《消元解二元一次方程组》教案
- 格式:docx
- 大小:299.72 KB
- 文档页数:9
消元—解二元一次方程组教案《消元—解二元一次方程组教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:8.2消元——解二元一次方程组 (第一课时)主题内容简介:实际生活中涉及多个未知数的问题层是普遍存在的,而二元一次方程组是解决含有两个未知数的有力工具。
同时二元一次方程组也是解决后续一些数学间题的基础。
解二元一次方程组就是要把“二元”化归为“一元”,而化归的方法可以是代人消元法。
这一过程同样是解三元(多元)一次方程组的基本思路,由算术到方程再到方程组,其中蕴含的“数式通性”在本节内容中有很好的体现。
学习目标分析(1)会用代入消元法解简单的二元一次方程组。
(2)理解解二元一次方程组的思路是“消元”,经历从未知向已知转化的过程,体会化归思想。
学情分析前需知识掌握情况:学生在小学阶段已经学习了解简易方程,在七年级上学期系统学习了解一元一次方程基本能掌握,也能理解二元一次方程组的概念。
学生观看并理解微课视频,从而帮助自己顺利完成本节课的学习任务应该还是可以的。
对微课的认识:虽然刚接触微课,但学生对其有很强的好奇心。
对于微课,他们充满期待。
在数学课堂上运用微课进行教学将会有利于学生对所学知识的记忆,梳理和掌握,能够更好地提高教学效果。
学生特征分析学习态度:学生对于微课进入数学课堂很感兴趣,微课也能有效促进学生之间的交流,增强了学生之间的合作,提高了学生更好的掌握知识和完成任务的合作技能。
学习风格:学生在学习的过程中比较依赖老师,偏重于讲授法,但是缺乏自主思考问题的能力,需要老师在课堂上经常性的点拨和启发。
微课用于学生学习的教学策略分析微课用于学生学习的目的:使用微课主要是能激发学生学习的兴趣,促进他们自主学习。
本节微课是明确解二元一次方程组的主要思路是“消元”,化二元—次方程组为一元一次方程。
微课用于学生学习的时机:学生可以通过观看并借鉴教师的微课教学,观察、分析、推断,获得数学猜想,体验数学活动充满探索性和创造性。
编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是消元解二元一次方程组教学设计,是优秀的数学教案文章,供老师家长们参考学习。
8.2消元——二元一次方程组的解法(一) 学习目标:1.知识目标:会用代入法解二元一次方程组。
2.能力目标:培养自己的分析能力,能迅速在所给的二元一次方程组中,选择一个系数比较简单的方程进行变形。
3.情感目标:通过研究解决问题的方法,培养同学之间的合作交流意识与探究精神,并体验数学的化归思想。
重点:用代入消元法解二元一次方程组.难点:探索如何用代入法将“二元”转化为“一元”的消元过程.教学过程:一、目标导航,有的放矢1.知识目标:会用代入法解二元一次方程组。
2.能力目标:培养自己的分析能力,能迅速在所给的二元一次方程组中,选择一个系数比较简单的方程进行变形。
3.情感目标:通过研究解决问题的方法,培养同学之间的合作交流意识与探究精神,并体验数学的化归思想。
二、预习导学,分组展示1.把方程12=-y x 写成用含x 的代数式表示y 的形式,结果是y= ___________。
2.方程x+y=4有___________个解,有________个正整数解,它们是___________。
3.把12-=x y 代入方程34=-y x ,消去y ,得关于x 的方程 __________________ 。
(不必化简)。
4.代入消元法:代入消元法的步骤是:5.用代入法解二元一次方程组:⎩⎨⎧=+-=13252y x x y三、合作探究,对抗质疑1.用代入法解二元一次方程组。
x=2y+1(1)2x+3y=2x -3y =-1(2)3x -5y =62.利用二元一次方程组解决生活中的问题。
四、当堂检测,及时反馈(一)判断正误:1.方程4x-2y=2变形得y=1-2x ( )2.方程x-3y=1-x/2写成含y 的代数式表示x 的形式是x=3y+1-x/2( )(二 )填空题1.已知:1341---++b a b a y x =0是二元一次方程,则a b 1+ =________。
2.若()063222=+-+-+y x y x ,则=+y x _________ 。
《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
8.2 消元——解二元一次方程组教学设计(教案)1教学目标:1、学会用代入法解未知数系数的绝对值不为1的二元一次方程组;2、使学生熟练地掌握用代入法解二元一次方程组;3、使学生进一步理解代入消元法所体现出的化归意识;2教学重点和难点重点:学会用代入法解未知数系数的绝对值不为1的二元一次方程组;难点:进一步理解在用代入消元法解方程组时所体现出的化归意识3教学方法在教师的指导下进行类比和诱思探究的教学方法。
4教学过程 4.1 第一学时教学活动活动1【导入】一、从学生原有的认知结构提出问题:口答填空。
(课件出示问题)活动2【讲授】学习新知一、结合简单的二元一次方程组题的解答,教师引导学生归纳总结出用代入消元法解方程组的一般步骤(先提问,后教师用投影打出)①方程变形:将其中一个方程的某个未知数用含有另一个未知数的代数式表示出来(X=aY+b或Y=aX+b)②代入消元:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。
③方程求解:解出一元一次方程的解,再将其代入到原方程或变形后的方程中求出另一个未知数的解,最后得出方程组的解。
④口算检验。
二、解方程组{3x+4y=165x-6y=33分析:该方程组中的每一个方程都不是以含有一个未知数的代数式表示另一个未知数的形式,因此不能直接代入,应先将其中的某个方程变形,是用含x的代数式表示y,还是用含y的代数式表示x呢?引导学生通过观察得出,由于方程①中x的系数的绝对值是3,较小,故由方程①得出用含y的代数式表示x。
(本题的解答过程由学生板书完成;通过师生的共同探讨,得出选择未知数的系数的绝对值比较小的一个方程进行变形,可使解题较为简便)活动3【活动】牛刀小试(投影)已知方程组:4x-7y=212x-25y=-2对于方程组,指出下列方法中比较简捷的解法是( )(A)利用①,用含x的代数式表示y,再代入②;(B)利用①,用含y的代数式表示x,再代入②;(C)利用②,用含x的代数式表示y,再代入①;(D)利用②,用含x的代数式表示x,再代入①;比比看,你有更新的解法吗:{5x+2y=253x+4y=15可由①得2Y=25-5X代入②进行整体代入。
《消元──解二元一次方程组》教学设计(第1课时)一、内容和内容解析1.内容代入消元法解二元一次方程组2.内容解析二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。
其解法将为解决这些问题的工具。
