数学建模中的最短路算法
- 格式:ppt
- 大小:211.00 KB
- 文档页数:6
实验名称:第十一章最短路问题一、实验内容与要求掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题.二、实验软件MATLAB7.0三、实验内容1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径.63V4 2 V7 4 V8程序:function y=bijiaodaxiao(f1,f2,f3,f4)v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4;turn=3;f1=v12+v23+v35+v56+turn+v68;f2=v12+v23+v35+turn+v57+turn+v78;f3=v12+turn+v24+turn+v47+v78;f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68;min=f1;if f2<minmin=f2;endif f3<minmin=f3;endif f4〈minmin=f4;endminf1f2f3f4实验结果:v1到v8的最短时间路径为15,路径为1—2-4-7-8.2、求如图所示中每一结点到其他结点的最短路。
V110 V3V59 V6function[D,R]=floyd(a)n=size(a,1);D=afor i=1:nfor j=1:nR(i,j)=j;endendRfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend程序:>〉a=[0 3 10 inf inf inf inf inf;3 0 inf 5 inf inf inf inf;10 inf 0 6 inf inf inf inf;inf 5 6 0 4 inf 10 inf ;inf inf inf 4 0 9 5 inf ;inf inf inf inf 9 0 3 4;inf inf inf 10 5 3 0 6;inf inf inf inf inf 4 6 0;];[D,R]=floyd(a)实验结果:D =0 3 10 Inf Inf Inf Inf Inf3 0 Inf 5 Inf Inf Inf Inf10 Inf 0 6 Inf Inf Inf InfInf 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =1D =0 3 10 Inf Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf InfInf 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =2D =0 3 10 8 Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf Inf8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 82 234567 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =3D =0 3 10 8 Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf Inf8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 82 234567 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =4D =0 3 10 8 12 Inf 18 Inf3 0 11 5 9 Inf 15 Inf10 11 0 6 10 Inf 16 Inf8 5 6 0 4 Inf 10 Inf12 9 10 4 0 9 5 InfInf Inf Inf Inf 9 0 3 418 15 16 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 6 2 81 2 4 4 4 6 4 81 4 3 4 4 6 4 82 234567 84 4 4 4567 81 2 3 4 5 6 7 84 4 4 4567 81 2 3 4 5 6 7 8 k =5D =0 3 10 8 12 21 17 Inf3 0 11 5 9 18 14 Inf10 11 0 6 10 19 15 Inf8 5 6 0 4 13 9 Inf12 9 10 4 0 9 5 Inf21 18 19 13 9 0 3 417 14 15 9 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 2 2 81 2 4 4 4 4 4 81 4 3 4 4 4 4 82 2345 5 5 84 4 4 4567 85 5 5 5 567 85 5 5 5 567 81 2 3 4 5 6 7 8 k =6D =0 3 10 8 12 21 17 253 0 11 5 9 18 14 2210 11 0 6 10 19 15 238 5 6 0 4 13 9 1712 9 10 4 0 9 5 1321 18 19 13 9 0 3 417 14 15 9 5 3 0 625 22 23 17 13 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 4567 65 5 5 5 567 85 5 5 5 567 86 6 6 6 6 678 k =7D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8 k =8D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8四、实验体会。
