飞机部件装配技术与工艺研究
- 格式:doc
- 大小:169.50 KB
- 文档页数:4
飞机复合材料机身壁板装配技术分析与展望目录1. 内容综述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状与发展趋势 (4)2. 复合材料机身壁板概述 (6)2.1 复合材料的定义与分类 (6)2.2 复合材料机身壁板的设计要求与性能指标 (8)2.3 复合材料机身壁板的应用领域 (10)3. 装配工艺技术分析 (11)3.1 装配方法概述 (13)3.2 关键装配工艺流程 (15)3.3 装配过程中的质量控制与检测方法 (16)4. 装配设备与工具 (17)4.1 常用装配设备简介 (18)4.2 工具的选择与使用 (19)4.3 设备与工具的维护与保养 (21)5. 案例分析 (23)5.1 案例一 (24)5.2 案例二 (25)6. 技术创新与发展方向 (27)6.1 新型复合材料的应用前景 (29)6.2 装配工艺的智能化与自动化 (30)6.3 环保与可持续发展在复合材料机身壁板装配中的应用 (31)7. 结论与展望 (32)7.1 研究成果总结 (33)7.2 存在的问题与挑战 (34)7.3 未来发展趋势与展望 (35)1. 内容综述随着航空技术的发展,飞机设计正经历深刻变革。
复合材料因其轻质、高强度和优势再螺钉性能,已成为现代飞机构造的重要材料。
在飞机机身,复合材料壁板的装配技术呈现了摒弃传统金属材质,转而采用高性能纤维增强复合材料的趋势。
本文聚焦飞机复合材料机身壁板的装配技术,通过分析现状、探讨技术特点、识别挑战及展望未来,旨在为技术人员提供参考,助推高新技术在飞行器设计中的深入应用。
现有技术:该段落首先概述了当前飞机复合材料壁板的装配技术。
这包括传统的钻联、粘接与机械联接方法,以及新兴的自动化装配技术,比如防损伤的台风定位系统和数字化装配辅佐等。
技术进步:其中分析了如在干式装配工艺、真空袋成形、压缩成型、树脂传递模塑与纤维铺层等新装配方法的采纳情况及其对装配质量与效率的提升。
数据驱动的飞机智能化装配工艺设计技术摘要:现阶段,我国社会发展迅速,科技不断进步。
随着现代飞行器的制造工艺趋向于集成,急需构建一套完备的数据协同传递模型,以缩短发布周期,降低制造成本。
在飞机制造业中,产品的设计意向需要传达到整个生产流程中,而由设计所签发的飞机产品的设计模式只包括工艺参数的一小部分,并未与工艺特征及3D建模建立联系,这对工艺过程中工艺资讯的传达与发布都是不利的,因此,要结合实际的技术条件、实际生产能力、工艺技术要求及个人的设计实践,对其进行工艺加工和重新设计。
关键词:数据驱动;飞机智能化;装配工艺;设计技术引言飞机产品在制造过程中,其零部件的种类和数量非常多,整机结构复杂,装配耗时且成本高。
同时,构成飞机主体结构的零部件多为钣金件,尺寸较大、质量轻,在装配的过程中容易发生变形。
因此,为保证飞机的装配质量,必须确保待装配零部件的结构外形与安装位置准确,这就需要在装配过程中大量使用专用的装配工艺装备。
装配工艺装备是指飞机产品在由组件、部件装配到总装配的过程中,用以控制其几何参数所用的具有定位功能的专用装备,即产品制造过程中所需的刀具、夹具、模具、量具等工具的总称,在飞机、汽车、轨道机车等制造领域中被广泛应用。
数字孪生技术作为智能制造的核心技术之一,能够根据实际运行状态和环境变化的数据对物体实际运行情况进行仿真预测,加强物理实体与信息数据之间的全面交互与深度融合。
型架作为保障飞机装配质量的重要工艺装备,其装配工作的重要性不言而喻。
1航空产品设计发展趋势分析航空领域相关产品设计工作普遍存在零部件数量多、标准化程度低以及组装结构复杂等问题。
同时航空复杂产品的整体生产制造方面,对应加工工艺存在较大技术难度、生产制造工艺类型多样、生产制造流程长等特征,同时航空复杂产品的各种零件组装配套关系十分复杂,普遍以机电一体化为主。