如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等.解二元一次方程组就是要把二元化为一元。
而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。
化归思想在本节中有很好的体现。
本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.二、目标和目标解析1.教学目标(1)会用代入消元法解一些简单的二元一次方程组(2)理解解二元一次方程组的思路是消元,体会化归思想2.教学目标解析(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想三、教学问题诊断分析1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。
需要结合实际问题进行分析。
由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向一元一次方程转化的思路2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。
本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
四、教学过程设计1.创设情境,提出问题问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.问题2 对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
《消元——解二元一次方程组》教学目标:根据新课标要求,考虑到学生已有的认知结构与心理特征,制定如下教学目标: 知识与技能:会用代入消元法解二元一次方程组.过程和方法:对代入消元法的探究,使学生体会代入消元法所体现的化未知为已知的化归思想方法. 情感、态度与价值观:通过探究解决问题的方法,培养学生合作交流意识与探究精神,进一步体会方程是刻画现实世界的有效数学模型. 教学重难点、关键:重点:代入消元法解二元一次方程组.难点:对代入消元法解二元一次方程组过程的理解.关键:掌握代入消元法的关键是化二元方程为一元方程,而转化的关键是将方程组其中一个方程变形为“y =ax +b ”或“x =ay +b ”(其中a 、b 为常数)的形式,因而对代入消元法的理解关键是对“消元”思想的理解. 说教法学法: 1.说教法主要采用引导式教学方法.适时引导学观察、发现、总结归纳,力求让学生独立思考问题和解决问题;充分发挥学生的主体作用.理论依据:《新课程标准》指出“数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下生动活泼地、主动地、富有个性地学习.” 2、说学法结合本课内容,引导学生通过观察、比较、归纳、自主学习以及合作交流等方法学习.理论依据:新课标指出:“在教学活动中,教师应发扬教学民主,成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践.” 说教学过程:我将从(一)情境导入;(二)探究新知;(三)知识应用;(四)小结与布置作业这四个环节进行,并根据重难点分配时间依次为3分钟、10分钟、25分钟和2分钟. (一)情境导入问题:我校计划举行班级篮球联赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,为了争取出线名额,我班至少要在全部10场比赛中得到16分,那么,我班胜负场数分别是多少?设计意图:激发学生学习兴趣,渗透方程(组)解决实际问题的有效性.由于问题的解法在上一节中已经讨论过,所以这里的侧重点不是列方程(组),而是为探究二元一次方程组和一元一次方程的关系服务. 1、解法一:直接设两个未知数,设胜x 场,负y 场,根据题意列方程组得⎩⎨⎧=+=+16210y x y x思考(紧扣课题,明确主要内容):这个方程组的解是什么?如何解方程组?接下来我们将探讨如何解二元一次方程组?2、解法二:只设一个未知数,设胜x 场,则负(10-x )场,根据题意列方程得 2x +(10-x )=16 (二)探究新知1、思考:上述的二元一次方程组和一元一次方程有什么关系?教法:教师提出问题后,将学生分成小组讨论.教师深入学生的讨论中,引导学生观察 ,给予学生肯定与鼓励.归纳总结:我们发现,解法一所设的y 相当于解法二中的(10-x ),因为问题中y 和(10-x )都表示负场数,进一步发现方程组中第一个方程x +y =10可以写成y =10-x ,而由于两个方程中的y 都表示负的场数,所以我们把第二个方程2x +y =16中的y 换为10-x ,这个方程就转化为一元一次方程2x +(10-x )=16,解这个方程,得x =6.把x =6代入y =10-x ,得y =4.从而得到这个方程组的解. 适时给出概念,感受概念是通过实际生活抽象得出的 2、消元思想二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求出另一个未知数.这种将未知数的个数有多化少、逐一解决的思想,叫做消元思想.归纳总结:上面的解法,是把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法二元一次方程组 一元一次方程.设计意图:通过梳理“情境问题”中方程组的解法过程,给出数学方法的名称,即数学概念,从而体验“过程与方法”. (三)知识应用 1、尝试解题,独立完成 例1 用代入法解方程组设计意图:培养学生自主学习的能力,同时通过初次尝试,引起学生对数学解题步骤的重视. 解:由①,得x =y +3. ③ 把③代入②,得 3(y +3)-8y =14. 解这个方程,得y =-1.⎩⎨⎧=-=-14833y x y x把y =-1代入③,得 x =2.所以,这个方程组的解是思考:(1)把③代入①可以吗?试试看. (2)把y =-1代入① 或②可以吗? 2、课堂练习练习1:把下列方程改写用含x 的式子表示y 的形式(1)2x -y =3;(2)3x +y -1=0 练习2:用代入法解下列方程组(1) (2)设计意图:第1题体现了难点突破中“关键”即二元一次方程变形的关键,第二题能让学生通过解决问题,总结归纳出解题的一般步骤和解题技巧.最后,师生归纳出代入法解二元一次方程组的一般步骤:①变形(选择其中一个方程,把它变形为用一个未知数的代数式表示另一个未知数); ②代入(把变形好的方程代入到另一个方程,即可消元) ③求解(解一元一次方程,得一个未知数的值);④回代(把求得的未知数代入到变形的方程,求出另一个未知数的值); ⑤写解(用 x =a 的形式写出方程组的解). y =b⑥验算(把方程的解代回原方程组验算) 简记:变形→代入→求解→回代→写解→验算 (四)小结,布置作业小结: 1. 解二元一次方程组的思想?2. 