电力系统的谐波产生的原因
- 格式:doc
- 大小:34.00 KB
- 文档页数:8
电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。
那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。
简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。
这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。
谐波的产生原因是多种多样的。
其中,电力电子设备的广泛应用是主要原因之一。
例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。
此外,电弧炉、电焊机等非线性负载也会产生谐波。
那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。
例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。
另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。
同时,谐波还会对通信系统产生干扰,影响通信质量。
既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。
无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。
无源滤波器结构简单、成本较低,但存在一些局限性。
例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。
有源滤波则是一种较为先进的谐波治理技术。
它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。
有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。
除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。
在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。
电力系统中的谐波问题与分析技术研究引言:现代社会对电力的需求越来越大,电力系统的稳定运行对于社会经济的发展至关重要。
然而,电力系统在运行过程中会面临一些问题,如谐波问题。
谐波是电力系统中的一种普遍现象,它对系统的稳定性和设备的正常运行产生了不可忽视的影响。
因此,对电力系统中的谐波问题进行深入研究和分析,提出相应的解决方法和技术手段是非常必要的。
一、谐波问题的定义与影响1. 谐波的定义谐波是指电力系统中存在的频率是基波频率整数倍的谐振现象。
电力系统中产生谐波的主要原因包括非线性负载、发电机组的谐波励磁和谐波源的接入等。
谐波问题主要表现在电压和电流波形畸变、系统损耗增加以及设备寿命缩短等方面。
2. 谐波问题的影响谐波对电力系统的影响主要体现在以下几个方面:(1)设备损坏:谐波会导致电力设备的工作电流和温度升高,进而加速设备的老化和损坏;(2)电网损失:谐波会导致电网中的有功和无功损失增加,降低系统的效率;(3)通信干扰:谐波会对通信设备产生干扰,降低通信质量和可靠性。
二、谐波分析技术为了解决电力系统中的谐波问题,需要进行谐波分析,找出谐波源,并提出相应的处理措施。
目前,谐波分析技术主要包括频谱分析和时域分析两种方法。
1. 频谱分析频谱分析是通过观察电力系统中各频率成分的振幅和相位关系,以及谐波频率分布情况来分析谐波问题。
常用的频谱分析方法包括傅里叶变换和小波变换。
(1)傅里叶变换傅里叶变换能够将信号在频域中分解成各个频率成分,并得到各频率成分的幅度和相位信息。
通过对电压或电流波形进行傅里叶变换,可以得到具体的谐波频率及其振幅,从而判断谐波的产生原因。
(2)小波变换小波变换是一种时频分析方法,能够同时提供时间和频率信息。
它通过对信号进行连续的分解,得到各个频率成分在时域和频域上的分布情况,更能反映谐波在时间上的变化特性。
2. 时域分析时域分析是通过观察电力系统中各时刻的电压和电流波形来分析谐波问题。
常用的时域分析方法包括快速傅里叶变换和窗函数法。
谐波治理及无功补偿方案谐波治理及无功补偿方案随着现代电力系统的快速发展和应用,电力质量问题日益凸显。
其中一个主要问题就是谐波污染,谐波污染会对电力系统产生极大的危害,如烧毁电器设备、造成供电失灵等。
为了有效解决谐波污染问题,可以采用谐波治理及无功补偿方案。
一、谐波治理1.谐波发生的原因谐波是指电源产生的不同于基波频率的信号,其会把电力系统中的电压和电流形成很多波峰,属于高频电流。
2.谐波的产生谐波的形成,主要是由非线性负载所引起(例如变频器、电子电路等),这些负载会对输电线路上传输的电能进行畸变,导致电力系统中产生多余的波形。
3.谐波的危害谐波的危害十分显著,其主要表现为电力系统中的电器设备可能会受到烧毁的风险,从而引发一系列的安全事故和设备故障。
4.谐波治理方案(1)滤波器法:通过在负载侧增加合适的滤波器,可以去除输出信号中的高频波形,让电力系统中的电路保持基波同步。
(2)减小非线性负载法:由于非线性负载是谐波形成的主要原因,因此可以通过减少或替换负载器件,从而降低谐波的产生。
(3)提高系统阻抗法:当系统的阻抗增加时,电源的输出电流会减少,从而谐波的产生会得到一定的减少。
二、无功补偿1.无功补偿的原理无功补偿是一种电力系统中无功功率的调节方法,其通过连接电容器或电感器,来对补偿线路进行补偿,从而实现对无功功率的控制和调节。
