【配套课件】《创新设计·高考一轮总复习》数学 人教A版(理)第十一篇 第7讲 离散型随机变量的均值与方差
- 格式:ppt
- 大小:1.79 MB
- 文档页数:43
第3 讲随机事件的概率A 级基础演练(时间:30 分钟满分:55 分)一、选择题(每小题 5 分,共20 分)1.把红、黑、蓝、白 4 张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1 张,事件“甲分得红牌”与事件“乙分得红牌”是( ).A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对解析由于甲和乙有可能一人得到红牌,一人得不到红牌,也有可能甲、乙两人都得不到红牌,故两事件为互斥但不对立事件.答案 C2.(2013 ·日照模拟)从一箱产品中随机抽取一件,设事件A={ 抽到一等品},事件B={ 抽到二等品},事件C={抽到三等品} ,且已知P( A)=0.65,P( B)=0.2,P(C )=0.1,则事件“抽到的不是一等品”的概率为( ).A.0.7 B.0.65 C.0.35 D.0.3解析由对立事件可得P=1-P( A)=0.35.答案 C3.(2013 ·海口模拟)盒中装有10 个乒乓球,其中 6 个新球,4 个旧球.不放回地依次取出 2 个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为( ).A. 3 1 5 2 5B.10C.9D.5解析第一次结果一定,盒中仅有9 个乒乓球,5 个新球 4 个旧球,所以第二次也取到新球的概率为5 9.答案 C第 1 页共 6 页4.(2013 ·揭阳二模)把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B |A)等于( ).A. 1 1 1 12 B.4 C.6 D.81解析法一P(B|A)=P ABP A4 1==2.12法二 A 包括的基本事件为{正,正} ,{ 正,反},AB 包括的基本事件为{正,1正} ,因此P(B|A)=2.答案 A二、填空题(每小题 5 分,共10 分)5.对飞机连续射击两次,每次发射一枚炮弹.设A={ 两次都击中飞机} ,B={两次都没击中飞机},C={恰有一次击中飞机} ,D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析设I 为对飞机连续射击两次所发生的所有情况,因为A∩B=?,A∩C =?,B∩C=?,B∩D=?.故A 与B,A 与C,B 与C,B 与D 为彼此互斥事件,而B∩D=?,B∪D=I,故B 与D 互为对立事件.答案 A 与B、A 与C、B 与C、B 与 D B 与D6.(2013 ·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.解析记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C 彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P( A)=1-P( B+C)=1-P( B)-P(C)=1-0.03-0.01=0.96.答案0.96三、解答题(共25 分)7.(12 分)某战士甲射击一次,问:-(不中靶)的概率为多少?(1)若事件A(中靶)的概率为0.95,事件A(2)若事件B(中靶环数大于6)的概率为0.7,那么事件C(中靶环数不大于6)的概率为多少?第 2 页共 6 页解(1)∵事件A(中靶)的概率为0.95,根据对立事件的概率公式得到-A的概率为1-0.95=0.05.(2)由题意知中靶环数大于 6 与中靶环数不大于 6 是对立事件,∵事件B(中靶环数大于6)的概率为0.7,∴事件C(中靶环数不大于6)的概率为1-0.7=0.3.8.(13 分)某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4,且只乘一种交通工具去开会.(1)求他乘火车或乘飞机去开会的概率;(2)求他不乘轮船去开会的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?解(1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.(2)设他不乘轮船去开会的概率为P,则P=1-P(A2)=1-0.2=0.8.(3)由于0.3+0.2=0.5,0.1+0.4=0.5,1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5,故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会.B 级能力突破(时间:30 分钟满分:45 分)一、选择题(每小题 5 分,共10 分)1.甲:A1,A2 是互斥事件;乙:A1,A2 是对立事件.那么( ).A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件解析根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件.第 3 页共 6 页答案 B2.从装有 3 个红球、2 个白球的袋中任取 3 个球,则所取的 3 个球中至少有 1 个白球的概率是( ).A.1 3 3 9 10 B.10 C.5 D.10解析从装有 3 个红球、2 个白球的袋中任取 3 个球通过列举知共有10 个基本事件;所取的 3 个球中至少有 1 个白球的反面为“3 个球均为红色”,有11 9个基本事件,所以所取的 3 个球中至少有 1 个白球的概率是1-=10. 10答案 D二、填空题(每小题 5 分,共10 分)3.某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120 分),并且绘制了条形统计图(如下图所示),则该中学参加本次数学竞赛的人数为________,如果90 分以上(含90 分)获奖,那么获奖的概率大约是________.解析由题图可知,参加本次竞赛的人数为4+6+8+7+5+2=32;90 分以上的人数为7+5+2=14,所以获奖的频率为1432=0.437 5,即本次竞赛获奖的概率大约是0.437 5.答案32 0.437 54.(2013 ·浙江五校联考)在100 件产品中有95 件合格品,5 件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.解析设A={第一次取到不合格品},B={ 第二次取到不合格品},则P( A B)第 4 页共 6 页5× 42C P AB5=2,所以P(B|A)=C P A100CP A100×994 ==5 99100答案4 99三、解答题(共25 分)5.(12 分)(2013 长·春模拟)黄种人群中各种血型的人所占的比如下表所示:血型 A B AB O该血型的人所占比/% 28 29 8 35 已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是 B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一人,其血型为A,B,AB,O 型血的事件分别记为A′,B′,C′,D′,它们是彼此互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O 型血可以输给 B 型血的人,故“可以输给 B 型血的人”为事件B′+D′.根据互斥事件的概率加法公式,有P( B′+D′)=P( B′)+P(D′)=11.+0.35=0.64.(2)法一由于A,AB 型血不能输给 B 型血的人,故“不能输给 B 型血的人”为事件A′+C′,且P(A′+C′)=P( A′)+P( C′)=0.28+0.08=0.36.