代入法解二元一次方程组的步骤是什么?3. 用代入法解二元一次方程组的技巧:①变形的技巧;②代入的技巧. 布置作业:1.(必做题)教材P97页习题8.2复习巩固第1、2题2.(选做题) 教材P97页思考题(1)15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法{x 21y ==-{y=2x-33x+2y=8{2x-y=53x+4y=2教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.A BICABI作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连接AB 、BC 、CA ,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得D CAB到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:D C A B证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,E DC A B P再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)b a ab - (3)3 五、1.(1)22yx xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
(精品教案)消元法解二元一次方程组讲课稿(精选6篇)收集整理的消元法解二元一次方程组讲课稿(精选6篇),欢迎阅读与收藏。
1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的连续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,接着学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
经过类比,让学生从中充分体味二元一次方程组,明白并掌握解二元一次方程组的基本概念,为往后函数等知识的学习打下基础。
2.教学目标知识目标:经过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会推断一组未知数的值是否为二元一次方程及方程组的解。
会在实际咨询题中列二元一次方程组。
情感目标:使学生经过交流、合作、讨论猎取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际日子中二元一次方程组的应用。
现代教学理论以为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为动身点。
依照这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采纳启示式、讨论式以及说练结合的教学办法,以咨询题的提出、咨询题的解决为主线,始终在学生知识的“最近进展区”设置咨询题,倡导学生主动参与教学实践活动,以独立考虑和相互交流的形式,在教师的指导下发觉、分析和解决咨询题,在引导分析时,给学生留出脚够的考虑时刻和空间,让学生去联想、探究,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采纳多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
“咨询题”是数学教学的心脏,活动是数学教学中的灵魂。
因此我在学生思维最近进展区内设置并提出一系列咨询题,经过数学活动,引导学生:自主性学习,合作式学习,探索式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定进展。
《消元-—解二元一次方程组》教案1第一课时★新课标要求(一)知识与技能1.知道代入法的概念.2.会用代入消元法解二元一次方程组.(二)过程与方法1.通过探索,了解解二元一次方程的“消元"思想,初步体会数学的化归思想.2.培养探索、自主、合作的意识,提高解题能力.(三)情感、态度与价值观1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.2.通过研究解决问题的方法,培养学生合作交流意识与探究精神.★教学重点用代入法解二元一次方程组,基本方法是消元化二元为一元.★教学难点用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.★教学方法1.关于检验方程组的解的问题.教学时要强调代入“原方程组”和“每一个”这两点.2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元".我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.教师启发、引导,学生观察、试验、比较、思考,讨论、交流学习成果.★教学过程一、引入新课教师活动:请同学们回忆上节课我们讨论的篮球联赛的问题.大家可以得到两种方程﹙组﹚.设此篮球队胜场,负场.方法一:;方法二:方法一得到的方程是我们学过的一元一次方程.大家很容易解得.所以该篮球队胜18场,负场.二、进行新课1.代入消元法的概念方法二得到的是二元一次方程组,怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么联系?学生活动:思考、讨论、发现二元一次方程组中第1个方程说明,将第2个方程的换为,这个方程就化为一元一次方程.教师活动:介绍消元思想,师生共同归纳代入消元法的概念.归纳:消元思想:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.上面的解法,是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.学习用代入消元法解二元一次方程教师活动:把下列方程写成用含的式子表示的形式:(1);(2).学生活动:独立完成,回答结果.教师活动:出示例1,巡视,指导学生解答.例1:用代入法解方程组学生活动:解答例1,体验代入消元法解二元一次方程组,试着归纳用消元法解二元一次方程组的步骤.分析:方程①中的系数是1,用含有的式子表示,比较就简便.解:由①,得③把③代入②,得.(把③代入①可以吗?)解这个方程,得.把代入③,得.(把代入①或②可以吗?)所以这个方程组的解是教师归纳总结强调:(1)一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程”由于方程③是由方程①得到的,所以它只能代入方程②,而不能代入方程③.(2)个未知数的值后,把它代入方程①②③都能得到另一个未知数的值,其中代入方程③最简捷.教师活动:指导学生认真阅读教材P例2.