2.无功功率的特点无功功率具有波动性和成段性的特点,这是由于电力系统中产生的无功功率主要受到负载方向或回路的变化所影响。
3.无功补偿的作用(1)提高功率因数:在无功补偿的情况下,系统的功率因数会有所提高,从而有效降低负载对电力系统的影响。
(2)降低电网损耗:通过对电路进行无功补偿,可以将电力系统中的无功功率转化为有用的有功功率,从而减少电网的能量损耗。
(3)提高电力系统的稳定性:无功功率的波动会影响电力系统的稳定性,因此,通过无功补偿,可以有效地提高电力系统的稳定性。
4.无功补偿方案(1)串联电容补偿法:通过在电路中增加合适的等效容值,可以将谐波电流从发电端分流到电容器中。
电力系统电压谐波电力系统中的电压谐波是指电压波形中包含的频率为基波频率的整数倍的谐波分量。
它是由各种非线性负载和电力设备引起的,比如电弧炉、电力电子设备和非线性负载等。
电压谐波会对电力系统的正常运行和电力设备的性能产生不利影响,因此需要对电压谐波进行控制和抑制。
一、电压谐波的产生和特点电压谐波的产生源于电力设备和非线性负载引入的非线性元件所致。
这些元件对电力系统的电压波形产生畸变并引入谐波频率分量。
电压谐波的特点主要包括以下几个方面:1. 频率对应关系:电压谐波的频率是基波频率的整数倍,通常以n倍基波频率的形式表示。
2. 谐波含量:电压谐波的幅值通常用谐波含量来衡量。
谐波含量越高,电压波形的畸变程度越高。
3. 波形畸变:电压谐波会使电压波形变形,失去正弦波的特性。
谐波成分的幅值和相位对电压波形的形状和畸变程度具有重要影响。
二、电压谐波的影响电压谐波对电力系统和电力设备会产生一系列不利影响,包括以下几个方面:1. 设备损坏:电压谐波会导致电力设备内部的绝缘击穿和损坏,降低设备的可靠性和寿命。
2. 系统失稳:电压谐波会导致电力系统的电压波形扭曲,影响系统的稳定性和运行安全。
3. 容量降低:电压谐波会使电力设备的各项性能下降,降低其容量和运行效率。
4. 性能下降:电压谐波会对电力设备的工作性能产生不利影响,例如电动机的运行不稳定、变压器的温升过高等。
三、电压谐波的控制和抑制方法为了减小电压谐波的影响,保证电力系统的正常运行和电力设备的安全可靠,需要采取一系列的控制和抑制措施。
以下是常用的方法:1. 滤波器:可以通过安装谐波滤波器,将电压谐波分量从电力系统中滤除。
滤波器通常由谐波电抗器和谐波电容器组成。
2. 电源设计:在电源设计时,可以优化电路和线路布置,减小负载的谐波产生和电压谐波的传播。
3. 负载管理:合理控制非线性负载的使用,减少电力设备引入的谐波。
可以采用适当的差动电抗器和直流电源设计等手段,降低负载的谐波含量。
电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。
虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。
一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。
2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。
3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。
4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。
二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。
2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。
3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。
4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。
为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。
2.配置滤波器装置,用于消除电力系统中的谐波信号。
3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。
4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。
电线中的谐波是什么原理
电线中的谐波是指在交流电路中,除了基波频率外,还存在其他频率的电流或电压成分。
谐波是由非线性元件引起的,例如电阻、电感、电容等。
它们在电路中存在的原理可以通过以下几个方面进行解释:
1. 非线性元件引起的谐波:在现实电路中,大部分元件都是非线性的,例如电阻、电感和电容。
当电流或电压通过这些非线性元件时,元件会产生谐波成分。
非线性的特性会导致元件的电压-电流特性不满足欧姆定律,从而产生额外的频率成分。
2. 非线性负载引起的谐波:当电力系统中连接了非线性负载,例如电子设备、变频器等,这些设备在工作时会引入谐波。
这是因为非线性负载在满足其电能需求时,会对电源产生不同频率的谐波电流或电压。
在这种情况下,电力系统中的电线会传输这些谐波信号。
3. 非线性变压器引起的谐波:变压器由于其磁性特性,通常会有饱和和非线性的特点。
这些非线性特性会引起谐波的生成。
当交流电流通过变压器时,非线性磁化导致磁场中的谐波成分,进而在电压端产生谐波。
4. 灵敏负载引起的谐波:灵敏负载是指对电力质量要求较高的设备,例如计算机、医疗设备等。
这些设备对输入电源的质量要求较高,如果电力系统中存在谐波,会对这些设备的正常运行产生影响。
