数列真题与预赛典型例题集答案
- 格式:doc
- 大小:1.50 MB
- 文档页数:42
强力推荐人教版数学高中必修5习题第二章 数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43C .21D . 83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ).A .1B .-1C .2D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值是( ). A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9 二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列.18.设{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2 S n (n =1,2,3…). 求证:数列{nS n }是等比数列.20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.第二章 数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C .解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若+s =p +q ,则a +a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,(第6题)∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=x x 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题 17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n ... .. ..参考材料 19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =n S n 2. 故{nS n }是以2为公比的等比数列. 20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0,∴q 3=-41或q 3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -. ∴12S 3,S 6,S 12-S 6成等比数列.。
1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值. 3 .已知函数xab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++ (1)2n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
强力推荐人教版数学高中必修5习题第二章数列1 . 孔}是首项a1= 1, 公差为d =3的等差数列,如果a n =2 005, 则序号n 等千().A. 667B. 668C. 669D. 6702. 在各项都为正数的等比数列{孔}中,首项a1= 3 f前三项和为21I则a3+ a4 + a s = ( ). A. 33B. 72C. 84D. 1893. 如果a1,a2, …,as 为各项都大千零的等差数列,公差d-:t-0,则().A.a泣s > a 泣5B.a也s < a 泣5C . a 1+as < a4 + a s D . a 1as= a 泣54. 已知方程(Jf -2x+ m )(烂-2x+ n ) = 0的四个根组成一个首项为-的等差数列,则4 Im-n I 等于().A. 13-4B 1_2c D. 3-85. 等比数列{孔}中,a2= 9 , as = 243 , 则{动的前4项和为(). A. 81B. 120C. 168D. 1926. 若数列a 动是等差数列,首项a1> 0, B2 003 + a2 004 > 0 , a2 003·a2 004 < 0 , 则使前n项和Sn>0成立的最大自然数E=In 定:().A. 4 005B. 4 006C. 4 007D. 4 0087. 已知等差数列{劲的公差为2,若a1, a3 , a4成等比数列则a2=().A. -4B. -6C. -8D. -108. 设岛是等差数列{劲的前n项和,若化=5 S ——,贝u----2...= ()a 39 S 5A. 1 B . -1C.2 l-2.D 9. 已知数列-l,a1,a2-4成等差数列-1 a — 2 aII纺,纺,�/-4成等比数列,则]的值是(b 2)1_2. A l -2 . B l -2 或l -2 . cl-4. D 10. 在等差数列{孔}中,a n t:-0,a n -l -a�+ a n +l = O (n�2), 若S2n -l = 38 , 则n =( ) .A. 38B. 20C. 10D.9二、填空题11 . 设心= 1,利用课本中推导等差数列前n 项和公式的方法,可求得I(-5) + I(-4) + ... + f(O) +…+ /(5) 2勹一五+ /(6)的值为12. 