要求学生阅读思考找出题目中所包含的等量关系,列出二元一次方程组,并解答.例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?学生活动:一生板演,余生自做.教师活动:针对学生的解答进行点评.分析:问题中包含两个条件:,大瓶所装消毒液+小瓶所装消毒液=总生产量.解:设这些消毒液应该分装大瓶和小瓶.根据大、小瓶数的比以及消毒液分装量与总生产量的数量关系,得由①,得把③代入②,得.解这个方程,得.把代入③,得.所以这个方程组的解是答:这些消毒液应该分装大瓶和小瓶.上面解方程组的过程可以用下面的框图表示:三、课堂总结这节课我们介绍了二元一次方程组的一种解法——-代入消元法.了解到解二元一次方程组的基本思想是“消元”,即把二元变成“一元”.在学习方法上,还要学会主动探索,从不同的角度来思考问题的学习方法,逐步理解数学的转化思想和整体代入思想.四、课后练习1.把下列方程改写成用含的式子表示的形式:(1);(2).2.用代入法解下列方程组:(1)(2)3.有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.了;篮、排球队各有多少支参赛?4.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/小时,步行的平均速度是5千米/小时,路程全长20千米.他骑车与步行各用多少时间?第二课时★新课标要求(一)知识与技能1.掌握用加减消元法解二元一次方程组的步骤.2.能运用加减法解二元一次方程组.3.培养学生的计算能力和应用数学解决实际问题的意识.(二)过程与方法经历探索用“消元”方法把二元一次方程组转化为一元一次方程,从而求方程组的解的过程,体会“消元”方法在解方程中的作用.(三)情感、态度与价值观1.进一步理解解二元一次组的消元思想,在化“未知为已知"的过程中,体验化归的数学美.2.根据方程组的特点,引导学生多角度思考问题,培养开拓创新意识.★教学重点进一步渗透消元思想,掌握用加减消元法解二元一次方程组的原理及一般步骤;能熟练运用加减法解二元一次方程组.★教学难点明确用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等★教学方法通过复习上节课利用代入法解二元一次方程组的方法及其解题思想,引入新课,让学生观察比较,从而发现只要将相同未知数前的系数化为绝对值相等的值,即可实施加减消元法.进一步让学生探究用代入法还是用加减法解方程组更简单,明确用加减法解题的优越性.通过反复的训练、归纳;再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.★教学过程一、创设问题情境,导入新课教师活动:请同学们考虑下列问题:1.用代入法解二元一次方程组的基本思想是什么?2.用代入法解下列方程组,并检验所得结果是否正确.学生活动:口答第1题,书面完成第2题,通过投影展示学生的不同解法.教师活动:对学生的解法给予肯定,激励.问:对于二元一次方程是不是还有其它解法,也可以消去一个未知数,达到消元的目的呢?二、进行新课1.对加减消元法的认识教师活动:第(2)题的两个方程中,未知数的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉,得到一个一元一次方程,进而求得二元一次方程组的解.解:①+②,得.解得.把代入①,得.∴.∴学生活动:比较用这种方法得到的值是否与用代入法得到的相同.(相同)上面方程组的两个方程中,因为的系数互为相反数,所以我们把两个方程相加,就消去了,观察一下的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去?(相减) 学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)教师活动:归纳总结.两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称“加减法”.2.加减消元法解二元一次方程组提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)教师活动:出示课本例3要求学生思考“不用代入法怎样解”?例3:用加减法解方程组学生活动:在教师的引导下总结怎样解未知数的系数不一定刚好相等,也不一定互为相反数的二元一次方程.﹙用最小公倍数将同一未知数系数转化为相等或相反的数,然后再把两个方程的左右两边分别相加或相减﹚一生板演,师生共评.解:①×3,得②×2,得③+④,得,.把代入①,得,,.所以这个方程组的解是教师活动:出示投影片加减消元法解二元一次方程组的基本思想是什么?(两方程中同一未知数的系数不相等也不相反,所以不能通过直接加减来消元.为消元需要在方程两边乘适当的数,使某个未知数在两方程中的系数相等或相反.)用加减消元法解二元一次方程组的一般步骤是什么?学生活动:分组讨论、总结,解决以上问题.教师活动:和学生一道分析讨论结果,投影出示加减消元的基本思想和解二元一次方程组的一般步骤.学生活动:阅读例4.师生共同分析列出方程组.然后交由学生解方程组.例4:2台大收割机和5台小收割机均工作2小时共收割小麦3。
消元解二元一次方程组教案实用一、教学目标1.知识与技能1.1理解二元一次方程组的解的概念。
1.2学会利用加减消元法解二元一次方程组。
2.过程与方法2.1通过观察、操作,培养解决实际问题的能力。
2.2通过小组合作,提高合作解决问题的能力。
3.情感态度与价值观3.1培养学生独立思考、勇于创新的精神。
3.2增强学生解决实际问题的信心。
二、教学重难点1.重点:理解二元一次方程组的解的概念,掌握加减消元法解二元一次方程组。
2.难点:灵活运用加减消元法解题。
三、教学过程1.导入新课1.1利用生活中的实际问题引入二元一次方程组的概念。
例如:小明和小红一共收集了30个邮票,小明有20个,小红有多少个?2.探索新知2.1引导学生回顾一元一次方程的解法,让学生尝试解二元一次方程组。
例如:求解方程组:\[\begin{cases}x+y=5\\2xy=1\end{cases}\]2.2学生尝试解题,教师巡回指导,发现学生不会解的情况,引导学生观察两个方程之间的关系。
3.引导学生发现消元法3.1教师引导学生将两个方程相加或相减,消去一个未知数。
例如:将第一个方程乘以2,得到:\[\begin{cases}2x+2y=10\\2xy=1\end{cases}\]然后将两个方程相减,消去y,得到:\[\begin{cases}2x+2y=10\\3y=9\end{cases}\]3.2学生根据消元法,求解出y的值,再将y的值代入其中一个方程求解x的值。
例如:如何选择相加或相减,如何确定消去哪个未知数等。
5.练习巩固5.1让学生独立完成教材上的练习题,巩固所学知识。
5.2教师选取一些典型题目进行讲解,帮助学生理解消元法。