因此,电力系统会通过负载引起的谐波
产生,从而影响到整个电力系统中的电线。
总之,电线中的谐波是由非线性元件、非线性负载、非线性变压器以及灵敏负载等因素引起的。
这些因素会导致电路中存在除基波频率外的其他频率成分,从而影响到电力系统的质量和稳定性。
为了解决谐波问题,通常采取滤波器、谐振器等措施,以减少谐波的影响。
谐波分析一、谐波的相关概述谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。
谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性.由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。
当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。
电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波.因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。
(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。
(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。
二、谐波的危害谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率.(2)谐波影响各种电气设备的正常工作。
(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故.(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。
(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
三、谐波的分析由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害.我国对于谐波相关工作的研究大致起源于20世纪80年代。
我国国家技术监督局于93年颁布了国家标准《电能质量-—公用电网谐波》(GB/T 14549—1993)。
该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。
电力系统谐波基本原理电力系统中的谐波是指在交流电路中产生的频率是基波频率的整数倍的信号。
谐波在电力系统中是一种不可避免的现象,它们会对系统的稳定性、设备的性能和电能质量产生不利影响。
因此,了解谐波的基本原理对于电力系统的设计、运行和维护都是非常重要的。
谐波的基本原理可以从以下几个方面来介绍:谐波的生成原因、谐波的特点以及谐波的影响。
首先,谐波的生成原因主要包括非线性负载、非对称负载和谐波源。
非线性负载是指电力系统中存在的诸如整流器、变频器、电弧炉等非线性设备,它们会导致电流与电压之间产生非线性的关系,从而产生谐波。
非对称负载则是指电力系统中存在的单相负载或者三相负载不平衡,这也会引起谐波。
同时,谐波源还包括谐波发生器等外部因素的影响。
这些因素的存在都会导致系统中出现谐波。
其次,谐波的特点是其频率是基波频率的整数倍,通常表现为正弦波形的畸变。
谐波的频率范围通常为2次、3次、4次等整数倍的基波频率。
在电力系统中,主要关注的是2次到50次的谐波。
而谐波的波形畸变会对电能质量产生很大的影响,例如会导致线路和设备的过热、振动和噪音增加,进而缩短设备的寿命。
此外,谐波还容易引起设备的失常和运行不稳定等问题。
最后,谐波对电力系统的影响主要表现在以下几个方面:设备的影响、线路的影响和系统的影响。
在设备方面,谐波会导致设备的过热、损坏以及性能的下降,降低了设备的可靠性和寿命。
在线路方面,谐波会导致相电流不平衡、金属过热、电缆损耗增加等问题。
在系统方面,谐波会引起电流和电压的畸变,增加系统的损耗和能耗,降低系统的运行效率。
因此,为了减少谐波对电力系统的影响,需要采取一系列的措施。
首先,可以采用合理的设备设计和选型,选择质量好、参数稳定的设备,减少设备的非线性负载。
其次,可以通过对负载的平衡处理和采用适当的滤波器来减少谐波的产生和传播。
此外,也可以通过优化系统的接线设计、提高变压器的耐谐波能力等措施来减少系统中的谐波影响。
电力系统中的谐波与电磁干扰分析导言:电力系统是现代社会运转的重要基础设施之一,但在其运行过程中,常常会面临谐波和电磁干扰的问题。
谐波是指电力系统中出现的频率是基波频率的整数倍的电压或电流成分,而电磁干扰则是指电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。
本文将深入分析电力系统中的谐波和电磁干扰的原因、危害以及相应的解决方法。
一、谐波的形成和危害1. 谐波的形成谐波是由于非线性负荷在电力系统中的存在引起的。
非线性负荷如电子电器、电感、电容等设备,在工作时会产生非线性电流,在电源电压的作用下,会将谐波电流注入电力系统中。
这些谐波电流会使电力系统中的电流波形变成失真的非正弦波形。
2. 谐波的危害谐波对电力系统和设备都会造成一定的危害。
首先,谐波会引起电力系统中的电流和电压的失真,导致电能质量下降。
其次,谐波会引发电力系统中的共振问题,进而损坏电容器、互感器等设备。
此外,谐波还会导致电力系统中的电机运行不稳定,降低设备的寿命,甚至引起设备的故障和损坏。
因此,谐波问题应引起足够的重视。
二、电磁干扰的产生和危害1. 电磁干扰的产生电磁干扰是电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。