最短路问题数学模型
最短路问题是指在带权有向图中,求两个顶点之间的最短路径。
这个问题在现实生活中有很多应用,如在交通规划、电信网络设计、人工智能等领域。
为了解决这个问题,需要建立一个数学模型。
数学模型是指用数学方法对实际问题进行抽象和描述,从而进行定量分析和求解的方法。
对于最短路问题,可以使用图论和运筹学的方法建立数学模型。
在图论中,最短路问题可以使用迪杰斯特拉算法或弗洛伊德算法求解。
这些算法基于图的边权和,采用动态规划的思想,逐步计算每个节点到源节点的最短距离,最终得到整个图中每对节点之间的最短路径。
在运筹学中,最短路问题可以被看作是一种线性规划问题。
可以将每个节点看作是一个决策变量,节点之间的边权看作是线性约束条件,目标函数则是从源节点到目标节点的路径长度。
通过对目标函数进行最小化,可以得到最短路径的解。
总之,最短路问题数学模型可以通过图论和运筹学的方法进行建立和求解。
建立好的数学模型可以为实际问题提供科学解决方案,优化效率和效果。
- 1 -。
最短路径在一个无权的图中,若从一个顶点到另一个顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1。
由于从一个顶点到另一个顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,把路径长度最短(即经过的边数最少)的那条路径叫作最短路径或者最短距离。
对于带权的图,考虑路径上各边的权值,则通常把一条路径上所经边的权值之和定义为该路径的路径长度或带权路径长度。
从源点到终点可能不止一条路径,把带权路径长度最短的那条路径称为最短路径,其路径长度(权值之和)称为最短路径长度或最短距离。
最短路径算法Dijkstra算法:该算法是用于求解单源点最短路径的实用算法。
Dijkstra算法的基本思想如下:设置并逐步扩充一个集合S,存放已求出其最短路径的顶点,则尚未确定最短路径的顶点集合是V-S其中,V为网中所有顶点集合。
按最短路径长度递增的顺序逐个用V-S中的顶点加到S中,直到S中包含全部顶点,而V-S为空。
Dijkstra算法的具体步骤;(1)设源点为V1,则S中只包含顶点V1,令W=V-S,则W中包含除V1外图中所有顶点。
V1对应的距离值为0,即D[1]=0。
W中顶点对应的距离值是这样规定的:若图中有弧 <v1,vk>,则Vj顶点的距离为此弧权值,否则为一个无穷大的数;(2)从W中选择一个其距离值最小的顶点 vk,并加入到S中;(3)每往S中加入一个顶点vk后,就要对W中各个顶点的距离值进行一次修改。
若加进vk做中间顶点,使<v1,vk> + <vk+vj>的值小于<v1,vj> 值,则用<v1,vk> + <vk+vj>代替原来vj 的距离值;(4)重复步骤2和3,即在修改过的W中的选距离值最小的顶点加入到S 中,并修改W中的各个顶点的距离值,如此进行下去,知道S中包含图中所有顶点为之,即S=V。
一、概述已知起点的最短路问题是图论中的一个经典问题,它在实际生活中有着广泛的应用,如交通规划、通信网络设计、物流配送等领域。
本文将对已知起点的最短路问题进行数学建模,并探讨其求解方法。
二、问题描述已知起点的最短路问题可以描述为在一个加权有向图中,从给定的起点出发,求得到其他所有顶点的最短路径。
其中,图的顶点表示位置,边的权重表示移动的代价或者距离。
问题的输入包括图的结构和起点的位置,输出包括从起点到所有其他顶点的最短路径。
三、数学建模1. 图的表示为了进行数学建模,我们需要选取恰当的数据结构来表示图。
常用的数据结构包括邻接矩阵和邻接表。
邻接矩阵适用于稠密图,适合于求解任意两个顶点之间的最短路径;邻接表适用于稀疏图,适合于求解从一个起点到其他所有顶点的最短路径。
在实际应用中,根据具体问题的规模和特点选择合适的数据结构。
2. 最短路径的定义最短路径可以通过不同的度量标准来定义,比如长度最短、耗费最少等。
在已知起点的最短路问题中,最常见的度量标准是路径的长度。
我们的数学建模将以路径的长度为目标函数。
3. 数学模型我们可以使用图论中的单源最短路径算法来解决已知起点的最短路问题。
常见的算法包括Dijkstra算法和Bellman-Ford算法。
以下是这两种算法的数学模型:(1)Dijkstra算法Dijkstra算法通过维护一个距离集合来逐步求得起点到其他各顶点的最短路径。
具体流程如下:初始化距离集合,将起点到自身的距离设为0,其余顶点的距离设为无穷大。
选择一个顶点加入最短路径集合,更新起点到所有其他顶点的距离。
重复上述步骤,直到所有顶点都加入了最短路径集合。
(2)Bellman-Ford算法Bellman-Ford算法通过对边进行松弛操作来逐步求得起点到其他各顶点的最短路径。
具体流程如下:初始化距离数组,将起点到自身的距离设为0,其余顶点的距离设为无穷大。
在图的所有边上进行|V|-1次松弛操作,其中|V|表示图的顶点数。
掌握最短路算法的要点最短路算法是图论中的一个重要概念,其应用广泛且具有实际意义。
无论是在计算机科学还是数据分析领域,掌握最短路算法的要点都是非常重要的。