6.小组合作6.1将学生分成小组,每组选取一道二元一次方程组题目进行讨论。
6.2各小组成员分别阐述自己的解题思路,共同找出最优解法。
7.1教师邀请几名学生分享自己的解题过程和心得体会。
7.2教师对学生的表现进行评价,鼓励学生继续努力。
消元法解二元一次方程组教案教案标题:消元法解二元一次方程组教学目标:1. 理解二元一次方程组的概念和解法;2. 掌握使用消元法解二元一次方程组的方法;3. 能够应用所学知识解决实际问题。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学PPT;2. 学生准备:教科书、练习册、笔和纸。
教学过程:一、导入(5分钟)1. 教师通过提问引入二元一次方程组的概念,例如:“你们知道什么是二元一次方程组吗?有什么特点?”2. 学生回答后,教师给出简要解释,并强调本节课将学习使用消元法解二元一次方程组。
二、知识讲解(15分钟)1. 教师通过PPT或板书,详细介绍消元法的步骤和原理。
2. 教师通过示例方程组,逐步演示如何使用消元法解题,并解释每一步的操作和意义。
3. 教师提醒学生注意消元法解题时需要注意的常见错误和技巧。
三、示范演练(15分钟)1. 教师出示一些简单的二元一次方程组,让学生通过消元法解题,并在黑板上进行展示。
2. 教师引导学生参与讨论,共同找出解题的关键步骤和思路。
3. 教师纠正学生可能出现的错误,并给予指导。
四、练习巩固(20分钟)1. 学生个人或小组完成练习册上的相关练习题,巩固所学的消元法解题方法。
2. 教师在学生完成后,进行答案讲解,解释每道题的解题思路和方法。
3. 学生在教师指导下,纠正可能存在的错误,并进行订正。
五、拓展应用(10分钟)1. 教师提供一些实际问题,要求学生运用所学的消元法解决,并讨论解决问题的过程和思路。
2. 学生根据实际问题,进行个人或小组讨论,提出解决方案,并在黑板上进行展示。
六、总结与反思(5分钟)1. 教师对本节课的内容进行总结,强调消元法解题的重要性和实际应用。
2. 学生对所学内容进行反思,提出问题和困惑,教师进行解答和澄清。
教学延伸:1. 学生可以自主寻找更多的二元一次方程组练习题,进行更多的训练和巩固;2. 学生可以尝试使用其他解题方法(如代入法、图解法等)解决二元一次方程组,比较不同方法的优缺点。
消元—解二元一次方程组教学设计《消元—解二元一次方程组教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学设计】一、教学内容分析1、教材所处的地位和作用消元(二)——加减消元法,是七年级下册第八章第二节消元的第二课时的内容,将实际问题转化为二元一次方程组,这就是建立了数学模型,如何求得二元一次方程组的解是本节课要解决的主要问题,通过本节的学习要让学生掌握解二元一次方程组的另一种方法——加减法。
使学生体会“化未知为已知”的化归思想,培养他们对数学的兴趣,同时,对后继数学的学习起到奠基作用。
2、教学目标(1)知识与技能:使学生掌握用加减法解二元一次方程组的步骤;能运用加减法解二元一次方程组。
(2)过程与方法:根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;训练学生的运算技巧。
(3)情感态度与价值观:进一步理解解二元一次方程组的消元思想,在化“未知为已知”的过程中,体验化归的数学美;根据方程组的特点,引导学生多角度思考问题,培养开拓、创新意识;在合作交流中培养学生的集体荣誉感。
3、教学重点(1)进一步渗透“消元”的数学思想;(2)掌握用加减法解二元一次方程的原理及一般步骤;(3)能熟练的运用加减法解二元一次方程组。
4、教学难点灵活运用加减消元法的技巧二、学情分析1、如果方程未知数的系数的绝对值不相等,变化哪一个未知数的系数使其相等较简单,学生不太清楚。
2、用一个方程减去另一个方程时学生往往容易出错。
3、当二元一次方程组的形式较复杂时,学生无从下手。
三、教学策略如何突出重点、突破难点,从而让学生在快乐中学习,我在教学过程中拟计划进行如下操作:1、复习回顾,引入新课,从而让学生更快的进入本节的学习中来。
2、贯穿本节课始终的是:小组讨论,同桌讨论,男生与女生之间的竞争。
3、由易到难,层层深入,使学生体会化“二元”为“一元”的消元思想。
4、对有些题目能够灵活应用,不死搬硬套,针对学生可能存在的问题,在教学过程中有意识加以解决,降低难度,提高教学效益。
《8.2 消元——解二元一次方程组》教案第1课时 代入法【教学目标】会用代入法解二元一次方程组.(重点)【教学过程】一、情境导入《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?我们可以设树上有x 只鸽子,地上有y 只鸽子,得到方程组⎩⎨⎧x +y =3(y -1),x -1=y +1.可是这个方程组怎么解呢?有几种解法? 二、合作探究探究点:用代入法解二元一次方程组【类型一】 用代入法解二元一次方程组用代入法解下列方程组:(1)⎩⎨⎧2x +3y =-19,①x +5y =1;②(2)⎩⎨⎧2x -3y =1,①y +14=x +23.② 解析:对于方程组(1),比较两个方程系数的特点可知应将方程②变形为x=1-5y ,然后代入①求解;对于方程组(2),应将方程组变形为⎩⎨⎧2x -3y =1,③4x -3y =-5,④观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x =3y +12. 解:(1)由②,得x =1-5y .③把③代入①,得2(1-5y )+3y =-19,2-10y +3y =-19,-7y =-21,y =3.把y =3代入③,得x =-14.所以原方程组的解是⎩⎨⎧x =-14,y =3;(2)将原方程组整理,得⎩⎨⎧2x -3y =1,③4x -3y =-5.④ 由③,得x =3y +12.⑤ 把⑤代入④,得2(3y +1)-3y =-5,3y =-7,y =-73. 把y =-73代入⑤,得x =-3. 所以原方程组的解是⎩⎨⎧x =-3,y =-73.方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比较简单的或代入后容易消元的方程进行变形.【类型二】 整体代入法解二元一次方程组解方程组:⎩⎨⎧x +13=2y ,①2(x +1)-y =11.②解析:把(x +1)看作一个整体代入求解.解:由①,得x +1=6y .把x +1=6y 代入②,得2×6y -y =11.解得y =1.把y =1代入①,得x +13=2×1,x =5.所以原方程组的解为⎩⎨⎧x =5,y =1. 方法总结:当所给的方程组比较复杂时,应先化简,但若两方程中含有未知数的部分相等时,可把这一部分看作一个整体求解.【类型三】 已知方程组的解,用代入法求待定系数的值已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的解,则a -b 的值为( )A .1B .