电力系统中各种设备和传输线路中的电流和电压会产生电磁场,这些电磁场以无线电波的形式辐射出去,与其他设备和系统产生相互作用,引起电磁干扰问题。
2. 电磁干扰的危害电磁干扰会带来许多危害。
首先,电磁干扰会影响通信系统的正常运行,导致通信中断、信息传递错误等问题。
其次,电磁干扰会影响其他电子设备的正常工作,引起设备的故障和损坏。
此外,电磁干扰还可能对人体健康造成一定的影响,引起生理和心理方面的问题。
三、谐波和电磁干扰的解决方法为了解决电力系统中的谐波和电磁干扰问题,可以采取以下方法:1. 谐波的解决方法(1)降低非线性负荷的影响:通过选用低谐波电器设备、采用滤波电容器等措施来减少非线性负荷对电力系统的谐波注入。
(2)滤波器的应用:在电力系统中安装合适的谐波滤波器,可以过滤掉谐波成分,减少谐波的产生和传播。
电力系统谐波分析与滤波控制在当今电力系统中,谐波是一个不可避免的问题,在电力设备的运行过程中,不同的负载会产生不同的谐波波形,导致电网的电压波形产生畸变,严重影响了电力设备的安全稳定运行。
因此,电力系统谐波分析与滤波控制成为了一个十分重要的研究领域。
1. 谐波的概念和产生原理谐波是指与正弦电压频率不同的周期性振荡电压或电流。
在电力系统中,谐波主要是由非线性负载产生的,例如电弧炉、变频器等。
这些负载在工作时,会产生非正弦的电流波形,这些波形包含了不同频率的谐波分量,进而导致电网的电压波形发生畸变。
2. 谐波的影响谐波对电力系统的影响主要包括:(1) 降低电能的效率:谐波引起的电流峰值随负载的增加而增加,这导致了电网电阻的增加和电网的功率因数降低,从而降低了电能的传输效率。
(2) 损坏电力设备:谐波会使电力设备产生温升,从而降低了电力设备的寿命。
(3) 引起电力系统的共振现象:谐波容易引起电力系统的共振,从而对电力设备和电网造成损坏。
3. 谐波分析方法谐波分析是指对电力系统中谐波产生的原因和机理进行分析的方法。
谐波分析的方法主要分为两种:频谱分析和时间域分析。
(1) 频谱分析:频谱分析是指将不同频率的波形分离出来,通过对分离的波形进行分析,了解波形特性和谐波分量的大小和变化趋势。
(2) 时间域分析:时间域分析是指从时间轴的角度对波形进行分析,分析波形的振幅、时间周期、波形形态等参数。
4. 谐波滤波控制方法为了减少和控制电力系统中的谐波,可以采用谐波滤波控制方法。
谐波滤波控制方法的主要原理是通过滤波器对谐波进行滤波,从而减小电网中谐波的影响,实现电力系统的谐波控制。
谐波滤波器是用于抑制谐波信号的一种电器设备,其主要功能是将非正弦波波形分离成谐波和基波两个部分,并滤除谐波部分,只留下基波部分,从而减少谐波对电力系统的影响。
5. 谐波滤波器的种类和应用谐波滤波器根据滤波器的类型可以分为吸收滤波器、反射滤波器、并联滤波器和串联滤波器等。
电力系统中的电压谐波分析与抑制导言电力系统是现代社会不可或缺的基础设施,为民众提供电能支持。
然而,电力系统中存在着各种电力质量问题,其中之一便是电压谐波。
电压谐波是电力系统中的一种非线性现象,会对电力设备造成损害,影响设备的正常使用。
因此,电压谐波的分析与抑制成为电力系统运行和设备保护中的重要问题。
一、电压谐波的概念与产生原因1.1 电压谐波的定义电压谐波是指电力系统中电压波形中包含有频率大于基波频率(通常为50Hz或60Hz)的高次谐波成分。
这些高次谐波会导致电压波形失真,给电力设备带来损害。
1.2 电压谐波的产生原因电压谐波的产生与电力系统中存在的非线性负载有关。
例如,电弧炉、变频器、整流装置等都会引起电力系统中的非线性特性,进而产生电压谐波。
此外,电力系统中的短路故障和接地故障也会导致电压谐波。
二、电压谐波的影响与评估方法2.1 电压谐波的影响电压谐波会对电力设备产生多方面的影响。
首先,电压谐波会增加电力设备的损耗,缩短设备的寿命。
其次,电压谐波还会导致电力设备的热量增加,进一步加剧设备的老化程度。
此外,电压谐波还会引起设备的振动和噪声,对设备的正常工作造成干扰。
2.2 电压谐波的评估方法为了评估电压谐波的严重程度,通常会采用一些指标来描述。
常用的指标有谐波电压含量、总谐波畸变率等。
谐波电压含量用来描述各次谐波电压的幅度大小,总谐波畸变率则用来描述电压波形失真的程度。
三、电压谐波的分析方法3.1 谐波分析仪的原理谐波分析仪是用于电压谐波分析的关键设备。
它能够通过采集电压波形的实时数据,并进行频谱分析,得出各次谐波的含量和相位角。
同时,谐波分析仪还能显示电压波形的畸变程度,方便分析人员进行准确的判断。
3.2 谐波分析的实施步骤电压谐波的分析过程一般包括数据采集、频谱分析和结果判断三个步骤。
首先,需要使用谐波分析仪对电压波形进行实时数据采集。
然后,通过对采集数据进行频谱分析,得出各次谐波的含量和相位角。
谈谐波的处理及措施1、引言理想的电能应该是完美对称的正弦波。
谐波的混入会使波形偏离对称正弦,由此便产生了电能质量问题。
一方面我们要研究谐波产生的原因,另一方面我们要研究谐波会导致哪些问题,最后,我们要研究如何消除谐波,从而在一定程度上使电能接近正弦波。
2、谐波产生的原因在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
由于半導体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器会呈现比较大的背离正弦曲线波形。
所有的非线性负荷都能产生谐波电流,产生谐波的设备类型有:开关模式电源(SMPS)、电子荧光灯镇流器、调速传动装置、不间断电源(UPS)、磁性铁芯设备及某些家用电器如电视机等。