随着中国航空市场领域发展需求持续扩大以及市场竞争趋势不断加剧,各种航空复杂产品在制造生产中不断提升产品研发质量和缩减研发周期基础上,更加倾向于产品设计、装配技术工艺和制造生产等环节的全面协同发展。
第三章 铆接和铆接结构装配普通铆接概述一、普通铆接的概念和过程普通铆接是指常用的凸头或埋头铆钉铆接,铆接过程为:制铆钉孔-制埋头窝-放铆钉 -铆接。
见课本图。
二、普通铆接的缺点增加了结构重量;降低了强度,容易引起变形;疲劳强度低;密封性能差。
导致其它连接方法迅速发展,如胶接,点焊和胶接点焊等三、铆接的优点连接强度比较稳定;容易检查和排除故障(与胶接焊接比较);使用工具比较简单,价廉; 适用于比较复杂的结构的连接。
四、铆接的发展1.无头铆钉干涉配合铆接技术可以提高接头的疲劳寿命,满足现代飞机的疲劳性能和密封 性要求。
2.各种形式的自动钻孔设备和铆接设备为不断提高铆接的机械化和自动化程度,提高铆接 质量提供了条件。
第一节 普通铆接工艺过程一、钻孔和锪窝1.对铆钉孔的要求1.1 铆钉孔的质量要求孔径公差 1.2 孔的椭圆度 1.3孔的垂直度 1.4孔边毛刺 1.5 孔的粗糙度1.2 不同直径的铆钉孔的加工方法d<5mm 钻孔、扩孔; d>6mm 或夹层厚度>15mm 钻孔、扩孔、铰孔。
2.影响钻孔质量的主要因素教案1.1 工件材料 1.2 钻头转速、 1.3 进刀量 1.4刀具的锋利程度2.确定铆钉孔的位置2.1 铆钉孔位置包含内容边距、排距(行距)、 孔距2.2 铆钉孔钻孔的方法1)按划线钻孔( 钻孔的方向)2)按导孔钻孔——导孔通常是制在孔的边距较小、材料较硬或较厚的零件上,在零件制造 阶段就制出,装配定位后,钉孔按导孔钻出 。
例如蒙皮和长桁的铆钉孔,是按长桁的导孔 钻出。
3)按钻模钻孔3.锪窝3.1 埋头窝的深度要求埋头窝的深度为负差,铆后铆钉头只允许铆钉头高出蒙皮表面。
3.2 埋头窝的制作方法一般使用锪窝方法,锪窝有专用的锪窝钻。
为保证埋头窝深度公差,应采用能限制窝深的锪 窝钻套。
当蒙皮厚度<0.8mm 时采用冲窝方法。
二、制孔工具设备1.风钻以压缩空气为动力,将高压空气经导管进入机身汽缸,推动活塞做高速往复运动,打击并 回转钻杆。
《装备维修技术》2021年第4期—157—飞机先进复合材料结构装配协调技术研究现状及发展分析刘德仓(中航西安飞机工业集团股份有限公司,陕西 西安 710089)引言先进复合材料指的是可以用于主承力结构或者副城里结构的复合材料,这种类型的复合材料通常都是在力学性能上相当于甚至超过铝合金的复合材料,比如高性能纤维等树脂性复合材料。
先进复合材料在飞机当中的应用早在二十世纪七十年代就已经开始,并且在飞机当中大量实用复合材料已经成为了航空领域在未来发展的重要趋势。
比如说在空客公司进行设计的A330和A340飞机当中对于复合材料的使用率已经达到了12%.飞机装配在飞机制造的过程当中是非常重要的一个核心环节,飞机装配的质量将会直接对飞机的性能、寿命和成本等等产生十分重要的影响。
所以对于飞机先进复合材料结构装配协调技术的研究对于飞机的制造有着非常主要的作用,将会直接影响航空领域在未来的具体发展趋势。
1.飞机复材构件装配协调因为先进复合材料在使用的过程当中会具有固化收缩、树枝膨胀系数不同以及各向异性等因素的影响,使得在使用先进复合材料在使用的过程当中在制造完成过后的精度没有使用金属材料进行制造的精度高。
先进复合材料是属于刚度很大的脆性材料,没有十分大的塑性变形的区域[1]。
所以当先进复合材料的部件在进行装配的过程当中出现位置不匹配的情况过后,就很难再使用其他的方法来对先进复合材料进行进一步的处理。
并且由于先进复合材料在属性上具有很多的不确定因素以及特有的失效模式,使得先进复合材料在进行装配的过程当中所出现的问题,传统金属在装配过程当中的问题更加的突出。
使用传统金属的装配技术去进行先进复合材料的装配是无法进行的。
所以在对飞机进行复合材料的装配过程当中需要使用先进复合材料装配技术来对复合材料进行相应的装配。