已知等比数列{动中,(1)若a3盆·as =8, 则a2·务函岔兔=(2)若a1+ a2 = 324 , a3 + a4 = 36 , 则as+a 产(3)若S4=2,Ss =6,则a17+ a1s + a19 + a20 = 8 2713 . 在-和—之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为14. 在等差数列{孔}中,3(a 产生)+ 2(动+a10 + a13) = 2 4 , 则此数列前13项之和为15 . 在等差数列{孔}中,as =3,a6= -2, 则a4+as+…+a10 =16. 设平面内有n 条直线(n�3)/其中有且仅有两条直线互相平行,任意三条直线不过同—点.若用杯)表示这n 条直线交点的个数,则私)=三、解答题;当n>4时,杯)=17 . (1)已知数列{孔}的前n 项和S n =3rF -2n,求证数列{孔}成等差数列(2)已知1 1 1 — —, -成等差数列,求证b+cc+a a+b也成等差数列abcab c18. 设{孔}是公比为q的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{如是以2为首项,q为公差的等差数列,其前n项和为S n,当n�2时,比较岛与幻的大小,并说明理由.19. 数列{孔}的前n项和记为S n,已知a1= 1 求证:数列{二}是等比数列.n+2, an+ 1 = Sn(n = 1 , 2 , 3 ...) .20. 已知数列{孔}是首项为a且公比不等于1的等比数列,岛为其前n项和,a1/ 2句,3a4成等差数列,求证:1253 / 55 / 512 -55成等比数列第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1 +(n -l)d, 即2005 = 1 +3(n -1) ,.·.n = 699 .2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{孔}的公比为q(q>0) /由题意得a1+ a2 +a3 = 21 ,即a1(l+ q+矿)= 21, 又a1=3,:.l+q+矿=7.解得q=2或q=-3(不合题意,舍去),.岛+函+a s=a1矿(1+ q+矿)= 3x2奴7=84.3.B.解析:由a1+as=a4+a s,才非除C.又a1岔=a1(a1 +7动=a产+7 a1d,a4· 无=(a1 +3功(a1+ 4动=a产+7 a1d + 12d > a1·as .4.C解析:1解法1:设a1= , a尸1 1 1— —+ d, a3 = -+ 2d, a4 =—+3d, 而方程烂-2x+m=O中两根之和为2烂-2x+n=O4 4 4 4中两根之和也为2,.a1 +a2 +a3 +函=1+6d=4,7 3 5:.d=—, a1 =—, a4=—是一个方程的两个根,a1=—, a产—是另一个方程的两个根.2 4 4 4 47 15.-. —, —分别为m或n,1616.-. Im -n I =_!_, 故选C .2解法2:设方程的四个根为X 1, X2 , X3 , X4 , 且X 1+X2=X3+X4=2 IX1为=m ,X3凶=n.由等差数列的性质:若等差数列为,1 3 5 7 4 4 4 4715 :.m =—, n =— 1616+s =p +q ,则a7+ a s = a p+ a q /若设X1为第—项,X 2必为第四项,则X2=—,千是可得4.-. Im -n I.1-25.B解析:a2 = 9 , as = 243 , 生-=矿=—-243 =27 a 29.·.q = 3 I a1q = 9 I a1 = 3 I S 4= 3—35=严=120l —326. B 解析:解法1:由a2003 + a 2 004 > 0 , a2 003·a2 004 < 0 , 知a2003和a2004两项中有—正数—负数,又a1> 0 /则公差为负数,否则各项总为正数,故a2003 > a2 004 , 即a2003 > 0 , a2 004 < 0.4 006(a1+a 4 006 )4 006(a +a ).-. 54 006 ==2 003 2 004 > O ,224 0074 007 :.S4 007 =·(a1+ a4 007) =·2a2 004 < 0 , 22 故4006为S n>0的最大自然数选B.解法2:由a1> 0 , a2 003 + a2 004 > 0 , a2 003·a2 004 < 0 ,同解法1的分析得a2003 >0 , a2 004 < 0 ,.·.S2 003为岛中的最大值.I(第6题)岛是关于n的二次函数,如草图所示,.2 003到对称轴的距离比2004到对称轴的距离小,4 007.在对称轴的右侧.根据已知条件及图象的对称性可得4006在图象中右侧零点B的左侧,4007 I4 008都在其右侧,S n >0的最大自然数是4006.7.B解析:了{孔}是等差数列,..岔=a1 + 4 , a4 = a1 + 6 , 又由a1, a 3, a4成等比数列,..(a1 + 4)2 = a1(a1 + 6) , 解得a 1= -8 t .a 2 = -8 + 2 = -6 . 