本文将详细介绍最短路算法的概念、应用以及其要点。
一、最短路算法概述最短路算法是用来求解图中两点之间最短路径问题的算法。
该算法考虑了图中各点之间的边权重,通过比较路径的权重来确定最短路径。
最常用的最短路算法有迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法是一种单源最短路径算法,用于求解一个节点到其他所有节点之间的最短路径。
它通过不断选择未访问节点中权重最小的节点来更新节点之间的距离。
弗洛伊德算法是一种多源最短路径算法,用于求解图中任意两点之间的最短路径。
它通过动态规划的方式逐步更新节点之间的距离。
弗洛伊德算法适用于解决稠密图中的最短路径问题。
二、最短路算法应用最短路算法有着广泛的应用。
下面将介绍几个常见的应用场景。
1. 网络路由在计算机网络中,最短路算法被广泛应用于路由器的路径选择。
路由器根据最短路算法计算出数据包传输的最优路径,以提高网络传输效率和速度。
2. 交通规划最短路算法在交通规划中也有着重要的应用。
比如,在GPS导航系统中,通过最短路算法可以计算出车辆行驶的最短路径,帮助司机选择最快的道路。
3. 电力系统规划在电力系统规划中,最短路算法可以用于计算电力传输的最短路径,以确保电力系统的可靠性和高效性。
通过最短路算法可以优化电力线路的配置和布置。
三、最短路算法要点要想熟练掌握最短路算法,需要注意以下几个要点。
1. 图的表示在实现最短路算法之前,需要先清楚如何表示图。
常见的图表示方法有邻接矩阵和邻接表。
邻接矩阵适用于稠密图,而邻接表适用于稀疏图。
2. 权重的定义在最短路算法中,边的权重是一个重要的因素。
不同的应用场景可能对权重有不同的定义。
比如,在交通规划中,权重可以表示为路径的时间或者距离。
在电力系统规划中,权重可以表示为电力线路的传输损耗。
3. 路径选择策略最短路算法的核心在于选择路径的策略。
基于最短路问题的研究及应用: Fanmeng学号:指导老师:摘要最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。
关键字数学建模最短路问题 Dijkstra算法水渠修建。
目录第一章.研究背景 (1)第二章.理论基础 (2)2.1 定义 (2)2.2 单源最短路问题Dijkstra求解: (2)2.2.1 局限性 (2)2.2.2 Dijkstra算法求解步骤 (2)2.2.3 时间复杂度 (2)2.3 简单样例 (3)第三章.应用实例 (4)3.1 题目描述 (4)3.2 问题分析 (4)3.3符号说明 (5)3.4 模型假设 (5)3.5模型建立与求解 (5)3.5.1模型选用 (5)3.5.2模型应用及求解 (5)3.6模型评价 (5)第四章. 参考文献 (6)第五章.附录 (7)第一章.研究背景在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。
顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。
最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。
因此掌握最短路问题具有很重要的意义。
第二章.理论基础2.1 定义最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。
最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。
最短路的算法--Dijkstra算法在图G中,给定s和t两个顶点。
从s到t可以有多条路径,从这多条路中找出长度最的最短路。
设每条弧的长度均为非负值。
小的路,这样的路称为从s到t的最短路。
设每条弧的长度均为非负值。
下面的算法是由狄杰斯特拉(Dijkstra,1959)提出的,其想法是:设已知图中最接近于顶点s的m个顶点以及从顶点s到这些顶点中每一个顶点的最短路(从s到其本身的最短路是零路,即没有弧的路,其长度为0)。
对顶点s和这m个顶点着色。
然后,最接近于s的个顶点可如下求之:第m+1个顶点可如下求之:对于每一个未着色的顶点y,考虑所有已着色顶点x,把弧(x,y)接在从s到x的最短路后面,这样就得到从s到y的m条不同路。
从这m条路中选出最短的路,它就是从s 到y的最短路。
相应的y点就是最接近于s的第m+1个顶点。
因为所有弧的长度都是非负值,所以从s到最接近于s的第m+1个顶点的最短路必然只使用已着色的顶点作为中间顶点。
的最短路为止。
从m=0开始,将这个过程重复进行下去,直至求得从s到t的最短路为止。
算法:狄杰斯特拉最短路算法第1步开始,所有弧和顶点都未着色。
对每个顶点x指定一个数d(x),d(x)表示从s到x 的最短路的长度(中间顶点均已着色)。
开始时,令d(s)=0,d(x)=∞(对所有x≠s)。
y表示已着色的最后一个顶点。
对始点s着色,令y=s。
如下:第2步对于每个未着色顶点x,重新定义d(x)如下:d(x)=min{ d(x),d(y)+a(y,x)} 公式对于所有未着色顶点x,如d(x)=∞,则算法终止。
因为此时从s到任一未着色的顶点都没有路。
否则,对具有d(x)最小值的未着色顶点x进行着色。
同时把弧(y,x)着色(指向顶点x的弧只有一条被着色)。
令y=x。
第3步如果顶点t已着色,则算法终止。
这时已找到一条从s到t的最短路。
如果t未着色,则转第2步。
步。
注意:已着色的弧不能构成一个圈,而是构成一个根在s的树形图,此树形图称为最短路树形图。