3、谐波产生的危害谐波的危害主要由以下几个方面,(1)对变压器的影响,变压器由于过大的谐波电流而产生附加损耗,从而引起过热,使绝缘老化加速,导致绝缘损坏,发生触电危险,正序和负序谐波电流同样使得变压器铁芯产生磁滞伸缩和噪声,电抗器产生振动和噪声。
(2)对并联电容器的影响,并联电容器的容性阻抗特性,以及阻抗和频率成反比的特性使得电容器容易吸收谐波电流而引起过载发热,当其容性阻抗与系统中感性阻抗匹配时,容易构成谐波谐振,使电容器发热导致绝缘击穿的故障增多,谐波电压与基波电压峰值发生叠加,使得电容器介质更容易发生局部放电,此外谐波电压与基波电压叠加时使电压波形增多起伏,倾向于增多每个周期中局部放电的次数,相应的增加了每个周期中局部放电的功率,而绝缘寿命则与局部放电功率成反比。
(3)对断路器的影响,谐波电流的发热作用大于有效相等的工频电流,能降低热元件的发热动作电流,高次谐波含量较高的电流能使断路器的开断能力降低,当电流的有效值相同时,波形畸变严重的电流与工频正弦波形的电流相比,在电流过零时的di/dt可能较大,当存在严重的谐波电流时,某些断路器的磁吹线圈就不能正常工作。
10kv单相产生高次谐波的原因高次谐波是指频率是基波频率的整数倍的谐波信号。
在交流电力系统中,高次谐波是不可避免的,并且可能对电力设备和系统产生一系列负面影响。
下面将探讨10kV单相系统产生高次谐波的原因。
1.非线性负载:高次谐波主要是由于非线性负载引起的。
在工业和商业用电中,有很多非线性负载,例如电子设备、变频器、电子镇流器、充电器等。
这些设备的输出电流是非线性的,可能会引起电压畸变,从而产生高次谐波。
2.调制效应:当电力系统中存在载波通信系统时,调制效应也可能产生高次谐波。
因为载波通信系统输入信号是高频信号,可能会调制到电源电压上,从而产生高次谐波。
3.脉冲负载:脉冲负载是指瞬时大电流负载,如电弧炉、电子设备的开关等。
这些设备在工作时会产生脉冲负载,导致电源电压的瞬时变化,从而引起高次谐波。
4.调整和控制装置:电力系统中的调整和控制装置,如自动调整电容器的电容器开关、整流变压器的电压调整装置等,也可能产生高次谐波。
这些装置在启动和切换的过程中可能会产生瞬态过程,从而引起高次谐波。
5.电源质量问题:电力系统中可能存在电源质量问题,如电源的不平衡、接地问题、电容器接地故障等,都可能导致高次谐波的产生。
高次谐波对电力系统和设备产生的影响:1.电力设备的过热和寿命缩短:高次谐波会使电力设备内部的温度升高,导致设备过热,并缩短其寿命。
这是因为高次谐波会引起电力设备内部损耗增加,导致设备发热更严重。
2.传输线路的电压损失:高次谐波会导致系统的电压畸变,使传输线路的电压损失增加。
当电压损失增加时,在传输线上的负载电压将降低,导致设备的工作不稳定。
3.直流系统干扰:高次谐波会对直流系统产生干扰,影响直流系统的正常运行。
例如,高次谐波可能会引起关键设备的故障,降低系统的可靠性。
4.电力系统的能效降低:由于高次谐波的存在,电力系统中的电能损耗增加,能效降低。
这是因为高次谐波会引起电流和电压之间的不匹配,导致电能的浪费。
电力系统中的功率谐波问题如何治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,功率谐波问题却成为了影响电力系统性能的一个不容忽视的因素。
功率谐波不仅会降低电力设备的效率和寿命,还可能引发电力系统故障,甚至对整个电网的安全稳定运行构成威胁。
因此,有效地治理电力系统中的功率谐波问题具有重要的现实意义。
一、功率谐波的产生要治理功率谐波问题,首先需要了解它的产生原因。
功率谐波主要源于电力系统中的非线性负载。
常见的非线性负载包括整流器、变频器、电弧炉、荧光灯等。
这些设备在工作时,其电流和电压的波形不再是标准的正弦波,而是包含了各种高次谐波成分。
以整流器为例,当交流电源通过整流器转换为直流电源时,由于二极管的单向导通特性,电流在导通期间会迅速上升,而在截止期间则几乎为零,从而导致电流波形发生严重畸变,产生大量谐波。
变频器在调节电机转速时,通过改变电源的频率和电压来实现。
但在这个过程中,由于电力电子器件的频繁开关动作,也会引入谐波成分。
电弧炉在炼钢过程中,由于电弧的不稳定燃烧,电流和电压的变化随机性很大,产生的谐波也非常复杂。
二、功率谐波的危害功率谐波对电力系统的危害是多方面的。
首先,它会增加电力设备的损耗。
谐波电流在电力线路和变压器中流动时,会产生额外的电阻损耗和涡流损耗,导致设备发热增加,降低其效率和使用寿命。
其次,谐波会影响电力测量的准确性。
电能表等测量设备通常是按照标准正弦波进行设计和校准的,如果电流和电压中存在谐波,将导致测量结果出现误差,影响电力计费的公正性。
再者,谐波还可能引发电力系统的谐振。
当谐波频率与电力系统中的固有频率相匹配时,会产生谐振现象,导致电压和电流急剧增大,可能损坏电力设备甚至引发停电事故。
此外,谐波还会对通信系统造成干扰,影响通信质量。
三、功率谐波的治理方法针对功率谐波问题,可以采取多种治理方法,以下是一些常见的措施:1、优化电力设备设计在电力设备的设计阶段,充分考虑谐波的影响,采用合适的电路结构和控制策略,减少谐波的产生。
谐波产生原因范文谐波是指周期性信号中频率是基波整数倍的分量。
在现实生活中,我们常常可以观察到各种各样的谐波现象,比如电力系统中的电压谐波、音乐中的音调谐波等等。
谐波现象的出现有多种原因,下面我将就谐波产生的原因进行详细的分析。
首先,从信号的角度来看,谐波产生的一个重要原因是非线性特性。
非线性特性是指系统的输出与输入不成比例,而是具有一定的非线性关系。
在非线性系统中,信号的谐波分量很容易出现。
这是因为,在非线性系统中,输入信号会被分为多个频率成分,这些成分经过非线性操作后会产生各种谐波分量。