连接在飞机装配的过程当中是非常重要的一个步骤,虽然先进复合材料具有提高结构整体性的优势,但是在实际进行装配的过程当中由于设计、成本等等因素的限制,所以必须设计特有的连接来进行传递载荷。
飞机装配流程的优化与改进方法研究摘要本论文针对飞机装配流程进行了详细分析与问题识别,并提供了一种优化与改进的方法。
在第一章中,我们对飞机装配流程进行了详细解析,包括其流程和主要环节。
通过识别当前装配流程存在的问题,我们确定了对装配流程进行优化的需求。
在第二章中,我们通过研究技术工程与方法,提出了一种优化改进方案,并进行了设计。
该方案通过引入先进的技术和工程方法,改善了装配流程中的瓶颈和问题。
我们还对该方案进行了实施,并进行了效果与反馈分析。
结果表明,该方案在优化飞机装配流程中取得了显著的成效。
通过本研究,我们对飞机装配流程的问题进行了深入分析,并提出了一种可行的优化与改进方法。
关键词:飞机装配流程、问题识别、优化改进方法1、飞机装配流程的分析与问题识别1.1飞机装配流程详解飞机装配是指将各个部件按照特定的流程组装成一架完整的飞机的过程。
飞机装配流程可以分为以下几个主要步骤:零件准备、零件预组装、总装调试、喷漆和测试。
在零件准备阶段,各个零件会被检查和准备,确保其符合装配要求。
在零件预组装阶段,一些较小的组件会被组装起来,以提高总装的效率和准确性。
在总装调试阶段,各个组件会被逐步组装到飞机上,并进行相关的测试和调试工作。
在喷漆和测试阶段,飞机会进行外观喷漆和各项测试。
整个流程需要严密的组织和协调,以确保飞机的质量和安全。
1.2当前飞机装配流程中存在的问题识别然而,在当前的飞机装配流程中存在一些问题。
零件准备和预组装阶段的流程设计欠缺优化,导致效率低下和制约总装进度。
总装调试阶段中的人工操作过多,容易导致误差和事故的发生。
此外,喷漆和测试阶段的设备和工具不够先进和高效,无法满足生产需求。
这些问题严重影响了飞机装配的效率和质量。
1.3飞机装配流程的需求分析针对以上问题,对飞机装配流程进行需求分析是必要的。
需要优化零件准备和预组装阶段的流程设计,提高效率和准确性。
应减少人工操作,增加自动化装配设备的应用,降低错误发生率。
航空航天自动化装配工艺分析在当今的航空航天领域,自动化装配工艺正发挥着日益重要的作用。
随着技术的不断进步和对飞行器质量、性能要求的不断提高,传统的手工装配方式已经难以满足需求,自动化装配工艺凭借其高精度、高效率和高可靠性等优势,逐渐成为主流。
航空航天产品的结构通常十分复杂,零部件数量众多且精度要求极高。
在装配过程中,任何微小的误差都可能对飞行器的性能和安全性产生重大影响。
因此,自动化装配工艺的引入对于确保装配质量的稳定性和一致性具有关键意义。
自动化装配工艺中的一项重要技术是机器人装配。
机器人可以通过编程实现精确的动作控制,能够完成诸如钻孔、铆接、拧紧螺栓等重复性高且精度要求严格的任务。
与人工操作相比,机器人装配不仅能够提高装配效率,还能大大降低人为因素导致的误差。
例如,在飞机机身的装配中,机器人可以沿着预定的轨迹进行钻孔和铆接,确保每个连接点的位置和强度都符合设计要求。
而且,机器人可以在恶劣的工作环境下长时间稳定工作,不受疲劳、情绪等因素的影响。
除了机器人装配,数字化测量技术在航空航天自动化装配中也不可或缺。
通过使用激光跟踪仪、三坐标测量机等高精度测量设备,可以对零部件和装配体进行实时、精确的测量和监控。
在装配前,对零部件的尺寸和形状进行检测,及时发现和剔除不合格产品,从而避免在装配过程中出现问题。
在装配过程中,通过实时测量和反馈,可以对装配误差进行及时调整和修正,确保装配精度。
另外,自动化装配工装夹具的设计和应用也是关键环节。
工装夹具的作用是对零部件进行定位和夹紧,保证其在装配过程中的位置精度和稳定性。
为了适应不同型号和规格的产品装配需求,工装夹具往往需要具备高度的通用性和可调整性。
在航空发动机的装配中,采用专门设计的工装夹具可以确保叶片、叶轮等关键零部件的安装精度。
同时,通过对工装夹具的优化设计,可以减少装配过程中的装夹次数,提高装配效率。
