酸压工艺
- 格式:ppt
- 大小:19.40 MB
- 文档页数:63
液氮伴注酸化压裂工艺介绍酸压( 对于裂缝性储层, 酸压的主要目的是沟通地层的天然裂缝,提高储层的渗流能力) 是解除地层堵塞、沟通天然裂缝系统的有效措施之一, 但在实施过程中常常由于对地层客观认识不足, 对酸液、添加剂选择不当或是设计欠妥, 造成作业后非但不能解除原有堵塞, 反而更进一步加深对储层的伤害。
如果储层中粘土矿物中敏感性成分含量较高, 加之埋藏较深,酸压后残酸中溶解有大量的CaCl2, 使得残酸密度增大, 仅靠地层能量难以达到顺利返排, 残酸滞留于地层引起二次污染的问题比较突出。
为解决这一矛盾, 除在酸液配方上进行优选外, 还采用混注氮气的方法, 来提高残酸自身的返排能力, 降低酸液在裂缝、孔隙中的滞留程度, 实践表明:混气酸化后的自喷返排率比常规酸化有了很大程度的提高, 排液周期明显缩短, 是低渗层酸化助排的理想手段。
1.混注氮气酸压技术1.1 氮气的性质常温常压下, 氮气是一种无色、无味的惰性气体, 不能燃烧, 微溶于液体。
在常压下, 当温度降至- 195.78℃时, 氮气将变为无色透明的液体, 液氮密度为808.23kg/m3, 液氮的体积膨胀比为600: 1, 1m3 液氮可转化为646m3 标准状况下的氮气。
当温度降至- 210℃时, 氮气凝固成雪状的固体。
1.2 混注氮气酸压机理( 1) 保护油层作用酸液与地层流体的不配伍性主要表现在两个方面:与储层中原油接触形成乳化液或酸渣; 与地层水反应生成沉淀,堵塞渗流孔道。
混氮气酸压中注入的前置氮气在一定程度上将地层流体与酸液隔离开来, 避免了原油与酸液形成乳状液, 能够有效避免和减缓酸液与地层流体不配伍所产生的伤害。
(2)降滤失作用混气酸液进入储层后, 由于层内垂向渗透率的非均质差异或多层系统中各层损害程度不一, 前置氮气的转向作用会使氮气优先进入裂缝相对发育的高渗透带, 降低了后续酸液沿高渗带滤失; 分散的气泡在部分裂缝口、喉道、孔隙处聚集, 叠加的贾敏效应大大减小了酸液的滤失; 混注氮气分散于酸液中形成气泡使混合流体的粘度有所增加, 也可提高酸液自身的降滤失能力; 气液两相流动使得液相渗透率降低, 在一定程度上也抑制了酸液滤失。
酸压施工返排残酸在线处理工艺探讨酸压施工是一种常见的工业生产工艺,其过程中产生的废水中含有大量残酸,如果不经过处理排放,会对环境造成严重污染。
对酸压施工返排残酸在线处理工艺进行探讨,对于减少环境污染、提高生产效益具有重要意义。
一、酸压施工返排残酸特点酸压施工是一种利用酸性溶液进行金属表面处理的工艺,其特点是产生大量含酸性物质的废水。
这些废水中主要含有金属离子、酸性物质和其他污染物质,含有大量的残酸,如果未经过处理直接排放,将对环境造成严重危害,加大了废水处理的难度和成本。
二、酸压施工返排残酸处理方式1. 酸压施工废水中残酸的含量较高,处理难度大。
一般采用化学沉淀、中和、氧化还原、沉淀絮凝、浮选、膜分离、离子交换等多种工艺进行处理。
2. 根据不同的酸压施工废水特点,可以采用单一工艺进行处理,也可以采用组合工艺进行处理,提高废水处理效率和降低处理成本。
三、酸压施工返排残酸在线处理工艺1. 化学沉淀法:利用氢氧化钙、氢氧化钠等碱性物质与废水中的残酸发生中和反应生成沉淀物质,从而将残酸去除。
2. 中和法:添加具有中和作用的碱性物质,使废水中的酸性物质中和成盐类物质,降低酸性物质浓度。
3. 活性炭吸附法:利用活性炭的高比表面积和孔隙结构,可以有效吸附废水中的有机物和残酸物质,达到净化水质的目的。
4. 膜分离技术:利用微孔膜、超滤膜、反渗透膜等膜分离技术,将废水中的残酸和其他污染物质分离出来,提高水质纯度。
5. 离子交换技术:利用具有特定功能的离子交换树脂,可以有效去除废水中的金属离子和残酸物质,提高水质净化效果。
四、酸压施工返排残酸在线处理工艺的优缺点1. 化学沉淀法、中和法、活性炭吸附法等工艺简单易行,但废渣处理存在一定难度,对设备要求较高。
2. 膜分离技术、离子交换技术等工艺处理效果好,但投资大、运行成本高,对操作人员素质要求高。