-1C .2D .3解析:把解代入原方程组得⎩⎨⎧2a +b =7,2a -b =1,解得⎩⎨⎧a =2,b =3,所以a -b =-1.故选B.方法总结:解这类题就是根据方程组解的定义求,将解代入方程组,得到关于字母系数的方程组,解方程组即可.三、板书设计解二元一,次方程组)⎩⎨⎧基本思路是“消元”代入法解二元一次方程组的一般步骤 【教学反思】回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知基础,探究显得十分自然流畅.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力第2课时 加减法【教学目标】会用加减法解二元一次方程组.(重点)【教学过程】一、情境导入上节课我们学习了用代入消元法解二元一次方程组,那么如何解方程组⎩⎨⎧2x +3y =-1,①2x -3y =5②呢? 1.用代入法解(消x )方程组.2.解完后思考:用“整体代换”的思想把2x 作为一个整体代入消元求解.3.还有没有更简单的解法?由x 的系数相等,是否可以考虑①-②,从而消去x 求解?4.思考:(1)两方程相减的依据是什么?(2)目的是什么?(3)相减时要特别注意什么?二、合作探究探究点一:用加减消元法解二元一次方程组用加减消元法解下列方程组:(1)⎩⎨⎧4x +3y =3,①3x -2y =15;②(2)⎩⎪⎨⎪⎧1-0.3(y -2)=x +15,①y -14=4x +920-1.②解析:(1)观察x ,y 的两组系数,x 的系数的最小公倍数是12,y 的系数的最小公倍数是6,所以选择消去y ,把方程①的两边同乘以2,得8x +6y =6③,把方程②的两边同乘以3,得9x -6y =45④,把③与④相加就可以消去y ;(2)先化简方程组,得⎩⎨⎧2x +3y =14,③4x -5y =6.④观察其系数,方程④中x 的系数恰好是方程③中x 的系数的2倍,所以应选择消去x ,把方程③两边都乘以2,得4x +6y =28⑤,再把方程⑤与方程④相减,就可以消去x .解:(1)①×2,得8x +6y =6.③②×3,得9x -6y =45.④③+④,得17x =51,x =3.把x =3代入①,得4×3+3y =3,y =-3.所以原方程组的解是⎩⎨⎧x =3,y =-3;(2)先化简方程组,得⎩⎨⎧2x +3y =14,③4x -5y =6.④③×2,得4x +6y =28.⑤⑤-④,得11y =22,y =2.把y =2代入④,得4x -5×2=6,x =4.所以原方程组的解是⎩⎨⎧x =4,y =2.方法总结:用加减消元法解二元一次方程组时,决定消去哪个未知数很重要,一般选择消去两个方程中系数的最小公倍数的绝对值较小的未知数.复杂的方程组一定要先化简,再观察思考消元方案.探究点二:用加减法整体代入求值已知x 、y 满足方程组⎩⎨⎧x +3y =5,3x +y =-1,求代数式x -y 的值. 解析:观察两个方程的系数,可知两方程相减得2x -2y =-6,从而求出x -y 的值.解:⎩⎨⎧x +3y =5,①3x +y =-1,②②-①,得2x -2y =-1-5,③ ③2,得x -y =-3. 方法总结:解题的关键是观察两个方程相同未知数的系数关系,利用加减消元法求解.探究点三:构造二元一次方程组求值已知x m -n +1y 与-2x n -1y 3m -2n -5是同类项,求m 和n 的值.解析:根据同类项的概念,可列出含字母m 和n 的方程组,从而求出m 和n .解:因为x m -n +1y 与-2x n -1y 3m -2n -5是同类项,所以⎩⎨⎧m -n +1=n -1,①3m -2n -5=1.②整理,得⎩⎨⎧m -2n +2=0,③3m -2n -6=0.④ ④-③,得2m =8,所以m =4.把m =4代入③,得2n =6,所以n =3.所以当⎩⎨⎧m =4,n =3时,x m -n +1y 与-2x n -1y 3m -2n -5是同类项. 方法总结:解这类题,就是根据同类项的定义,利用相同字母的指数分别相等,列方程组求字母的值.三、板书设计用加减法解二元一次方程组的步骤:①变形,使某个未知数的系数绝对值相等;②加减消元;③解一元一次方程;④求另一个未知数的值,得方程组的解.【教学反思】进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.选择恰当的方法解二元一次方程组,培养学生的观察、分析问题的能力《8.2 消元——解二元一次方程组》导学案第1课时代入法【学习目标】:1.熟练掌握代入消元法的基本步骤,提高基本运算能力.2.通过独立思考,小组合作,探究用代入法将“二元”转化为“一元”的消元过程的规律和方法.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣.【重点】:代入消元法解二元一次方程组.【难点】:用代入法将“二元”转化为“一元”的消元过程.【自主学习】一、知识链接1.二元一次方程组的概念是什么?2.什么叫做二元一次方程组的解二、新知预习1.如何将一个二元一次方程的一个未知数用含另一个未知数的式子表示?2.如何将二元一次方程组转化为一元一次方程?3.代入消元法的基本思想是什么?三、自学自测1.将以下方程用含x 的式子表示y:(1)2x-3y=6;(2)3x+2y=6-2x.2.用代入法解二元一次方程组【课堂探究】要点探究探究点1:用代入法解二元一次方程组实例:一个苹果和一个梨的质量合计200g,这个苹果的质量加上一个10g 的砝码恰好与这个梨的质量相等,问苹果和梨的质量各是多少g ?问题:(1)如何列出方程组?(2)两个方程中的x 和y 所表示的意义一样吗?(3)能否将问题(1)中所得的方程组中的一个方程代入另一个方程?代入3,5x y xy后得到的方程是什么方程?(4)以上做法达到怎样的目的?(5)解方程x +( x +10) = 200的结果是什么?能否由x 的值得出y 的值?(6)问题(1)中方程组的解是什么?要点归纳:解二元一次方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的一个方程中,可得一个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值.第四步:回代求出另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程看是否成立.例1.(教材P91例1变式)解二元一次方程组:若方程5x 2m+n + 4y 3m-2n = 9是关于x 、y 的二元一次方程,求m 、n 的值.方法总结:用代入消元法解二元一次方程组时,尽量选取未知数系数的绝对值是1的方程进行变形;若未知数系数的绝对值都不是1,则选取系数的绝对值较小的方程变形. 