然而,航空航天自动化装配工艺的实施并非一帆风顺,也面临着一些挑战。
激光投影定位技术在飞机装配中的应用研究
激光投影定位技术是一种基于激光投影的高精度定位技术,广泛应用于飞机装配过程中。
本文将重点研究激光投影定位技术在飞机装配中的应用。
激光投影定位技术是一种非接触式的定位技术,通过将激光束投射到目标物体上,利用激光影像进行定位识别。
相较于传统的接触式测量方法,激光投影定位技术具有非常高的精度和快速性,能够大大提高装配效率和质量。
激光投影定位技术可以用于精确定位和定向。
在飞机装配过程中,需要对多个部件进行装配和定位,激光投影定位技术可以通过投影准确的激光影像,指示工人将零部件放置在正确的位置上,确保装配的精度和质量。
激光投影定位技术还能够实现对复杂部件的快速定向,提高装配效率。
激光投影定位技术还可以用于实时显示和指导。
在飞机装配过程中,工人需要根据一份装配图纸进行装配,但传统的装配图纸存在较大的不便和限制,容易出现误差。
激光投影定位技术可以通过投影激光影像,实时显示和指导装配过程,帮助工人准确理解和执行装配工序,提高装配效率和质量。
激光投影定位技术在飞机装配中具有广泛的应用价值。
通过提供精确定位和定向、实时测量和检测、实时显示和指导等功能,激光投影定位技术可以大幅提高飞机装配的效率和质量,为飞机制造业的发展做出重要贡献。
一、飞机装配定位方法及其应用案例飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机;机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用;在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位;;定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法:1、用基准零件定位待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置;这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用;基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作;在飞机制造中,液压、气动附件以及具有如图1-1所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片;这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便;2、用画线定位即待装配的零件按画在零件上的线条确定装配位置,如图1-2所示,角材位置按腹板上划线定位;这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法3、用装配孔定位即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置;如图1-3所示;其中,孔称为装配孔;装配孔的数量取决于零件的尺寸和刚度,一般不少于两个;在尺寸大、刚性弱的零件上取的装配孔数量应适当增加;这种定位方法在铆接装配中应用比较广泛;它适用于平面型和单曲面壁板型组合件装配;按装配孔定位的特点:1定位迅速、方便;2减少或简化装配型架;3开敞性好;4比画线定位准确度高;用装配孔定位的装配方法不需要使用专用夹具,故在成批生产中,在保证准确度前提下,应尽量使用装配孔定位的方法;对一些形状不是很复杂的组合件或板件,如平板、单曲度以及曲度变化不大的双曲度外形板件,都可采用装配孔方法进行装配;4、用装配型架定位最基本的一种定位方法;准确度取决于装配型架的准确度,保证装配准确度先保证装配型架的准确度;由于飞机的零件、组合件尺寸大,刚度小,因此,为了进一步提高零部件之间的协调性和互换性,确保装配准确度,在飞机装配中通常采用装配型架夹具定位来保证零组件在空间相对准确的位置关系;装配型架定位是飞机制造中最基本的一种定位方法,它除了起定位作用外,还有校正零件形状和限制装配变形的作用;一般机械产品的装配夹具是为了提高生产生产率,而飞机装配型架的主要功能是确保零件组件在空间相对正确位置;零件定位、校正零件组件的空间位置的准确度;图1-4 