8.AA 选, 1 __ 5-9 9-5 = 53 a a .. 95 __ 、丿、晶,丿95 a a +2+2a l a _ (( 95 __ s 9-i ·' .. 析解9.A解析:设d和q分别为公差和公比,则-4 = -1 + 3d且-4 = (-1) cf / .d = -1 , 矿=2,a -a .2 I d l ..= =— 九-矿210. C解析:{孔}为等差数列,a�= an-l + an+l, .·.a�= 2an, 又BntO, ."孔=2 / {孔}为常数数列,s2n-138而a n =I即2n -1 =—= 19,2n -12:.n = 10二、填空题11. 3五.解析:了伈劝=2勹一五2x.f(_l -劝=1 =2x=✓2 i 1-x 十五2+✓2·2x 忒+2XI·2x l + 1.y1(✓2+ 2x)伈店-劝=1+✓2=✓2 =✓2五+2x迈+2x五+2x丘+2x设S =I(_ -5) +/(_ -4) +…+和)+…+朽)+秅),贝U 5 = /(_6) + /(_5) +…+ f(_O) +…+ I(_ -4) + I(_ -5):.2S = [/(_6) + I(_ -5)] +团5)+ /(_ -4)] +…+ [/(_ -5) +秅)] = 6✓2..S = I(_ -5) + /(_ -4) + ... +和)+…+朽)+秅)=3五.12 . (1) 32 ; (2) 4 ; (3) 32 . 解析:(1)由a3岔=Q�/得a4= 2I_2__ :.a2·a3·a4·a5·a6 = a 5 = 32. (2) {a , + a , �324⇒ 矿=丿(a, +aJ 矿=369 I.岛+a6= (a1 + a2)才=4.(3){义�a 三+a ,+a 4�24⇒旷�2'S 8=a 1+a 2+· · ·+a 8=S 4+S 4q:.a 17 + a 1s + a19 + a20 = S4泸=32.13 . 216 .8 27解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与-,—同号,由等比中项的中间数为厂产=6I ..插入的三个数之积为汇竺x6= 216. 3 23214. 26.解析:·.岔+a s =2a4, 句+au =2a10, :.6(a4 + a 10) = 24 , a4 + a 10 = 4 , :.S 13 =13(a 1+a 13) 13(a 4+a 10) 13X42 = 2 = 2= 26. 15 . -49. 解析:·:d =a 6 -a s = -5 , .·.a4 +a s+…+ a10 =7(a 4+a 10)_ 7(a 5—d+a 5+5d) =7(a s +2动= -49.16. 5, —(n + l)(n-2) . 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,.f(k)=f(k-1) + (k-1)由/(3)= 2/(4) = /(3) + 3 = 2 + 3 = 5 , /(5) = /(4) + 4 = 2 + 3 + 4 = 9 ,f(n) = f(n -1) + (n -1), 相加得杯)=2+3+4+ 三、解答题1…+ (n -1) =—(n + l)(n -2) . 2 17. 分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1) n= 1时,a1=51=3-2=1,当n�2时,a n =S n -S n _ 1 = 3 ff -2 n -[3(n -1)2 -2(n -1)] = 6n -5 n=l 时,亦满足,:.a n =6n -S(nE N *) .首项a1= 1 ,a n -a n -1 = 6n -5 -[6(n -1) -5] = 6(常数)(nEN*),.数列{动成等差数列且a1= 1, 公差为6.(2) .. 1 1 1 , 成等差数列,a b c 2 1 1 :. —=-+-化简得2a c =以a +CJ b a cb+c a+b += bc+c 2+a 2+ab b(a+c)+a 2+c 2 (a+c)2 (a+c)2 a+c = = = = 2a C ac acac b(a+c) b . b+c c+a a+b, 也成等差数列.a bc 18. 解:(1)由题设2a3= a1 + a2 , 即2a心=a1 + a1q, :a1-:t-O, :.2矿-q -1=0,:.q= 1或-—.12(2)若q=1, 则S n =2n+= n(n —I) n 2+3n 2 2当n�2时,S -b n = S n -(n —1) (n+2)n 1=>O, 故S n >b n .若q = 2I n(n 1),则S n =2n + l —n +9n -—(-—) =2 2 2 4. 当n�2时,S n -炕=S n -1 =, (n —I) (IO —n)2故对于nEN+,当2匀区9时,S 户肛;当n =10时,S n =b n ; 当n�ll时,S n <b n . 19. 证明...n+2 .. a n +i = Sn+l -S n I a n +i = nS n I .·.(n + 2)S n = n(S n +l -S n ),整理得nS n +l = 2(n + 1) S n , s 所以n +l 2S n n+I n s 故{二}是以2为公比的等比数列.20. 证明:由a1/ 2句,3a4成等差数列,得4句=a1 + 3a4, 即4a1cf = a1 + 3a1矿,变形得(4矿+1)(矿-1) = 0 , 1 矿=--或矿=1(舍).4 吓-矿)由戈=1-q = l+q 3 =上12S 3 12a, (1-矿)12 16 1—qa l (l —q '2) S ,2-S 6 =旯l —q 1-1= -1=1+ -1=—·# s 6 s 6 a , (1—q 勹得戈=凡-S 6. 12S 3 S 61-q .12S3 I S5 I S12 -吴成等比数列.16。
