入消元法简介:本节课的内容是人教版义务教育教科书《数学》七年级(下)§8.2消元---解二元一次方程组,主要内容是掌握用代入法消元解二元一次方程组,知道消元是解二元一次方程组的思想方法.在本节学习之前,学生已经学习了二元一次方程组内容,学生已经对二元一次方程组及其解有一定的认识,会初步用二元一次方程组表示问题中的数量关系。
本节内容是二元一次方程组的重要部分,在教材中占据重要的地位。
教材分析本节课是学习用代入法解二元一次方程组,初步接触消元,通过实际情境问题引出解二元一次方程组的方法概念,对于有一个未知数的系数是1的方程组学生想我往往比较简单,但是对于系数不是1的方程组,要引导学生转化解决,让学生掌握用代入法解二元一次方程组的一般步骤。
本节课教学重点为:用代入消元法解二元一次方程组。
教学难点:探索如何用代入法将“二元”转化为“一元”的消元过程.教学目标【知识与技能】会用代入法解二元一次方程组. 初步体会解二元一次方程组的基本思想――“消元”. 【过程与方法】通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想.【情感态度与价值观】(1)通过用代入法解二元一次方程组的训练及选用合理、简捷的方法解方程组,培养运算能力.(2)通过研究解决问题的方法,培养学生合作交流意识与探究精神.重点难点【教学重点】:用代入消元法解二元一次方程组。
【教学难点】:探索如何用代入法将“二元”转化为“一元”的消元过程.教学方法引导发现法、小组合作探究法、练习法。
教学准备教学过程设计程序时间创设教师行为期望的学生行为(要素)情景创设情境引入新课8分钟创设问题情境知识回顾1、什么是二元一次方程及二元一次方程的解?2、什么是二元一次方程组及二元一次方程组的解?问题1 篮球联赛中,每场比赛都要分胜负,每队胜一场得2分,负1场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?问题2 在上述问题中,我们也可以设出两个未知数,列出二元一次方程组,那么怎样求解二元一次方程组呢?师生共同得出答案引出新知。
8.2.1 代入消元法-----二元一次方程组的解法1. 会用代入消元法解二元一次方程组.2. 尝试运用代入消元法解二元一次方程组,并借此体会消元思想.3. 理解消元思想、敢于面对数学活动中的困难,积累独立解决问题的经验..一.情景创设 引出课题问题:在篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负1场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少? 方法1:解:设这个队胜了x 场,则该队负了(22-x)场,可列出方程 .方法2:解:设这个队胜了x 场,负了y 场,可列出方程组20________x y ì+=ïïíïïîx+y=20可以写成y= ,此时把第二个方程 中的y 换成 ,这个方程就化为一元一次方程 .解这个方程,得x= .从而可以求出y= .上面的解法,是把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,再代入另一个方程,实现 ,进而求得二元一次方程组的解,这种方法叫做 ,简称 . 二.解决新知:1.你能把下列方程写成用含x 的式子表示y 的形式吗?(1)2x-y=3 ____________Þ (2)3x+y-1=0 ____________Þ (3)4x+5y=8 ____________Þ 2.用代入法解方程组33814x y x y ì-=ïïíï-=ïî 解:由①,得:③把③代入②,得:解这个方程,得: y= . 把y= 代入③,得: x= . 所以这个方程组的解是______x y ì=ïïíï=ïî1.把下列方程改写成用含x 的式子表示y 的形式: (1)2x-y=3 (2)3x+y-1=0(3)4x+0.5y=3 (4)13324x y -=2.用代入法解下列方程组:(1)23328y x x y ì=-ïïíï+=ïî (2)25342x y x y ì-=ïïíï+=ïî三.课后作业:1.由132x y-=,可以得到用x 表示y 的式子( )A. 223x y -=B. 2133x y =-C. 223x y =-D. 223xy =- 2.把方程2x-y-5=0化成用含y 的代数式表示x 的形式:x= . 3.在3x+4y=9中,如果2y=6,那么x= .4.已知18x y ì=ïïíï=-ïî是方程3mx-y= -1的解,则m= . 5.若方程mx+ny=6的两个解是11x y ì=ïïíï=ïî;21x y ì=ïïíï=-ïî,则m= ,n= .6.若方程组431(1)3x y ax a y ì+=ïïíï+-=ïî的解x 和y 相等,则a 的值等于 7.方程组31x y x y ì+=ïïíï-=ïî的解为 . 8.当x= -1时,方程2x-y=3与mx+2y= -1的解相同,则m= . 9.用代入法解下列方程组:(1)23842x y x y ì+=ïïíï-=ïî (2)21437x y x y ì+=ïïíï-=ïî(3)2524x y x y ì+=ïïíï+=ïî(4)7317x y x y ì+=ïïíï+=ïî(5)223210x y x y ì+=ïïíï-=ïî (6)2143321x y x y ì++ïï=ïíïï-=ïî。