机翼装配型架示意图图1-4所示为机翼装配型架示意图;机翼外形由卡板定位,机翼接头及副翼悬挂接头由反映部件之间连接关系的接头定位器来定位;飞机装配中采用了大量装配复杂的型架,使制造费用大,生产准备期长,因此,在型架设计中应仔细研究各装配单元的定位方法,在确保准确度的前提下,综合采用各种定位方法,使型架结构尽可能简单;装配型架定位的特点:1装配的准确度高,有校验零件外行和限制装配变形的作用;2定位迅速、方便,可以提高装配工作生产率;3装配工作不够开敞,定位件占具空间;4保证产品达到生产互换和使用互换的要求;5生产准备周期长;5、用坐标定位孔定位,定位孔分别配置在型架和零件上而装配孔在装配的两个零件上;6、用基准定位孔定位,基准定位孔是配置在两个组合件板件或者锻件,而装配孔在两个零件上对定位的要求:1保证定位符合图纸和技术条件所规定的准确度要求;2定位和固定要操作简单可靠;3所用的工艺装备简单,制造费用少;二、飞机装配型架的作用及其应用案例型架的功用:1、保证产品的准确度及互换性;首先,应有过定位来保证零件的准确形状,这样才能保证工件在装配过程中既有准确形状又有必须的工艺刚度;其次,无论铆接、胶接、焊接,在连接中都产生不同程度的变形,装配型架要能限制工件的变形;第三,一般机械制造中保证产品互换性主要通过公差及配合制度和通用量具,而飞机制造中通过相互协调的成套的装配型架;因此型架的另一特点是成套性和协调性;2、改善劳动条件,提高装配工作生产率,降低成本;飞机装配型架关键特性具有一般关键特性的特点,同时结合飞机柔性装配型架与数字化测控制系统在飞机装配中的应用,飞机装配型架关键特性还具有一些独特的特点:1在装配型架设计阶段,根据用户需求与被装配产品特点,结合当前企业拥有的加工、制造等能力,设计产品装配型架;在设计过程中主要涉及为保证飞机产品主要尺寸和位置的定位器设计、保证产品外形准确度的定位面的设计等,初步把这些主要尺寸作为关键特性进行控制;装配型架关键特性与一般关键特性一样根据关键特性的可测量性和可控制性沿制造树逐级向下传递,形成关键特性树,同时上级关键特性由下级关键特性保证;2在装配型架安装阶段,把设计阶段定义的保证产品主要尺寸和外形准确度等定位特征作为关键特性,在主要定位结构上设置靶标点,把测量靶标点的坐标与理论坐标相比较,进行实时反馈和补偿,精确安装各种定位器;3在产品装配阶段,控制系统控制随动定位器运动到理论位置以精确定位产品,把这类通过控制系统控制的随动定位器或定位机构的精确定位也作为关键特性进行控制;航空制造业的竞争日趋激烈,人们要求飞机的承载能力更强,更高效,而交货周期却更短;为满足这些严格的要求,飞机设计师不得不寻求更先进的设计方法和工具,以提高产品质量,缩短研制周期;有限元分析方法和智能设计系统加速了产品的优化设计,使零件、组合件的设计达到了前所未有的精度;这些先进的方法和工具为型架设计方法的改进提供了技术基础;传统型架设计方法存在的问题飞机结构件尺寸大,刚度小,而制造精确度要求高;为保证产品制造精度和互换协调,飞机制造过程中采用了成套装配型架;为减小装配过程中结构的变形并保证准确定位,现有装配型架采用刚性结构,而且一套型架只能用于一个装配对象,因此,飞机许多公司都采用了“确定装配”生产准备过程中需制造大量的装配型设计方法;架;由于尺寸大,结构复杂,因此,装确定装配是用来描述产品设计过程的配型架的制造周期长,成本高,而且占一个术语,其基本思想是构成产品的地面积大;传统的装配型架上要安装许多定位件,为保证定位精度,定位件的安装往往需要专用安装仪器,如电子经纬仪、激光准直仪等,工作的分散性差,安装效率低,安装周期长;一般飞机生产准备周期占飞机研制周期的1/2以上,而装配型架的设计制造是飞机生产准备的主要内容之一;减少型架的制造时间对缩短整个