数学建模最短路问题
- 格式:pptx
- 大小:859.88 KB
- 文档页数:53
实验名称:第十一章最短路问题一、实验内容与要求掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题.二、实验软件MATLAB7.0三、实验内容1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径.63V4 2 V7 4 V8程序:function y=bijiaodaxiao(f1,f2,f3,f4)v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4;turn=3;f1=v12+v23+v35+v56+turn+v68;f2=v12+v23+v35+turn+v57+turn+v78;f3=v12+turn+v24+turn+v47+v78;f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68;min=f1;if f2<minmin=f2;endif f3<minmin=f3;endif f4〈minmin=f4;endminf1f2f3f4实验结果:v1到v8的最短时间路径为15,路径为1—2-4-7-8.2、求如图所示中每一结点到其他结点的最短路。
V110 V3V59 V6function[D,R]=floyd(a)n=size(a,1);D=afor i=1:nfor j=1:nR(i,j)=j;endendRfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend程序:>〉a=[0 3 10 inf inf inf inf inf;3 0 inf 5 inf inf inf inf;10 inf 0 6 inf inf inf inf;inf 5 6 0 4 inf 10 inf ;inf inf inf 4 0 9 5 inf ;inf inf inf inf 9 0 3 4;inf inf inf 10 5 3 0 6;inf inf inf inf inf 4 6 0;];[D,R]=floyd(a)实验结果:D =0 3 10 Inf Inf Inf Inf Inf3 0 Inf 5 Inf Inf Inf Inf10 Inf 0 6 Inf Inf Inf InfInf 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =1D =0 3 10 Inf Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf InfInf 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =2D =0 3 10 8 Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf Inf8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 82 234567 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =3D =0 3 10 8 Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf Inf8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 82 234567 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =4D =0 3 10 8 12 Inf 18 Inf3 0 11 5 9 Inf 15 Inf10 11 0 6 10 Inf 16 Inf8 5 6 0 4 Inf 10 Inf12 9 10 4 0 9 5 InfInf Inf Inf Inf 9 0 3 418 15 16 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 6 2 81 2 4 4 4 6 4 81 4 3 4 4 6 4 82 234567 84 4 4 4567 81 2 3 4 5 6 7 84 4 4 4567 81 2 3 4 5 6 7 8 k =5D =0 3 10 8 12 21 17 Inf3 0 11 5 9 18 14 Inf10 11 0 6 10 19 15 Inf8 5 6 0 4 13 9 Inf12 9 10 4 0 9 5 Inf21 18 19 13 9 0 3 417 14 15 9 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 2 2 81 2 4 4 4 4 4 81 4 3 4 4 4 4 82 2345 5 5 84 4 4 4567 85 5 5 5 567 85 5 5 5 567 81 2 3 4 5 6 7 8 k =6D =0 3 10 8 12 21 17 253 0 11 5 9 18 14 2210 11 0 6 10 19 15 238 5 6 0 4 13 9 1712 9 10 4 0 9 5 1321 18 19 13 9 0 3 417 14 15 9 5 3 0 625 22 23 17 13 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 4567 65 5 5 5 567 85 5 5 5 567 86 6 6 6 6 678 k =7D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8 k =8D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8四、实验体会。
数学建模最短路径问题
在数学建模中,最短路径问题是一个经典的问题,它在很多领域都有应用,如交通规划、网络路由等。
最短路径问题是寻找从一个起点到一个目标点的路径,使得路径上的总权重(或代价)最小。
最短路径问题有多种算法可以解决,以下是其中两个常见的算法:
1. Dijkstra算法:
Dijkstra算法用于解决单源最短路径问题,即从一个起点到其他所有点的最短路径。
该算法的基本思想是从起点开始,逐步扩展到其他节点,不断更新节点的最短路径和最短距离,直到到达目标节点或者所有节点都被遍历。
2. Floyd-Warshall算法:
Floyd-Warshall算法用于解决全源最短路径问题,即任意两个节点之间的最短路径。
该算法采用动态规划的思想,通过逐步迭代更新节点之间的最短路径,最终得到所有节点之间的最短路径。
无论是Dijkstra算法还是Floyd-Warshall算法,都需要给定一个图的表示方式和节点之间的权重信息。
图可以使用邻接矩阵或邻接表表示,节点之间的权重可以是距离、时间、代价等。
在实际应用中,最短路径问题可以根据具体情况进行调整和扩展,例如考虑节点的容量限制、路径的约束条件等。
基于最短路问题的研究及应用令狐采学姓名:Fanmeng学号:指导老师:摘要最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。
关键字数学建模最短路问题Dijkstra算法水渠修建。
目录第一章.研究背景1第二章.理论基础22.1 定义22.2 单源最短路问题Dijkstra求解:22.2.1 局限性22.2.2 Dijkstra算法求解步骤22.2.3 时间复杂度22.3 简单样例3第三章.应用实例43.1 题目描述43.2 问题分析43.3符号说明43.4 模型假设53.5模型建立与求解53.5.1模型选用53.5.2模型应用及求解53.6模型评价5第四章. 参考文献5第五章.附录6第一章.研究背景在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。
顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。
最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。
因此掌握最短路问题具有很重要的意义。
第二章.理论基础2.1 定义最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。
最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。
2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。
数学建模最短路径问题模型数学建模是利用数学方法和技巧解决实际问题的过程。
最短路径问题是指在图中找到一个节点到另一个节点的最短路径。
这个问题在现实生活中有着广泛的应用,比如导航系统、物流运输等。
最短路径问题可以使用多种方法来解决,其中最常见的方法是使用图论中的最短路径算法,例如Dijkstra算法和Floyd-Warshall算法。
Dijkstra算法是一种贪心算法,用于解决带非负边权的单源最短路径问题。
它的基本思想是通过迭代的方式逐步确定从源节点到其他节点的最短路径。
Dijkstra算法的步骤如下:1. 初始化,将源节点到其他节点的距离都设为正无穷,将源节点到自身的距离设为0。
2. 选择一个当前节点,将其加入已确定最短路径的节点集合。
3. 对于当前节点的邻居节点,更新其到源节点的距离,如果通过当前节点的距离更短,则更新最短距离。
4. 重复步骤2和3,直到所有节点都加入已确定最短路径的节点集合。
5. 返回从源节点到其他节点的最短路径。
Floyd-Warshall算法是一种动态规划算法,用于解决所有节点对之间的最短路径问题。
它的基本思想是通过逐步迭代来更新节点之间的最短路径。
Floyd-Warshall算法的步骤如下:1. 初始化,将节点之间的距离设为正无穷,将每个节点到自身的距离设为0。
2. 对于每一对节点(i, j),判断从节点i到节点j是否存在经过其他节点的更短路径,如果存在则更新最短距离。
3. 重复步骤2,直到所有节点之间的最短路径都被求出。
4. 返回任意两个节点之间的最短路径。
除了以上两种算法,还有其他的最短路径算法,比如Bellman-Ford算法和A*算法等。
这些算法都有各自的特点和适用范围,根据具体情况选择合适的算法。
此外,最短路径问题还可以使用线性规划、整数规划和动态规划等数学建模方法来解决。
这些方法可以将问题转化为数学模型,通过求解模型得到最优解。
对于复杂的最短路径问题,可以将其转化为有向图或无向图来进行建模。