【最新】数学《数列》专题解析一、选择题1.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L ()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.2.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤15=斤,1斤16=两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( ) A .9两 B .266127两 C .26663两 D .250127两 【答案】B 【解析】 【分析】先计算出银的质量为266两,设分银最少的为a 两,由题意可知7人的分银量构成首项为a ,公比为2的等比数列,利用等比数列的求和公式可求得a 的值.【详解】共有银161610266⨯+=两,设分银最少的为a 两,则7人的分银量构成首项为a ,公比为2的等比数列,故有()71226612a -=-,所以266127a =, 故选:B . 【点睛】本题以元代数学家朱世杰在《算学启蒙》中提出的问题为背景,贴近生活,考查了等比数列的求和问题,本题注重考查考生的阅读理解能力、提取信息能力、数学建模能力以及通过计算解决问题的能力,属中等题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.5.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.6.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.7.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知:()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.8.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( ) A .11121n +--B .1121n -+ C .1121n-+ D .1121n -- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------,则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是:1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.9.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.10.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35B .33C .31D .29【答案】C 【解析】试题分析:由题意得,设等比数列的公比为q ,则2231112a a a q a q a =⋅=,所以42a =,又3474452224a a a a q +=+=⨯,解得11,162q a ==,所以5515116(1())(1)2311112a q S q --===--,故选C . 考点:等比数列的通项公式及性质.11.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.12.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去)故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( )A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<.这样569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.17.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n -+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.18.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d <②110S <③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( )A .2B .3C .4D .5【答案】B【解析】【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定.