飞机研制周期有重要意义;为缩短生产准备周期,人们希望飞机设计完成后,生产工装很快就能投入使用,而型架设计的依据是飞机结构数据,因而传统的型架设计往往在飞机设计完成后才开始进行;实际生产过程中,在型架设计中确定装配设计方法装配对象的设计数据经常改动,导致装配型架的设计随之改动,这又延长了型架的设计制造周期;确定装配设计方法为缩短飞机研制周期,目前国外许多公司都采用了“确定装配”设计方法;装确定装配是用来描述产品设计过程的一个术语,其基本思想是构成产品的不同零件在预定义的结合面配合装配,整个装配过程不需要专门的测量仪器和复杂的测量及调整;确定装配设计方法属于面向制造和装配的设计方法的一部分,这种设计方法的潜在好处是减少工装和工具,提高装配效率,从而减少生产准备周期和制造费用;从理论上讲,这种设计方法要求零件的准确度高,不同零件“吸附在一起Snaptogether”就可保证产品装配的准确度;因此,这种设计方法必须以三维CAD系统和智能设计为设计工具,以高精度CNC设备为加工手段;在型架设计中确定装配设计方法的一个具体应用就是采用“销钉板”Pegboard,比如在立柱上加工许多标准的坐标孔,有相应标准的销钉与坐标孔配合;为了定位装配对象,专门加工了许多定位用刻度板完成专用结构的设计制造,这些刻度板上也有坐标孔,专用门加工了许多定位用刻度板,这些刻度板上也有坐标孔,可以通过销钉及相应的坐标孔将刻度板定位在立柱的销钉板上;刻度板是专门针对针对装配对象的特点加工的,用于桁条等结构的定位;飞机结构和装配型架的并行设计民用飞机的结构尺寸愈来愈大,如目前最大的超大型客机A380,双层客舱,高24m,长73m,翼展宽80m,标准机型载客550~650人;飞机结构的大型化对设计人员提出了新的挑战;由于结构尺寸的增大,设计人员需要解决承载和空气动力外形方面所遇到的许多问题,从而导致设计周期更长,设计更改更多,这必然影响工装的设计、制造周期,延长了产品的上市周期;要缩短产品上市周期,在飞机结构设计的同时就应开始工装设计,即飞机产品和飞机工装的并行设计;由于工装的设计依据来源于飞机产品数据,要在最终产品数据还未确定的情况下进行工装设计,工装的部分结构必须独立于产品数据;工装和产品并行设计的一个基本思路是改变传统的工装结构,将其划分为独立于产品数据或只需要基本数据的标准结构和依赖于最终产品数据的专用结构件两部分;装配型架的标准结构部分主要有立柱、底座、辅助支撑等,专用部分主要有用于定位桁条的刻度板、接头定位件等;专用件一般尺寸较小,设计、加工制造周期很短,并且不需专门的大型加工设备;标准结构的设计不需要最终产品数据或只需一些基本数据,因此在飞机产品设计的初期就可进行设计制造可进行设计制造,当产品最终版本发放后只需较短的时间就可完成专用结构的设计制造;标准件和专用件采用确定装配设计方法非常方便,并且不需专用安装工具,装配周期短;这样,在产品设计完成后很短时间内型架就可投入产品装配;确定装确定装配和并行设计方法在A380壁板装配型架的设计制造中取得了巨大的成功;空中客车英国公司以三维零件实体定义和开发的智能设计系统为工具,制造工程师可以将零件几何特征很快转换为桁条定位指针,用于定位每一个桁条;装配型架的柔性设计大型飞机的装配型架更加庞大,制造周期长,占地面积大;传统的装配型架采用刚性结构,一套型架只能装配一个组合件或部件;柔性装配型架可以装配不同产品,能够减少型架数量,从而减少工装制造周期和费用,减少生产用地;柔性设计的基本思想是在型架中采用可以快速调整的机构,以满足不同装配对象的装配要求;一般型架有数个立柱,每个立柱上有多个定位件;分析A340-600的柔性型架的桁条定位部分可以发现;柔性型架的立柱、定位件,甚至底座都是可以移动或调整的;采用确定装配设计方法设计制造的A380壁板装配型架有数个桁条定位在型架上;型架的立柱上有带多个坐标孔的“销钉板”上;定位桁条的刻度板通过定位梢固定在“销钉板”上;立柱上的定位指针在Z向可以通过螺纹调整,通过丝杠可以在Y向移动;立柱通过底座上的导轨可作X向移动;为了保