法二因为事件“其血可以输给 B 型血的人”与事件“其血不能输给 B 型血的人”是对立事件,故由对立事件的概率公式,有P( B′+D′]) =1-P(B′+D′)=1-0.64=0.36.即:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.6.(13 分)(2011 陕·西)如图,A 地到火车站共有两条路径L1 和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各第 5 页共 6 页时间段内的频率如下表:时间(分钟) 10~20 20~30 30~40 40~50 50~60L1 的频率0.1 0.2 0.3 0.2 0.2L2 的频率0 0.1 0.4 0.4 0.1 现甲、乙两人分别有40 分钟和50 分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X 的分布列和数学期望.解(1)A i 表示事件“甲选择路径L i 时,40分钟内赶到火车站”,B i 表示事件“乙选择路径L i 时,50 分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P( A1)>P( A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P( B2)>P( B1),∴乙应选择L2.(2) A,B 分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B 独立,∴P( X=0)=P(AB)=P( A)P(B)=0.4×0.1=0.04,P(X=1)=P(AB+AB)=P(A)P(B)+P( A)P(B)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=P( A) P(B)=0.6×0.9=0.54.∴X 的分布列为X 0 1 2P 0.04 0.42 0.54∴E(X)=0×0.04+1×0.42+2×0.54=1.5.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.第 6 页共 6 页。
第十一篇统计与概率第1讲 抽样方法与总体分布的估计A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·西安质检)对某商店一个月内每天的顾客人数进行了统计, 得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ).A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析 样本共30个,中位数为45+472=46;显然样本数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A. 答案 A2.(2013·南昌模拟)小波一星期的总开支分布如图(a)所示,一星期的食品开支如图(b)所示,则小波一星期的鸡蛋开支占总开支的百分比为( ).A .30%B .10%C .3%D .不能确定解析 由题图(b)可知小波一星期的食品开支共计300元,其中鸡蛋开支30元.又由题图(a)知,一周的食品开支占总开支的30%,则可知一周总开支为 1 000元,所以鸡蛋开支占总开支的百分比为301 000×100%=3%. 答案 C3.(2013·成都模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ). A .101B .808C .1 212D .2 012解析 甲社区驾驶员的抽样比例为1296=18,四个社区驾驶员总人数的抽样比例为12+21+25+43N =101N ,由101N =18,得N =808.答案 B4.(2012·安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错. 答案 C二、填空题(每小题5分,共10分)5.(2013·武夷模拟)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析 设第1组抽取的号码为b ,则第n 组抽取的号码为8(n -1)+b ,∴8×(16-1)+b =126,∴b =6,故第1组抽取的号码为6. 答案 66.(2013·苏州一中月考)某学校为了解学生数学课程的学习情况,在1 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图可估计这1 000名学生在该次数学考试中成绩不低于60分的学生人数是________.解析低于60分学生所占频率为(0.002+0.006+0.012)×10=0.2,故低于60分的学生人数为1 000×0.2=200,所以不低于60分的学生人数为1 000-200=800.答案800三、解答题(共25分)7.(12分)某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.8.(13分)(2012·揭阳调研)某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.解(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.(2013·哈尔滨模拟)一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是().A.13,12 B.13,13C.12,13 D.13,14解析设等差数列{a n}的公差为d(d≠0),a3=8,a1a7=(a3)2=64,(8-2d)(8+4d)=64,(4-d)(2+d)=8,2d-d2=0,又d≠0,故d=2,故样本数据为4,6,8,10,12,14,16,18,20,22,样本的平均数为(4+22)×510=13,中位数为12+142=13,故选B.答案 B2.(2012·江西)样本(x1,x2,…,x n)的平均数为x,样本(y1,y2,…,y m)的平均数为y(x≠y).若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数z=αx+(1-α)y,其中0<α<12,则n,m的大小关系为().A .n <mB .n >mC .n =mD .不能确定解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y ,x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y , ∴n x +m y =(m +n )αx +(m +n )(1-α)y , ∴⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α),于是有n -m =(m +n )[α-(1-α)]=(m +n )(2α-1), ∵0<α<12,∴2α-1<0,∴n -m <0,即m >n . 答案 A二、填空题(每小题5分,共10分)3.(2013·沈阳质检)沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n 的样本,其中高三学生有11人,则n 的值等于________. 解析 由n600+500+550=11550,得n =33(人).答案 334.(2013·北京西城一模)某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是__________________________________________________________________.解析 成绩在[16,18]的学生的人数所占比例为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为120×920=54. 答案 54 三、解答题(共25分)5.