【详解】 Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确;Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大, ∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>,∴③⑤正确,②错误.故选:B .【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】 先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。
数列解答题专题训练1 班级_________姓名__________日期:1.已知正项数列}{n a 的前n 项和为n S ,321=a ,且满足211322++=+n n n a S S )(*N n ∈. (1)求数列}{n a 通项公式n a ; (2)求证:当2≥n 时,2222234111194n a a a a ++++<。
解:(1)1≥n 时, 211322++=+n n n a S S ……………①2≥n 时,21322n n n a S S =+-…………………②………………………1分2≥n 时,①-②得:3221=++n n a a )(221n n a a -+∵0>n a ∴01>++n n a a ,321=-+n n a a ……………3分令2=n ,2223322)32(2a a =⨯++∵02>a ∴342=a 2≥n 时,n n a n 3232)2(34=⨯-+=又321=a ∴)(32*N n n a n ∈=………………………6分(2)当2≥n 时,左边222291111()4234n=++++91111[]4122334(1)n n<++++⨯⨯⨯- 91111111(1)4223341n n =-+-+-++-- 49)11(49<-=n ∴当2≥n 时,2222311194n a a a +++<2.在数列{}n a 中,311=a ,并且对于任意*∈N n ,且1>n ,都有n n n n a a a a -=⋅--11成立,令()*∈=N n a b nn 1.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)求数列⎭⎬⎫⎩⎨⎧n a n 的前n 项和n T ,若对于任意的正整数n 都有n T ≥m 成立,试求常数m 的最大值.解:(I ),31,111===a b n 时当 111,21111=⋅-=-=-≥----n n n n n n n n a a a a a a b b n 时当, ∴数列}{n b 是首项为3,公差为1的等差数列,∴数列}{n b 的通项公式为2+=n b n .(II)11111()(2)22n n a n nb n n n n ===-++,∴31121231n n n aa a a a T n n -=+++++-1111111111[(1)()()()()]232435112n n n n =-+-+-++-+--++ 1311[()]2212n n =-+++ 又 ()()03111>++=-+n n T T n n , 故 n T 的最小值为311=T ,从而所求m 最大值为31.1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(1)求数列}{n a 和}{n b 的通项公式; (2)设nnn b a c =,求数列}{n c 的前n 项和n T 。
数列考试题型及答案详解一、选择题1. 已知数列{a_n}的通项公式为a_n = 2^n - 1,下列关于该数列的说法正确的是:A. 数列{a_n}是等差数列B. 数列{a_n}是等比数列C. 数列{a_n}的前n项和为2^(n+1) - n - 2D. 数列{a_n}的前n项和为2^(n+1) - 2答案:B2. 若数列{a_n}的前n项和S_n = 3n^2 + 2n,求a_5的值。
A. 33B. 35C. 37D. 39答案:A二、填空题3. 已知数列{a_n}满足a_1 = 1,a_(n+1) = 2a_n + 1,求a_3的值。
答案:94. 若数列{a_n}的通项公式为a_n = n^2 - 4n + 3,求该数列的前4项和。
答案:-4三、解答题5. 已知数列{a_n}的前n项和S_n = n^2 + 2n,求该数列的通项公式。
解:由题意知S_n = n^2 + 2n,当n≥2时,a_n = S_n - S_(n-1) = (n^2 + 2n) - [(n-1)^2 + 2(n-1)] = 2n + 1。
又a_1 = S_1 = 3,符合上式,故a_n = 2n + 1。
6. 已知数列{a_n}满足a_1 = 2,a_(n+1) = 3a_n + 2,求该数列的前5项。