8,5334.x y x y探究点2:代入法解二元一次方程组的简单应用例2.(教材P92例2变式)篮球联赛中,每场比赛都要分出胜负,胜一 场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到35分,那么这个队胜负场数分别是多少?【当堂检测】1.用代入消元法解下列方程组.2.把下列方程分别用含x 的式子表示y ,含y 的式子表示x : (1)2x -y =3;(2)3x +2y =1.3.二元一次方程组的解是( )A.B. C. D.4,2x y x y 73x y =⎧⎨=⎩4.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?第2课时 加减法【学习目标】:1.熟练掌握加减消元法的基本步骤,提高基本运算能力.2.通过独立思考,小组合作,探究用加减法消元过程的规律和方法.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣.【重点】:加减法消元解二元一次方程组.【难点】:加减法的消元过程.【自主学习】一、知识链接1.代入消元法解二元一次方程组的步骤是什么?二、新知预习1.用加减消元法时,要消去的未知数的系数必须具备什么特点?2.加减消元法的基本思想是什么?三、自学自测1.用加减法解方程组时,要使两个方程中某同一未知数的系数的绝对值相等,有以下四种变形,其中变形结果正确的有 . 231,328x y x y(1) (2) (3) (4) 2.用加减法解下列方程组:(1)(2)【课堂探究】要点探究探究点1:用加减法解二元一次方程组观察方程组:(1)(2)回答以下问题:问题1:方程组(1)的两个方程中,y 的系数有什么关系?问题2:方程组(2)的两个方程中,x 的系数有什么关系?问题3:按照这种思路,对两个方程组你能分别消去一个未知数吗?问题4:结合上述例子,总结加减消元法的概念.总结归纳:例 1.解方程组 691,648x y x y 461,968x y x y 693,6+416x y x y 462,9624x y x y 315,25;x y x y 321,47.x y x y 27,4x y x y ;27,22 3.x y x y 310 2.8,15108.x y x y方法总结:同一未知数的系数 时,把两个方程的两边分别 !例2:解下列二元一次方程组方法总结:同一未知数的系数 时,把两个方程的两边分别 ! 例3:用加减法解方程组:方法总结:同一未知数的系数 时,利用等式的性质,使得未知数的系数 .例4:已知,则a+b 等于_____.方法总结:解题的关键是观察两个方程相同未知数的系数关系,利用加减消元法求解.例5:解方程组方法总结:整体代入法(换元法)是数学中的重要方法之一,这种方法往往能使运算更简便.例6:2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和257,23 1.x y x y 2312,3417.x y x y +=⎧⎨+=⎩24328a b a b 2()3()30,2()3() 6.x y x y x y x y2辆小卡车工作5小时可运输垃圾80 吨, 那么1辆大卡车和1辆小卡车每小时各运多少吨垃圾? 二、课堂小结 加减法解二元一次方程组 某一未知数系数的绝对值相同某一未知数系数成倍数关系其他类型【当堂检测】 1.方程组的解是 . 下列各图中, ∠1 ,∠2是对顶角吗?2. 用加减法解方程组 应用( )A.①-②消去yB.①-②消去xC. ②- ①消去常数项D. 以上都不对3.解下列方程组:4.已知x 、y 满足方程组求代数式x -y 的值.【拓展题】(1)若,则x+2y= . (2)已知2a y b 3x+1与-3a x-2b 2-2y 是同类项,则x = ,y= .237,38x y x y +=⎧⎨-=⎩24,(1)5;x y x y 3(2)21x y x y ,;34(3)23 1.x y x y ,35,3 1.x y x y 20x y x y(3)已知是方程组的解,求m 与n 的值.第八章二元一次方程组 《8.2消元——解二元一次方程组》同步练习一、单选题(共14题;共28分)1、用代入法解方程组有以下步骤:①:由(1),得y=(3);②:由(3)代入(1),得7x-2×=3;③:整理得3=3;④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A 、①B 、②C 、③D 、④2、关于x ,y 的方程组的解互为相反数,则k 的值是() A 、8B 、9C 、10D 、113、对于方程组,把(2)代入(1)得 ( )A 、2x-6x-1=5B 、2(2x-1)-3y=5C 、2x-6x+3=5D 、2x-6x-3=5 x 21y mx-y 3-n 6x y4、下列各组数中是方程组的解为( )A、B、C、D、5、若方程组的解中,x的值比y的值大1,则k为()A、B、﹣C、2D、﹣26、关于x、y的方程组有正整数解,则正整数a为()A、1、2B、2、5C、1、5D、1、2、57、若点P(x,y)的坐标满足方程组,则点P不可能在()A、第一象限B、第二象限C、第三象限D、第四象限8、已知实数x,y满足+x2+4y2=4xy,则(y﹣x)2015的值为()A、0B、﹣1C、1D、2 0159、如果方程组的解是方程3x+my=8的一个解,则m=()A、1B、2C、3D、410、方程组的解x,y满足x>y,则m的取值范围是()A、B、C、D、11、已知:|x+2y+3|与(2x+y)2的和为零,则x﹣y=()A、7B、5C、3D、112、解方程组比较简便的方法为()A、代入法B、加减法C、换元法D、三种方法都一样13、如果的解也是2x+3y=6的解,那么k的值是()A、B、C、D、14、已知实数x,y满足+x2+4y2=4xy,则(y﹣x)2015的值为()A、0B、-1C、1D、2015二、填空题(共5题;共6分)15、方程组的解为________ .16、解二元一次方程组的方法有代入消元法和________ 消元法,化二元为一元.17、已知x与y互为相反数,且3x﹣y=4,则x=________ ,y=________ .18、方程组的解满足方程3x﹣2y+k=0,那么k的值是________ .19、已知方程组,则8x+8y= ________.三、计算题(共2题;共10分)20、解方程组:(1)(2)21、解方程组:.四、解答题(共2题;共10分)22、二元一次方程组的解x、y (x≠y)的值是一个等腰三角形两边的长,且这个等腰三角形的周长为8,求腰的长和m的值.23、解二元一次方程组:.五、综合题(共1题;共10分)24、解下列方程组:(1) (2).答案解析部分一、单选题1、【答案】B【考点】解二元一次方程组【解析】【分析】解二元一次方程组有两种方法:(1)加减消元法;(2)代入法.本题要求的是代入法,根据①或②得出的x关于y(或y关于x)的式子代入另一个式子中来求解.【解答】错误的是②.因为(3)是由(1)得到,所以应该是将(3)代入(2)而不是(1),故选B.【点评】本题考查的是二元一次方程的解法,题目中的错误(代入的式子为原式)往往是学生常犯得错误.2、【答案】D【考点】解二元一次方程组【解析】【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用k表示出来,代入方程x=-y求得k的值.【解答】由x,y互为相反数得x=-y,代入(1)得y=-1,则x=1,把x=1,y=-1,代入(2)得:2k-k-1=10,则k=11.故选D.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.3、【答案】C【考点】解二元一次方程组【解析】【分析】依题意知把2x-3(2x-1)=5去括号后选C.【点评】本题难度较低,主要考查学生对二元一次方程组知识点的掌握。