比如说,在音乐演奏中,乐器发出的声音就是非线性振动的结果,因此会产生各种谐波分量。
而且,一般情况下,谐波分量的幅度越高,频率越高,其产生的机率越大。
因此,非线性特性是谐波产生的一个重要原因。
其次,谐波产生的另一个重要原因是谐振现象。
谐振是指在其中一特定频率下,系统的振幅会达到最大值的现象。
在谐振频率附近,系统的能量会被集中在谐振频率处,从而产生谐波分量。
这是因为,在谐振频率附近,系统的振动会变得非常容易,可以认为系统的响应是线性的。
因此,当输入信号的频率接近系统的谐振频率时,系统的振幅会达到最大值,从而产生谐波分量。
比如说,在电力系统中,如果输入的电压频率接近变压器的谐振频率,就会产生电压谐波。
此外,非线性传导特性也是谐波产生的一个重要原因。
非线性传导特性是指系统的输出与输入不仅与输入信号有关,还与系统本身的状态有关。
在非线性传导特性下,输入信号的谐波分量会在系统中传导,并在输出端产生谐波分量。
这是因为,在非线性传导特性下,系统的输出信号会包含当前系统状态和输入信号的乘积,而谐波分量是输入信号的一种特殊情况。
比如说,在放大器中,非线性传导特性会导致输入信号的各种谐波分量在放大后产生相应的谐波分量。
最后,谐波产生的原因还包括信号的失真和反射等因素。
信号的失真是指信号波形在传输过程中被改变或者扭曲的现象。
而信号的反射则是指信号在传输过程中遇到障碍物或者不均匀介质时,部分信号会被反射回去。
谐波产生的主要原因、危害及治理措施谐波产生的主要原因:1)来自用户的非线性负荷非线性用电设备是产生谐波的主要原因,由于非线性设备产生的谐波电流通过系统网络注入到系统电源中,畸变电流流经系统阻抗使母线电压发生畸变,使电能质量受到污染:如化工行业的高频炉、电解设备,钢铁行业的炼钢炉、大型轧机、硅整流设备等,它们向电网取用基波电流的同时.产生出高次谐波电流注入系统。
这些负载的谐波有随不同负载而变化的特征,从而使注入网络的谐波电流出现忽大忽小、时隐时现的现象。
2)来自系统的影响其一,系统中交流发电机内部的定子和转子间的气隙,由于受到铁心齿、槽或工艺的影响,分布不均匀,虽然各相电势的波形对称,但三相电势中含有一定数量的奇次谐波。
其二,系统电网中大量变压器的励磁电流含有奇次谐波成分,当变压器空载或过励磁时则更为严重,并由此构成了主要的稳定性谐波源;其三,当电网中投切空载变压器或电容器时,其合闸涌流注入电网也会形成突发性的谐波源。
电力系统中作用在同一线路中的数个不同频率的正弦电势,使得电路中的电流成为各个不同频率电流分量的叠加值,从而形成谐波电流。
电力谐波的主要危害有:1) 对变压器的影响:谐波电流使铜损增加、漏磁增加;谐波电压使铁损增加;谐波功率造成噪声增大、温升提高。
2) 对电力电线的影响:谐波电流易过载,导致过热、破坏绝缘、肌肤效应加大,特别是在电力系统三相不对称运行时,对中性点直接接地的供电系统线损的增加尤为显著。
3) 对电动机的影响:谐波电流增加铜损、谐波电压增加铁损,谐波的功率造成机械效率减小,功率因数下降,有效转矩减小。
4) 对控制系统的影响:电压零点漂移、线电压的不等、仪表仪器的指示不准,以致控制判断错误,甚至控制系统失控。
5) 对通信设备的影响:谐波会产生感应电磁场,影响通信质量。
对电容器的影响:谐波对电容器的影响最为突出,据统计,谐波造成的危害中40%是因为电容器的损害引起的。
主要是因为电容器对高次谐波阻抗较小,电容器容易引起谐波放大甚至共振,从而造成设备的损害和故障。
什么是谐波及谐波的危害谐波是什么在交流电中,电源发出的是正弦电流和正弦电压,而负载所需要的电流和电压的波形也应当是正弦波形,但是由于各种因素的影响,负载端所需要的电流和电压波形可能会发生畸变,也就是波形不再是正弦波形。
在波形发生畸变的情况下,会有一些波形的分量出现在电力系统中,这些波形分量即为谐波。
谐波的产生原因谐波是由于电力系统中存在非线性负载而产生的。
具体来说,可以将非线性负载分为两类。
第一类是导致电流畸变的负载,如电子器件、弧炉、电弧炉等;第二类是导致电压畸变的负载,如变压器、电动机、放电灯等。
这些负载在工作时,由于其特殊的电学特性,会使得所需电流或电压发生畸变,因此就会产生谐波。
谐波的危害1.使变压器过热谐波电流会使变压器铁核的铜损和铁损增加,从而使变压器温升过高。
在变压器内部,铁芯损功会对油温产生较大的影响,导致油温升高,最终使变压器过热。
如果过热程度严重,会导致变压器绝缘老化、绝缘击穿等。
2.影响电能计量由于谐波电流的存在,会使得电能计量的准确性受到影响。
在全功率电流表中,谐波电流与基波电流的叠加会导致表头转子偏转,造成电表误差。
在互感器中,谐波电流也会使得互感器的准确性受到影响。
3.增加电力系统的损耗谐波电流还会增加电力系统的损耗,如线路上的热损耗、变压器的铜损和铁损等。
由于谐波电流的存在,使得交流电路中的电能的总有效值增加了,从而增加了系统的损耗。
4.影响电源的能力谐波电流会影响电源的能力,使得电源的有效输出功率降低,从而影响设备的正常工作。
如果谐波电流较大,还会影响电源谐波抑制和电源噪声。
5.影响其他设备的正常工作谐波电流还会影响其他设备的正常工作。
由于谐波电流会使得电力系统中的电压波形失真,造成其他设备的故障,如电机的震动加剧、电容器容量下降、接触器碳化等。
虽然谐波在电力系统中存在的时间不长,但是其对电力系统的危害是不可忽视的,需要防范和治理谐波。
通过采用控制非线性负载电流、增加电源稳压器、加装滤波器等方法可以有效降低谐波水平,保障电力系统的正常运行。