解:根据递推关系,我们可以依次计算出数列的前5项:a_1 = 2a_2 = 3a_1 + 2 = 3*2 + 2 = 8a_3 = 3a_2 + 2 = 3*8 + 2 = 26a_4 = 3a_3 + 2 = 3*26 + 2 = 80a_5 = 3a_4 + 2 = 3*80 + 2 = 242综上,数列{a_n}的前5项分别为2, 8, 26, 80, 242。
数列试题及答案数列是数学中的一种重要概念,通过研究和分析数列可以揭示出其中的规律和特点。
下面将介绍几道常见的数列试题,并给出详细的解答。
1. 试题一已知数列{an}满足an = 3n - 1,求前10项的和Sn。
解答:首先我们可以算出数列的前10项:a1 = 3(1) - 1 = 2a2 = 3(2) - 1 = 5a3 = 3(3) - 1 = 8...a10 = 3(10) - 1 = 29然后求和:Sn = a1 + a2 + a3 + ... + a10= 2 + 5 + 8 + ... + 29观察可知,每一项等于前一项加上3,因此可以利用等差数列的求和公式求解:Sn = (a1 + a10) * 10 / 2= (2 + 29) * 10 / 2= 31 * 5= 155所以,前10项的和Sn = 155。
2. 试题二给定数列{bn}的前4项为1,3,9,27,请写出该数列的通项公式。
解答:观察可知,每一项等于前一项乘以3,因此可以得出该数列的通项公式为:bn = 3^(n-1)其中,n为项数。
根据该公式可求得后续项。
3. 试题三已知数列{cn}满足c1 = 1,c2 = 2,c3 = 4,且每一项等于前两项之和。
求该数列的第10项。
解答:根据题意,数列的第4项开始每一项等于前两项之和:c4 = c3 + c2 = 4 + 2 = 6c5 = c4 + c3 = 6 + 4 = 10c6 = c5 + c4 = 10 + 6 = 16...通过计算可以得出数列的前10项如下:c1 = 1c2 = 2c3 = 4c4 = 6c5 = 10c6 = 16c7 = 26c8 = 42c9 = 68c10 = 110所以,该数列的第10项为c10 = 110。
4. 试题四已知等差数列{dn}的前4项为2,5,8,11,请写出该数列的通项公式,并求第n项。
解答:观察可知,公差为3,首项为2,因此该等差数列的通项公式为:dn = 2 + 3(n-1)其中,n为项数。
关于数列的真题和答案解析数列是数学中一个重要的概念,它在微积分、代数、概率论等各个领域都有广泛的应用。
在学习数列的过程中,经常会遇到一些真题,这些真题既可以帮助我们检验自己的掌握程度,也可以通过解析来进一步巩固和深化对数列的理解。
下面将通过解析几道典型的数列题目,帮助读者更好地掌握数列的相关知识。
题目一:已知数列 {an} 的前四项分别为 2,4,6,8,且恒有 an+2 =an + 2。
求该数列的通项公式。
解析:根据已知条件,数列的首项为 a1 = 2,公差为 d = a2 - a1 =4 - 2 = 2。
根据等差数列的通项公式 an = a1 + (n - 1) * d,代入已知的 a1 和 d,得到 an = 2 + (n - 1) * 2 = 2n。
因此,数列的通项公式为 an = 2n。
题目二:已知数列 {bn} 的前两项分别为 1/4,1/2,且恒有 bn+1 = (bn + 1) / 2。
求该数列的通项公式。
解析:根据已知条件,数列的首项为 b1 = 1/4,公比为 q = b2 / b1= (1/2) / (1/4) = 2。
根据等比数列的通项公式 bn = b1 * q^(n-1),代入已知的 b1 和 q,得到 bn = (1/4) * 2^(n-1) = 2^(n-3)。
因此,数列的通项公式为 bn = 2^(n-3)。
题目三:已知数列 {cn} 为等差数列,且前四项的和为 32,前五项的和为 50。
求该数列的通项公式。
解析:设数列的首项为 c1,公差为 d。
根据已知条件,得到:c1 + (c1 + d) + (c1 + 2d) + (c1 + 3d) = 32c1 + (c1 + d) + (c1 + 2d) + (c1 + 3d) + (c1 + 4d) = 50通过联立这两个方程,可以求解得到 c1 = 5,d = 3。
所以数列的通项公式为 cn = 5 + (n - 1) * 3 = 2n + 3。
数列真题汇编与预赛典型例题1.【2018年全国联赛】设整数数列满足,且,则这样的数列的个数为 .2.【2017年全国联赛】设两个严格递增的正整数数列满足,对任意正整数n,有。
则的所有可能值为___________。
3.【2016年全国联赛】设为1,2,…,100中的四个互不相同的数,满足.则这样的有序数组的个数为_______ _.4.【2014年全国联赛】已知数列满足.则___________. 【2013年全国联赛】已知数列共有九项,其中,,且对每个,均有. 5.则这样的数列的个数为______.6.【2011年全国联赛】已知.则数列中整数项的个数为_____ _.7.【2010年全国联赛】已知是公差不为0的等差数列,是等比数列,其中,,且存在常数使得对每一个正整数都有.则________.8.【2019年全国联赛】设整数满足.记.求f的最小值.并确定使f=f0成立的数组的个数.9.【2018年全国联赛】已知实数列满足:对任意正整数n,有,其中S n表示数列的前n项和,证明:(1)对任意正整数n,有;(2)对任意正整数n,有.10.【2018年全国联赛】数列定义如下:a1是任意正整数,对整数n≥1,a n+1是与互素,且不等于的最小正整数.证明:每个正整数均在数列中出现.11.【2017年全国联赛】设数列定义为求满足的正整数r的个数。