(12分)汽车行业是碳排放量比较大的行业之一,欧盟规定,从2012年开始,对CO 2排放量超过130 g/km 的MI 型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI 型品牌的新车各抽取了5辆进行CO 2排放量检测,记录如下(单位:g/km):经测算发现,乙类品牌车CO 2排放量的均值为x 乙=120 g/km. (1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO 2的排放量稳定性好,求x 的取值范围. 解 (1)甲类品牌汽车的CO 2排放量的平均值x 甲=80+110+120+140+1505=120(g/km),甲类品牌汽车的CO 2排放量的方差s 2甲=(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)25=600.(2)由题意知乙类品牌汽车的CO 2排放量的平均值x 乙=100+120+x +y +1605=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的CO2排放量的方差s2乙=(100-120)2+(120-120)2+(x-120)2+(220-x-120)2+(160-120)25,因为乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,所以s2乙<s2甲,解得90<x<130.6.(13分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工(2)的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.解(1)由题意,第5组抽出的号码为22.因为k+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为x=110(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).记“体重为76公斤的职工被抽取”为事件A,它包括的事件有(73,76),(76,78),(76,79),(76,81)共4个.故所求概率为P(A)=410=25.一、选择题(每小题5分,共20分)1.(2012·新课标全国)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅解析A={x|x2-x-2<0}={x|-1<x<2},则B A.答案 B2.(2012·浙江)设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}解析∁U Q={1,2,6},∴P∩(∁U Q)={1,2}.答案 D3.(2012·郑州三模)设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M =().A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案 A4.(2012·长春名校联考)若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅解析∁R A={x|-1≤x≤1},B={y|y≥0},∴(∁R A)∩B={x|0≤x≤1}.答案 C二、填空题(每小题5分,共10分)5.(2013·湘潭模拟)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.解析 ∵3∈B ,又a 2+4≥4,∴a +2=3,∴a =1.答案 16.(2012·天津)集合A ={x ∈R ||x -2|≤5}中的最小整数为________.解析 由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3.答案 -3三、解答题(共25分)7.(12分)若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎨⎧-a =-1+3=2,b =(-1)×3=-3,∴a =-2,b =-3. 8.(13分)已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B .∴2a -1=9或a 2=9,∴a =5或a =-3或a =3.经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9};当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.综上知a =-3.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·南昌一模)已知全集U =R ,函数y =1x 2-4的定义域为M ,N ={x |log 2(x -1)<1},则如图所示阴影部分所表示的集合是 ( ).A .[-2,1)B .[-2,2]C .(-∞,-2)∪[3,+∞)D .(-∞,2) 解析 图中阴影表示的集合是(∁U N )∩M ,又M =(-∞,-2)∪(2,+∞),N =(1,3),(∁U N )=(-∞,1]∪[3,+∞),故(∁U N )∩M =(-∞,-2)∪[3,+∞).答案 C2.(2012·潍坊二模)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}解析 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2]. 答案 B二、填空题(每小题5分,共10分)3.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.解析 ①中-4+(-2)=-6∉A ,所以不正确.②中设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,n 1+n 2∈A ,n 1-n 2∈A ,所以②正确.③令A 1={n |n =3k ,k ∈Z },A 2={n |n =2k ,k ∈Z },3∈A 1,2∈A 2,但是,3+2∉A 1∪A 2,则A 1∪A 2不是闭集合,所以③不正确.答案 ②4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.解析 由6x +1≥1,得x -5x +1≤0,∴-1<x ≤5,∴A ={x |-1<x ≤5}.∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.答案 8三、解答题(共25分)5.(12分)设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系;(2)若B ⊆A ,求实数a 组成的集合C .解 由x 2-8x +15=0,得x =3或x =5.∴A ={3,5}.(1)当a =15时,由15x -1=0,得x =5.∴B ={5},∴B A .(2)∵A ={3,5}且B ⊆A ,∴若B =∅,则方程ax -1=0无解,有a =0.若B ≠∅,则a ≠0,由方程ax -1=0,得x =1a ,∴1a =3或1a =5,即a =13或a =15,∴C =⎩⎨⎧⎭⎬⎫0,13,15. 6.(13分)(2013·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解 (1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵B ∪A =A ,∴B ⊆A ,∴B =∅或B ={2}.当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎨⎧a -1=2,5-a =2,解得a =3. 综上所述,所求a 的取值范围是{a |a ≥3}.。