证装配对象在Y向的定位,在底座上往往有多个辅助支撑;辅助支撑通过导轨可作X向移动,Y向定位点可以通过调整伸缩顶杆来调整;空客英国公司制造的柔性高速铆接系统中有两套柔性装配型架,可以铆接A330/340,A319/320/321;A300系列飞机机翼上下共有12种壁板,型架经过一定的调整,还可用于8种壁板的装配;每套型架有10个可移动的立柱,2个围框式接头定位板,5个辅助支撑及底座;每个立柱上有一套定位系统以满足不同壁板结构的定位要求;定位系统包括4个可调节指针定位机构,其中上下2个指针从蒙皮外表面定位,中间两个指针从蒙皮内部对壁板定位;大型飞机装配型架在飞机研制过程中占有重要地位,其设计方法对飞机研制周期有较大影响;柔性设计方法和并行设计的采用可明显缩短型架的制造周期,减少型架数量和占地面积,对降低成本和缩短研制周期具有重要的影响;确定装配设计方法是并行设计和柔性设计实施的基础,而确定装配设计方法必须以三维实体定义和智能设计系统为设计工具,以提高CNC加工设备为手段;三、飞机装配中胶接工艺特点及其应用案例胶接是利用胶粘剂在联接面上产生的机械结合力、物理吸附力和化学键合力而使两个胶接件起来的工艺方法;胶接不仅适用于同种材料,也适用于异种材料;胶接工艺简便,不需要复杂的工艺设备,胶接操作不必在高温高压下进行,因而胶接件不易产生变形,接头应力分布均匀;在通常情况下,胶接接头具有良好的密封性、电绝缘性和耐腐蚀性;胶接是通过胶粘剂将零件连接成装配件的一种方法;与传统的连接方法相比有以下显著的特点:胶接的优点:1不削弱基体材料,形成的接缝时连续的,受力分布比较均匀,连接薄板时,改善了支撑情况,提高了临界应力;2减轻结构重量,提高疲劳强度;3多层胶接提高材料利用率,提高结构破坏安全性能;4胶接结构平滑,有良好的气动性能;5有良好的密封性;6胶接层对金属有防腐保护作用,可以绝缘和防止电化学腐蚀胶接的缺点 ;1性能分散力较大;2生产质量控制要求严格;3胶接质量不易检查;4使用范围受限制,存在老化问题;由于上述的种种优缺点,胶接技术在工业和生活中的应用非常广泛; 当今金属胶接技术的发展方向;1 不断完善及提高胶接质量品质;2 不断降低成本、提高生产效率;3 开拓和发展新材料、新结构的航空胶接技术;胶接的一大重要应用是设备的密封;用液态的密封胶代替传统的橡皮、石棉铜片等固态垫料,使用方便,且可降低对密封面加工精度的要求,同时密封胶不会产生固态垫片因压缩过度和长时间受力而出现的弹性疲劳破坏,使密封效果更加可靠;航空工业是胶接应用的重要部门;由于金属联接件的减少,胶接结构与铆接或结构相比,可使机件重量减轻20~25%,强度比铆接提高30~35%,疲劳强度比铆接提高10倍;因而现代飞机的机身、机翼、舵面等都大量采用胶接的金属板金结构和蜂窝夹层结构,有的大型运输机胶接结构达3200米,有的轰炸机胶接面积占全机表面积的85%;胶接结构在航天领域中必不可少,它有着阻裂、吸波、减震、隔音等特殊作用已经广泛应用于航天工业当中;图3-1 现代飞机的胶接然而在传统的飞机制造过程中需要大量铆钉将金属板连接起来一架小型飞机需要上万个铆钉,若采用胶接代替铆接,可使飞机质量减轻20%、强度提高30%}IZ};如果飞机机身的壁板、整体油箱、机翼的零部件、直升机旋翼、舱门和地板等均采用胶接结构,可明显减轻飞机的质量、改善抗疲劳性和抗腐蚀性能,并具有节油提速增加航程、气动性能好、工艺简单、降低成本、密封绝缘、表面光滑美观和应力分布均匀等优点;目前在各种军用飞机、民用飞机的制造过程中,许多部位均采用结构胶进行粘接与密封如机身隔框、后机身蒙皮、发动机整流罩、副翼蒙皮、机翼前缘、垂尾和平尾前缘、翼根整流片、飞机油箱、机窗、座舱13-14}以及隔板、压板、防火层、出人门、窗口、气孔、管路、机身门窗、各种箱盖端面、垂尾及方向舵连接处等;所谓大飞机是指起飞总质量超过100 