12.【2016年全国联赛】设p与p + 2均为素数,p > 3.定义数列,其中,表示不小于实数x的最小整数.证明对,均有.13.【2014年全国联赛】已知数列满足.求正整数m使得.14.【2013年全国联赛】给定正数数列满足,,其中,.证明:存在常数,使得.15.【2013年全国联赛】给定正整数.数列定义如下:,对整数,.记.证明:数列中有无穷多项是完全平方数.16.【2012年全国联赛】已知数列的各项均为非零实数,且对于任意的正整数都有.(1)当时,求所有满足条件的三项组成的数列.(2)是否存在满足条件的无穷数列,使得若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由.17.【2011年全国联赛】 已知数列{}n a 满足:()123,1a t t R t =-∈≠±,()()()112321121n n n n n n t a t t a n N a t +++-+--=∈+-.(1)求数列{}n a 的通项公式; (2)若0t >,试比较1n a +与n a 的大小. 18.【2011年全国联赛】证明:对任意整数,存在一个次多项式具体如下性质: (1)均为正整数;(2)对任意的正整数及任意个互不相同的正整数,均有.19.【2011年全国联赛】设是给定的正实数,.对任意正实数,满足的三元数组的个数记为.证明:.20.【2010年全国联赛】证明:方程恰有一个实数根,且存在唯一的严格递增正整数数列,使得.21.【2010年全国联赛】给定整数,设正实数满足,记.求证:.22.【2009年全国联赛】已知是实数,方程有两个实根,数列满足).(1)求数列的通项公式(用表示);(2)若,求的前项和.23.【2009年全国联赛】在非负数构成的数表中,每行的数互不相同,前六列中每列的三数之和为1,均大于1.如果的前三列构成的数表满足下面的性质:对于数表中的任意一列)均存在某个使得.①求证:(1)最小值)一定去自数表的不同列;(2)存在数表中唯一的一列)使得数表仍然具有性质().1.【2018年湖南预赛】如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设是第n次挖去的小三角形面积之和(如是第1次挖去的中间小三角形面积,是第2次挖去的三个小三角形面积之和),则前n次挖去的所有小三角形面积之和的值为____________________.2.【2016年吉林预赛】在公差不为0的等差数列中,,且成等比数列.则数列的通项公式为________.3.【2016年上海预赛】数列定义如下:,则____ _______。
4.【2016年上海预赛】设为正整数1,2,···,2014的一个排列。
记。
则中奇数个数的最大值为___________。
5.【2016年浙江预赛】已知数列满足。
则__________。
6.【2018年甘肃预赛】已知数列满足,则数列的通项公式是______.7.【2018年吉林预赛】在数列中,若,则称为“等方差数列”.下列是对“等方差数列”的判断:①数列是等方差数列;②若是等方差数列,则是等差数列;③若是等方差数列,则,k为常数)也是等方差数列;④若既是等方差数列,又是等差数列,则该数列为常数列.其中正确的命题序号为________.(将所有正确的命题序号填在横线上)8.【2018年河北预赛】欲登上7阶楼梯,某人可以每步跨上两阶楼梯,也可以每步跨上一阶楼梯,则共有_____种上楼梯的方法.9.【2018年浙江预赛】设数列满足, (n=1,2,…),则________. 10.【2018年江西预赛】正整数数列满足满足.在中两数列的公共项的个数是______.11.【2018年浙江预赛】设实数x1,x2,…,x2018满足(n=1,2,…,2016)和,证明:.12.【2018年山西预赛】已知在正整数n的各位数字中,共含有个1,个2,⋯,个n.证明:并确定使等号成立的条件.13.【2018年浙江预赛】将2n()个不同整数分成两组a1,a2,…,a n;b1,b2,…,b n.证明:14.【2018年贵州预赛】证明:(1)(k≥2,k∈N);(2)分别以1,,……,,……为边长的正方形能互不重叠地全部放入一个边长为的正方形内.15.【2018年广西预赛】设,数列满足,求数列的前n项和.16.【2016年河南预赛】定义数列.证明:(1)为整数数列;(2)为完全平方数。