教学目标1、知识与技能:会用代入法解二元一次方程组。
初步体会解二元一次方程组的基本思想——“消元”。
2、过程与方法:经历用代入法解二元一次方程组的训练,培养运算能力,体会转化思想。
3、情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识与探究精神。
重点难点重点:用代入法解二元一次方程难点:探索如何用代入消元法将“二元”转化为“一元”的消元过程。
教学过程(一)、创设情境,导入新课问题1:用含x的代数式表示y:(1) x + y = 22(2)5 x =2 y(3)2 x - y =5问题2:NBA篮球联赛中每场比赛都要分出胜负,若每队胜一场得2分,负一场得1分.如果火箭队为争取较好名次,想在最后22场比赛中得40分,求它的胜、负场数应分别是多少?(二)、探究新知问题1:什么是二元一次方程组的解?问题2:这个问题能用一元一次方程来解决吗?问题3:观察上面的二元一次方程组和一元一次方程有什么关系?设计意图:重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据,体会由未知向已知转化的化归思想。
(三)巩固新知例1用代入法解方程组x-= y +33x-8y=141、选择那个方程代入另一个方程?其目的是什么?2、为什么能代入?3、只求一个未知数的值,方程组解完了吗?4、把已求出的未知数的值代入哪个方程来求另一个未知数的值简便?5、怎样知道你求得的解是否正确?例2解方程组2x-y=53x-8y=14分析:1、从方程的结构来看,例2和例1有什么不同?2、如何变形,把其中一个方程变形为用含一个未知数的式子来表示另一个未知数。
3、选哪个方程变形较简单呢?设计意图:例1的重点在于让学生掌握代入法的基本步骤,这里暂时省略“用含一个未知数的式子去表示另一个未知数”的步骤,而将其放在例2,这样处理降低了难度,利于分阶段达到课本的知识目标;例2的重点在于说明解二元一次方程组的一些技巧,体现在怎样用含一个未知数的式子来表示另一个未知数,代入哪个方程较简单。
用消元法解二元一次方程组——教案设计教学目标:1.掌握二元一次方程组的定义和性质;2.理解消元法的基本思想及其应用;3.能够熟练地运用消元法解决二元一次方程组的实际问题。
教学重点:1.二元一次方程组的基本概念及其解法;2.消元法的具体步骤及其应用;3.实际问题的转化与解决。
教学难点:1.如何进行快速而准确的计算;2.如何进行实际问题的转化与解决。
教学方法:1.讲授法;2.实例演练法;3.互动式问答法。
教学步骤:1.引入阶段——前置知识铺垫(1)教师先讲授一些基本的知识概念,如“方程”、“方程组”等;(2)引出本节课的重点——二元一次方程组及其解法;(3)教师可以在黑板上列出一些基本的二元一次方程组,供学生理解和分析。
2.讲解阶段——授课讲解(1)二元一次方程组的定义和性质;(2)消元法的基本思想及其应用;(3)介绍如何将消元法与实际问题应用。
3.演练阶段——学生操作演练(1)学生自行解题:教师出示一系列的二元一次方程组的题目,要求学生进行计算和推理;(2)教师解题演示:在学生自己练习的基础上,教师可以上台演示解题过程,帮助学生理解和应用;(3)小组合作:把学生分为小组,由小组之间自行出题,相互解题、交流、对答案;(4)现场讨论:在学生自行探索的基础上,由全班一起探讨疑问、分享解题方法,帮助理解和加深记忆。
4.巩固阶段——练习与作业(1)教师布置一定数量的课外作业,要求学生认真完成;(2)教师可以在下节课前设置精品比赛,鼓励学生相互比拼,提高竞争意识和学习兴趣;(3)教师可以上台选派学生出题,让全班进行挑战,巩固所学知识。
教学评价:1.以学生为中心,关注学生的个性化需求和学习状态;2.多采用互动交流的教学方法,促进学生思考与提高;3.注重培养学生的基本能力,尤其是计算和推理能力;4.注重课堂内外的贯通,多元化教学,全面提升学生素质。
第一篇:8.2 消元---解二元一次方程组教学设计教案教学准备1. 教学目标1、掌握代入法解二元一次方程组;2、经历探索二元一次方程组的解法的过程,初步体会“消元”的基本思想. 2. 教学重点/难点教学重点代入消元法解二元一次方程组。
教学难点理解“消元”的基本思想。
3. 教学用具4. 标签教学过程一、情景导入关于本章引言中的篮球比赛的问题,通过前面的学习我们已经知道如果只设一个未知数:设这个队胜了x场,依题意得一个一元一次方程:2x+(10-x)=16 这个方程大家都知道如何解吗?如果设两个未知数:,设胜的场数是x,负的场数是y,可列方程组:那么怎样求这个方程组的解呢?二、代入消元法上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=10说明y=10-x,将第2个方程2x+y=16的y换为10-x,这个方程就化为一元一次方程2x+(10-x)=16。
这就是说,二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程。
这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想. 归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法. 例1 按要求改写下列方程1、x-y=3 (写成用y表示x的形式);2、x-y=3 (写成用x表示y的形式)3、3x-3y=6 (写成用一个未知数表示另一个未知数的形式) 改写方程要根据实际需要或改写成的方程看起来比较简单(特别是符号的处理)。
例2 解方程组:分析:根据消元的思想,解方程组要把两个未知数转化为一个未知数,为此,需要用一个未知数表示另一个未知数。
怎样表示呢?转化成的一元一次方程是什么?解:由①得x=y+3③把③代入②,得3(y+3)-8y=14 解得y=-1 把y=-1代人③得x=2.三、课堂练习:解上面的方程组能消去y吗?试试看。