一、谐波产生的原因产生谐波的原因主要有以下三方面:1、在交流发电机里,定子、转子间气隙中磁感应强度的分布,总会由于齿、槽的影响以及气隙不可能绝对均匀而导致各相电势波形虽然对称,却是非正弦波形,三相电势中含有奇次谐波;2、即使电源电势是正弦波,但是电力线路上的许多用电设备(如非线性设备),也能产生谐波电流,谐波电流通过电力线路回流到电力电源中;3、作用在同一线路中的数个正弦电势,如果它们的频率各不相同,那么电路中的电流将是各个不同频率电流分量的迭加,同样会产生谐波电流。
二、配电网中的谐波源1、从谐波源的性质上,可分为下列两类:第一类为恒压谐波源,它的特点是其谐波电压与外接阻抗无关。
例如,电力系统中的发电机所产生的谐波电势只取决于发电机本身的结构和工作情况。
第二类为恒流谐波源,它的特点是其谐波含量与电力系统的参数无关,主要取决于它本身的参数和工作情况,配电网中非线性用电设备则是这种谐波源的典型代表。
在配电网中,第一类谐波源产生的谐波量较小;第二类谐波源产生的谐波是大量的。
2、从产生谐波的规律上,谐波源可分成下列三种:①稳态谐波源这种谐波源的特点是注入网络中的谐波电流,当网络中的感性和容性负荷不变时,其谐波幅值也不变,例如,网络中的发电机、变压器、电动机、可控和不可控整流设备等,都属于这种谐波源。
②动态谐波源这种谐波源的特点是随负荷的变化而剧烈变化,如大容量的冲击负荷、电气机车的换流设备、大型电弧炉等,都属于这种谐波源。
③暂态谐波源这种谐波源的特点是稳态运行时不会向系统注入高次谐波,仅在过渡过程中产生暂态性谐波电流,其持续时间为数毫秒到几十毫秒。
如变压器在空载投入时产生的励磁涌流、电容器的合闸涌流中均含有2、3、4次高次谐波电流,这种谐波电流往往引起电力系统谐振和过电压。
三、高次谐波对配电网的危害一般来说,高次谐波很少来自上一级电力系统,而主要来自同一电压等级中的可控用电设备和整流设备。
据统计,由于高次谐波而损坏的电气设备中,电力电容器约占40%(其中串联电抗器约占30%),变压器约占10%、用电设备约占7%,等等。
电力系统的谐波产生的原因电网谐波来自于3个方面:一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
文档来自于网络搜索二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的结构形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
文档来自于网络搜索三是用电设备产生的谐波:晶闸管整流设备。
由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。
变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
文档来自于网络搜索电弧炉、电石炉。
由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
文档来自于网络搜索气体放电类电光源。
荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
文档来自于网络搜索家用电器。
电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。
在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。
这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
供电系统的无功补偿及谐波治理在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。
近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。
这些负荷大都具有非线性、冲击性和不平衡性的特点,在运行中会产生大量谐波。
这些谐波对无功补偿装置造成了严重影响。
在供电系统中,对于某次谐波,作为无功补偿用的并联电容器若与呈感性的系统电抗发生谐振,则会出现过电压而造成危害。
当无功补偿装置运行地点的谐波比较严重时,电压、电流波形会有很大畸变,电容器投切控制信号的传输就会受到影响,从而有可能引起装置的误动或拒动。
另一方面,并联电容器对电网谐波的影响也很大。
若电容器容抗和系统感抗配合不恰当?熏将会造成电网谐波电压和电流的严重放大?熏给电容器本身带来极大损伤。
可见,无功补偿与谐波治理两者关系密切。
产生谐波的装置大都是消耗基波无功功率的装置;治理谐波的装置通常也是补偿无功的装置。
因此,为了寻求能同时实现无功补偿和谐波治理的装置,就必须将二者结合起来进行研究。
2电容器无功补偿装置中的谐波问题谐波源有两种一种是谐波电流源,这些用电设备中的谐波含量取决于它自身的特性和工作状况。
基本上与供电系统参数无关。
另外一种是谐波电压源。
发电机在发出基波电势的同时,也会有谐波电势产生,其谐波电势大小主要取决于发电机本身的结构和工作状况。
实际上,在电网中运行的发电机和变压器等电力设备输出的谐波电势分量很小,几乎可以忽略。
因此,在供电系统中存在并实际发生作用的谐波源主要是谐波电流源。
在用并联电容器进行无功补偿的供电系统中电网以感抗为主,电容器支路以容抗为主。
在工频条件下,并联电容器的容抗比系统的感抗大得多可发出无功功率,对电网进行无功补偿。
但在有谐波背景的系统中大量的非线性负荷会产生大量的谐波电流注入电网,对这些谐波频率而言电网感抗显著增加而补偿系统容抗显著减小导致谐波电流大部分流入电容器支路,若此时电容器的运行电流超过其额定电流的1.3倍,电容器将会因过流而产生故障。
另外,针对无功补偿系统的调谐频率,如果电网中存在该特定频率的谐波电流源,则该谐波将直接被放大严重时还会发生并联谐振或串联谐振。
