三棱锥的外接球问题公开课优质课件
- 格式:pptx
- 大小:283.10 KB
- 文档页数:12
特别三棱锥外接球半径的常有求法【方法介绍】
【法一:补形法】
外接球半径等于长方体体对角线的一半
R
6
,S 4 R26 2
注意:图中三棱锥的外接球与长方体外接球是同一个球。
【法二:轴截面法】
1、搜寻底面△ PBC的外心;
2、过底面的外心作底面的垂线;
3、外接球的球心必在该垂线上,利用轴截面计算出球心的地址。
【法三:向量法】
设外接球的球心坐标为:O ( x, y, z) .由 OP OA OB OC 可得:
【方法总结】
三棱锥外接球半径的常见解法:
1、补形法;
2、轴截面法;
3、向量法 .
【练习坚固】
【参照答案】
练习 1【补形法】【轴截面法】
练习 2【补形法】【轴截面法】
练习 3【补形法】
练习 4【轴截面法】。
三棱锥外接球专题引理1:每个三角形都有唯一一个外接圆,设ABC D 外接圆圆心为1O ,半径为2sin 2sin 2sin a b Cr A B C ===(正弦定理)正三角形的外接圆心在中心,r=3(a 为边长),直角三角形的外接圆心在斜边中点,2cr =(c 为斜边长),等腰三角形的外接圆圆心在底边的高上,22a r h =(a 为腰长,h 为底边的高)外接球的处理方式-----先确定一三角形设ABC D (以等边和直角居多),找出圆心为1O 和半径r设外接球球心为O,半径为R.在1AO O D内易证1O O =下面对P 点定位,如图设P 在面ABC D 的射影为1P ,高为h,设射影与小圆的距离为11m PO =,我们摘出平面11PO OP,如下图在OPE D,由勾股定理得222(R m h =+-解得2222222m h r R r h+-=+注:如果PABC 都在同一个半球,上述公式有平方,公式仍然不变。
所以我们努力的方向是找到这个截面(截面一般会包含三棱锥的一个顶点)后面就是水到成渠。
如果非要记公式的话可以努力找到h,m 套公式即可。
高中阶段都会有特殊的三角形特殊位置下面简单归类第一类;有线面垂直的---如图PA ABC^面此时m=r,h=PA.22222222h+r 22m h r R r h+-=+=,由此引出补形法,有线面垂直即可补成直三棱柱求解如上右图。
三棱柱不熟也可以用补成长方体(不过要求底面有直角)1.已知ABC △中,90,B DC ∠=︒⊥平面,4,5,3ABC AB BC CD ===,则三棱锥D ABC -的外接球表面积为()A.50π3B.25πC.50πD.1252π3解析:由已知条件可构造一个长方体,长方体的外接球过,,,A B C D 四点,所以长方体的外接球即三棱锥D ABC -的外接球,得外接球直径250R AD ==,外接球表面积为24π50πR =,故选:C.法二:三棱柱中,22222114522350()24r AC R r ==+=+=2.在四面体S ABC -中,SA ⊥平面,120,4,ABC BAC BC SA ∠=︒==则该四面体的外接球的表面积为.(底面无直角补成三棱柱)3.在三棱锥ABC P -中,222==AB AC ,10=BC ,90=∠APC ,平面⊥ABC 平面PAC ,则三棱锥ABC P -外接球的表面积为()找线面垂直补形即可,跟上面一样A.4πB.5πC.8πD.10π3.所以PC ⊥平面PAB ,所以90CPB ∠=︒,故该外接球的半径等于||22BC =,所以球的表面积为224πR 4π(10π2S ==⋅=,故选D。