17.【2016年甘肃预赛】设数列的前n项和为,点的图像上.(1)求数列的通项公式;(2)求,且对任意的正整数n,均有.证明:对任意,总有.18.【2016年福建预赛】已知数列{a n}的前n项和S n=2a n-2(n∈Z+).(1)求通项公式a n;(2)设为数列{b n}的前n项和,求正整数k,使得对任意的n∈Z+,均有T4≥T n;(3)设,R n为数列{c n}的前n项和,若对任意的n∈Z+,均有R n<λ,求λ的最小值.19.【2016年山东预赛】已知数列满足.证明:在中,最少可以找到672个无理数.20.【2016年安徽预赛】已知数列满足用数学归纳法证明:.数列真题汇编与预赛典型例题答案1.【2018年全国联赛】设整数数列满足,且,则这样的数列的个数为 .【答案】80【解析】设,则有,①.②用t表示中值为2的项数.由②知t也是中值为2的项数,其中t∈{0,1,2,3}.因此的取法数为.取定后,任意指定的值,有22=4种方式.最后由①知,应取使得为偶数,这样的b1的取法是唯一的,并且确定了整数a1的值,进而数列唯一对应一个满足条件的数列.综上可知,满足条件的数列的个数为20×4=80.2.【2017年全国联赛】设两个严格递增的正整数数列满足,对任意正整数n,有。
则的所有可能值为___________。
【答案】13、20【解析】由条件,知均为正整数,且。
由于,故.反复运用数列的递推关系知,。
而,故①注意到,则②当时,式①②分别化为无解。
当时,式①②分别化为得到唯一的正整数,此时。
当时,式①②分别化为:,得到唯一的正整数此时综上,的所有可能值为13、20。
故答案为:13、203.【2016年全国联赛】设为1,2,…,100中的四个互不相同的数,满足.则这样的有序数组的个数为________.【答案】40【解析】由柯西不等式知,等号成立的充分必要条件为:,即成等比数列.于是,问题等价于计算满足的等比数列的个数.设等比数列的公比,且.记,其中,m、n为互素的正整数,且.先考虑的情形.此时,.注意到,互素,故.相应地,分别等于,它们均为正整数.这表明,对任意给定的,满足条件并以q为公比的等比数列的个数,即为满足不等式的正整数l的个数,即.由于,故仅需考虑的情形,相应的等比数列的个数之和为.当时,由对称性,知亦有20个满足条件的等比数列.综上,共有40个满足条件的有序数组4.【2014年全国联赛】已知数列满足.则___________. 【答案】【解析】由题意知记数列的前n项和为.则.上面两式相减得故.【2013年全国联赛】已知数列共有九项,其中,,且对每个,均有. 5.则这样的数列的个数为______.【答案】491【解析】令.则对每个符合条件的数列,满足条件,且.反之,由符合上述条件的八项数列可唯一确定一个符合题设条件的九项数列.记符合条件的数列的个数为.显然,中有;从而,有个2,个1.当给定时,的取法有种,易见的可能值只有0、1、2,故.因此,由对应原理,知符合条件的数列的个数为491.6.【2011年全国联赛】已知.则数列中整数项的个数为______. 【答案】15【解析】注意到.要使为整数,必有均为整数,即.当时,均为非负整数.所以,为整数,共有14个.当时,,在中,中因数2的个数为.同理,可计算得中因数2的个数为82,中因数2的个数为110.故中因数2的个数为.从而,是整数.当时,.同理,中因数2的个数小于10.从而,不是整数.因此,整数项的个数为.故答案为:157.【2010年全国联赛】已知是公差不为0的等差数列,是等比数列,其中,,且存在常数使得对每一个正整数都有.则________.【答案】【解析】设的公差为的公比为.则解得.从而对一切正整数都成立.于是,.解得.8.【2019年全国联赛】设整数满足.记.求f的最小值.并确定使f=f0成立的数组的个数.【答案】答案见解析【解析】取最小值时.每个或1,.设中,n有个.则任意.令,则.由隔板法的解数为.因此所求有个,最小值.9.【2018年全国联赛】已知实数列满足:对任意正整数n,有,其中S n表示数列的前n项和,证明:(1)对任意正整数n,有;(2)对任意正整数n,有.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)约定.由条件知,对任意正整数n,有.从而,即(当n=0时亦成立).显然,.(2)仅需考虑同号的情况.不失一般性,可设均为正(否则将数列各项同时变为相反数,仍满足条件),则,故必有,此时,从而.10.【2018年全国联赛】数列定义如下:a1是任意正整数,对整数n≥1,a n+1是与互素,且不等于的最小正整数.证明:每个正整数均在数列中出现.【答案】证明见解析【解析】显然a1=1或a2=1.下面考虑整数m>1,设m有k个不同素因子,我们对k归纳证明m在中出现.记.k=1时,m是素数方幂,设,其中,p是素数.假设m不在中出现.由于各项互不相同,因此存在正整数N,当n≥N时,都有.若对某个n≥N,,那么与Sn互素,又中无一项是,故由数列定义知,但是,矛盾!因此对每个n≥N,都有.但由及知,从而a n+1与S n不互素,这与a n+1的定义矛盾.假设k≥2,且结论对k-1成立.设m的标准分解为.假设m不在中出现,于是存在正整数N',当n≥N'时,都有.取充分大的正整数,使得.我们证明,对n≥N',有.对任意n≥N',若S n与互素,则m与S n互素,又m在中均未出现,而,这与数列的定义矛盾.因此我们推出:对任意n≥N',S n与不互素.(*)情形1.若存在,使得,因,故,从而(因). 情形2.若对每个,均有,则由(*)知必有.于是,进而,即.故由(*)知,存在,使得,再由及前面的假设,可知,故.因此对n≥N'+1,均有,而,故M不在中出现,这与归纳假设矛盾.因此,若m有k 个不同素因子,则m一定在中出现.由数学归纳法知,所有正整数均在中出现.11.【2017年全国联赛】设数列定义为求满足的正整数r的个数。