系统谐振将导致谐波电压和电流明显地高于在无谐振情况下出现的谐波电压和电流。
2.1谐波与并联谐振当电网中的谐波主要由非线性用电负荷产生时,此时的谐波源可看作一个很大的电流源,其产生的谐波电流加在系统感抗和电容器的容抗之间,形成并联回路(如图1所示)。
文档来自于网络搜索由图可见,流入电容器支路的n次谐波电流为:由式(1)可看出:当电网阻抗和电容器阻抗相等时,即:时,将形成并联谐振。
此时,即使系统中的n次谐波电流不大,流入电容器的n次谐波电流也将会很大(理论上为无穷大,实际上由于存在电阻谐波电流为一很大的有限值),被放大的谐波电流流经电容器时可导致其内部组件过热而出现故障。
2.2谐波与串联谐振当上一级电网系统电压波形严重畸变时此时的谐波源相当于一个很大的电压源。
谐波电压将在变压器的感抗和电容器的容抗间形成串联回路(如图2所示)。
当感抗和容抗相等时?熏将形成串联谐振。
此时谐波电压将在串联回路上形成强大的电流直接流经补偿电容器使电容器因过流而迅速故障。
由以上分析可见在有谐波背景的供电系统中单独使用电容器进行无功补偿时若发生并联谐振或串联谐振大部分谐波电流将流入电容器组中而导致其迅速产生故障。
为了避免上述情况的发生就必须寻求新的能同时实现无功补偿和谐波治理的装置。
3能同时实现无功补偿与谐波治理的装置3.1无源滤波器在有谐波背景的电网中,为了滤除谐波,就要为谐波提供一条释放路径即保留基波而使谐波短路也就是使谐波通过滤波器直接流回谐波源而不注入系统。
为此,可采用一种LC无源滤波器,常用的是单调谐滤波器,它由适当数值的电容、电感和电阻组合而成(如图3a所示)。
通过设置参数,使得在需要滤除的谐波频率上装置的感抗和容抗相等而抵消?熏即在调谐频率上滤波器呈现低阻抗,这样该频次谐波就可顺利通过滤波器并返回谐波源,从而达到滤除谐波的目的。
而对于非调谐的基波和其它次谐波滤波器则呈现高阻抗,带来的影响很小。
除了上述针对某次谐波频率而设置的滤波器外常用的还有一种高通滤波器如图3b所示,它对于某一频率以后的所有频率都呈现低阻抗,可滤除多种高次谐波。
在实际工程应用中,根据供电系统中谐波的组成成份往往设置两组LC滤波器,一组为单调谐滤波器用来滤除含量较大的某次谐波;另一组为高通滤波器可对高次谐波实现减幅。
上述调谐滤波器实现起来非常简单,就是在原来并联电容器的支路上串接一个适当大小的电抗器。
此时,整个补偿电容器支路对谐波源基波仍呈容性保持其无功补偿作用不变。
而对高次谐波补偿支路则呈感性避免了与系统形成电流谐振消除或减小了由于补偿电容所引起的谐波电流放大现象。
如何选择电抗器的大小呢?目前我国并联电容器配置电抗器的电抗率K(K=XK/XC,XK为电抗器的基波感抗XC为电容器的基波容抗)主要有4种:<0.5%,4.5%,6%12%。
配置K<0.5%电抗器的主要目的是限制电容器的合闸涌流;当采用电抗率为4.5%或6%的串联电抗器时,可抑制5次以上的谐波电流;当采用电抗率为12%的串联电抗器时,可抑制3次以上的谐波电流。
另外需注意,上述装置对谐振频率要求非常严格。
若谐振点漂移,将有可能放大谐波电流,因此必须保证电抗器和电容器的数值不能因温度、环境等因素而发生变化。
为满足此要求,滤波电抗器应采用电抗值可调的空芯或铁芯电抗器制造精度要求为正误差。
对于电容器,最好选用制造精度为正误差具有防爆、损耗低、放电特性好等特点的谐波滤波电容器。
在确定其额定电压等级时,需考虑串联电抗器产生的电压降及谐波电压的影响,一般应选择高于系统电压。
另外,在系统运行中,电容器组经常需要分组投切,此时就要根据补偿容量和谐波要求来解决各组间的配合问题。
随着电力电子技术的发展,用晶闸管实现的静止无功补偿装置因其优良的性能而被广泛应用。
例如,有一种兼有谐波治理功能的动态无功功率补偿装置叫做晶闸管投切电容器TSC(ThyristorSwitchedCapacitor)这种装置性能良好,被很多场合采用,但线路组成比较复杂,故障点多,维护量相对较大。
另外还有一种典型的动态无功补偿及谐波滤波装置为固定电容器+晶闸管相控电抗器FC+TCRFixedCapacit+ThyristorControlledReactor。
该装置根据局部电网最低功率因数设置固定电容器根据谐波的阶次,由电抗器串联固定电容器组成LC谐波吸收回路,根据电网功率因数变化量来调节相控电抗器的大小实现局部电网无功补偿和谐波治理。
相对TSC来说,该装置线路简单故障率低运行也较稳定,值得推广。
近来又开发出一种新型无功补偿兼谐波治理装置——晶闸管投切滤波器TSFThyristorSwitchedFilters。
它兼有传统TSC和电力滤波器的优点,并且可抑制因负载变动而引起的电网电压波动。
在基波频率下,TSF的基波阻抗呈容性,可向系统输出无功功率,并且其大小可通过晶闸管进行调节。
对于系统中常见的主要的谐波,可接近谐振并呈现很低的阻抗,使谐波电流流入滤波器,从而可同时达到无功补偿和滤除谐波的目的。
由于系统中存在的谐波电流通常有多个频率,若采用单调谐滤波器来滤除谐波,则需安装多个滤波器。
此时需注意,在投切滤波器时,必须从低次向高次逐次投入,而在切除时则必须从高次向低次依次切除。
否则,不仅不能达到抑制谐波电流的作用,反而会将其放大。
研究表明,该装置结构简单,易于实现,有实际应用和推广价值。
无源滤波器是传统的进行无功补偿和谐波治理的方法?熏具有投资少、效率高、结构简单、运行可靠、维护方便等优点因此被广泛采用。
但是无源滤波器的滤波性能受系统和负载参数的影响较大,易于与系统发生并联谐振,导致谐波放大从而使滤波器过载甚至烧毁,另外它只能消除特定次的谐波,动态性能相对较差,无功补偿效果也不是很理想。
为此,急需开发出新的装置来弥补上述缺陷。