3. 不同的工艺适用于不同的废水处理情况,需要根据实际情况选择合适的工艺进行处理。
常⽤酸化⼯艺常⽤酸化⼯艺酸化⼯艺作为增产措施⾃应⽤于现场以来,为了满⾜不同改造对象和措施作业的要求,酸化⼯艺得到了不断完善和发展,形成了不同的类型酸化⼯艺。
酸化⼯艺按照岩性主要可分为碳酸盐岩和砂岩储层酸化技术。
考虑到⽔平井酸化的特殊性,本部分对⽔平井酸化⼯艺也做了简单介绍。
1. 碳酸盐岩储层酸化⼯艺在碳酸盐岩储层酸化改造中,主要形成和发展了基质酸化技术和压裂酸化技术,习惯上⽤酸化表⽰基质酸化,⽤酸压表⽰压裂酸化。
1) 基质酸化⼯艺基质酸化也称为常规酸化或解堵酸化,如前所述,其基本特征是在施⼯压⼒⼩于储层岩⽯破裂压⼒的条件下,将酸液注⼊储层。
碳酸盐岩基质酸化的重要特征是酸蚀蚓孔的形成和微裂缝的扩⼤,其增产机理与蚓孔密切相关。
2) 酸压⼯艺控制酸压效果的主要参数是酸蚀裂缝导流能⼒和酸蚀缝长。
影响酸蚀缝长的最⼤障碍有:⼀是酸蚀缝长因酸液快速反应⽽受到限制,其次是酸压流体的滤失影响酸压效果。
另外,为产⽣适⾜的导流能⼒,酸必须与裂缝⾯反应并溶解⾜够的储层矿物量。
因此,为了获得好的酸压效果,提⾼裂缝导流能⼒和酸蚀缝长从降低酸压过程中酸液滤失、降低酸-岩反应速度、提⾼酸蚀裂缝导流能⼒等⼏个⽅⾯⼊⼿。
酸压过程中酸液的滤失问题通常考虑从滤失添加剂和⼯艺两⽅⾯着⼿;降低酸-岩反应速率也可以缓速剂的使⽤及⼯艺上来进⾏;加⼊缓速剂,使⽤胶凝酸、乳化酸、泡沫酸和有机酸并结合有效的酸化⼯艺可起到较好的缓速效果;提⾼裂缝导流能⼒可从选择酸液类型和酸化⼯艺着⼿,其原则是有效溶蚀和⾮均匀刻蚀。
压裂酸化⼯艺以能否实现滤失控制,延缓酸-岩反应速度形成长的酸蚀裂缝和⾮均匀刻蚀划分为普通酸压和深度酸压及特殊酸压⼯艺。
(1)普通酸压⼯艺普通酸压⼯艺指以常规酸液直接压开储层的酸化⼯艺。
酸液既是压开储层裂缝的流体,⼜是与储层反应的流体,由于酸液滤失控制差,反应速度较快,有效作⽤距离短,只能对近井地带裂缝系统的改造。
⼀般选⽤于储层污染⽐较严重、堵塞范围较⼤,⽽基质酸化⼯艺不能实现解堵⽬标时选⽤该⼯艺。
酸压工艺在碳酸盐岩储层中的应用——以塔河油田奥陶系储层为例**:***学号:*************:***日期:2007年1月碳酸盐岩作为一种特殊类型的储层,岩石成份复杂,岩性变化差异大,岩石结构及成因特征多种多样。
碳酸盐岩油藏储层通常埋藏深、地温高、非均质性强,储集空间主要以溶洞、溶孔和裂隙为主,孔喉配合度低,连通性差。
酸压储层改造主要通过产生的酸蚀裂缝长度及裂缝的导流能力来提高原油产量。
一、碳酸盐岩酸压的影响因素碳酸盐岩储层酸压增产措施,其控制酸压成功的主要因素有两个:一是最终酸压裂缝的有效长度;二是酸压后酸蚀裂缝的导流能力。
有效裂缝长度是受酸液滤失性、酸岩反应速度以及酸在缝中的流速、酸液类型等的影响。
酸蚀裂缝的导流能力受闭合、酸的溶解力、酸岩反应的酸蚀型态、酸对岩石的绝对溶解量等的影响。
因此碳酸盐岩储层酸压改造为提高酸化效果,追求的两个主要目标就是较长的酸蚀裂缝长度和较高的酸蚀裂缝导流能力。
1. 1酸液滤失是影响酸压效果的关键酸压过程中酸液的滤失直接关系到酸液有效作用距离和裂缝最终导流能力。
酸液是一种反应性流体,其滤失完全不同于压裂液的滤失。
在碳酸盐岩地层的酸压过程中,酸液不停地溶蚀裂缝,选择性地形成蚓孔,使得酸液滤失面积越来越大,一旦射孔形成,几乎全部酸液都流进裂缝壁内的大孔内。
蚓孔的产生和天然裂缝的扩大,会进一步加剧酸液滤失。
1. 2酸液类型对滤失的影响不同类型酸液的滤失效果不同。
实验研究表明(图1),乳化酸的降滤失效果最好,其次为胶凝酸,最差的是常规酸。
从试验后的岩心看,常规酸酸蚀严重,胶凝酸、乳化酸变化不大,这应符合酸液的滤失形态,即乳化酸和高粘酸滤失特性属于“点蚀密集型”,而常规酸的滤失特性属于“溶蚀孔洞型”。
图1、不同酸型的滤失量与时间关系1.3碳酸盐岩酸蚀有效作用距离的影响因素影响碳酸盐岩酸蚀有效作用距离的因素主要有:裂缝宽度、注酸排量和温度。
(1)裂缝宽度。
裂缝宽度越宽,酸蚀有效作用距离越长,由此说明在注酸之前注前置液和高粘酸的重要性。