t的运输类飞机,既包括军用、民用大型运输机,也包括150座以上的干线客机;近年来在国际大飞机项目研究中,高分子胶粘剂的作用举足轻重:①具有粘接飞机零部件的作用;②具有良好的使用性能如优异的加工性能、良好的热性能、优良的粘接性能、低密度、抗老化性优和环境稳定性好等;因此,胶接结构取代传统连接方式是一种必然趋势,对提高产品性能、减轻结构质量、简化制造工艺和降低费用等具有明显作用;在飞机制造过程中使用的结构胶主要有①青结构胶,如自力-2,J-44-1,SY-13 ,J-40和SY-18等;②酚醛/丁睛结构胶,如JX-4 ,J-04,XJ-9,SF-1 ,JX-9,J-O1用于粘接金属、非金属结构件,20℃剪切强度>20 MPa,150 }C剪切强度>9 MPa和J-1520℃剪切强度>29.4 MPa , 150 }剪切强度>>15.7 MPa,250 }C剪切强度>>8.0 MPa等;③氨酚醛/丁睛结构胶,如J-03 20 }C剪切强度20 MPa,150 9C剪切强度7 MPa等;④酚醛/EP/丁睛结构胶,如J-42等;⑤改性EP结构胶,如自力一4,SL-1等;OEP/聚硫结构胶,如SY-16等;⑥酚醛/缩醛/EP结构胶,如SY-32等;⑦酚醛/缩醛/有机硅结构胶,如204等;我国从20世纪50年代末开始研制航空用结构胶比国外晚了1020年:首先仿制了尼龙/酚醛有孔蜂窝结构胶,其缺点是耐水性能很差;然后改用了自制的丁睛/酚醛结构胶耐温200 0C 20世纪70年代初,成功研制出环氧/丁睛型自力一2结构胶,并将其用于直一五机旋翼无孔蜂窝后段的胶接,从而有效解决了有孔蜂窝结构开胶等问题;随后开发了多种无孔蜂窝结构胶及其配套胶;20世纪80年代,环氧/聚矾型胶粘剂;SY-14胶膜研制成功;1984年,磷酸阳极化耐久铝蜂窝芯研制成功;20世纪90年代,研制出包括胶膜I}l、底胶和发泡胶在内的中温固化、高温固化结构胶系列,特别是中温固化结构胶的应用使航空技术有了较大的进展;近年来某些主要的飞机制造公司相继建立了胶接生产线:西飞公司的胶接生产线,其面积达6 000 mZ,热压罐最大直径3.6 m、长lOm;沈飞公司的铝合金磷酸阳极化工艺取消了含铬酸盐脱氧工序,采用硝酸脱氧,在国际上处于领先地位;近三年来,我国航空等运输用胶粘剂用量的增长率达到11.8%左右},由此说明国内航空用胶粘剂的需求量与日俱增;国内自制的胶粘剂很多都不能满足使用要求,因此每年必须进口大量结构胶和密封胶固;1998年我国自制的胶粘剂仅占世界总量的7%,而美国产品占35%I'}1;航空用胶粘剂更是少之又少;国内客机中大多采用自力一2等结构胶;胶接结构在航天领域中必不可少,它有着阻裂、吸波、减震、隔音等特殊作用已经广泛应用于航天工业当中;图3-2 Cy-35随着近代科学技术的快速发展,运载火箭、洲际导弹、航天飞机等空间运载工具以及飞机、汽车、船舶等交通工具都朝着质量轻、可靠性好、寿命长和能耗低等方向发展;这些新的设计理念对胶粘剂的性能提出了更高的要求,即胶粘剂既要具备良好的综合力学性能,还要具备足够的耐热性能,’};在飞机高速飞行过程中,蜂窝结构件外表的局部温度可260--316℃,其内部温度也可达到200-260℃;由于铝合金的最高使用温度是180℃,故必须采用钦合金或碳纤维复合材料来制造蜂窝结构件;这种结构的设计要求胶粘剂除了具有耐高温性能之外,还必须对钦合金、碳纤维复合材料等具有良好的粘接性能;因此,航空航天等高科技领域对结构胶综合性能的要求越来越高,21世纪的民用飞机要求结构材料必须朝着低密度、高强度、高韧性、耐高温、抗氧化、抗腐蚀、抗疲劳以及隐身吸波性好等方向发展,而优良的航空用结构胶在制造满足上述要求的航空结构部件方面,具有重要的作用;近年来飞机上所用胶粘剂的品种不断增多、数量不断增大,其中改性EP环氧树脂胶粘剂4占68%,此外还包括改性PU聚氨醋、聚酞亚胺5-6和双马来酞亚胺等胶粘剂;另外,结构胶已广泛用于客机的制造:波音一747飞机胶接面积3 200 mz ,洛克希德公司L-1011飞机2 800 mz ,德国MBB公司A300飞机586 m2和A310飞机631 m2 ;而美国B-58飞机上的机身机翼、操作面和整流罩等部位,其胶接面积为全机的80%四、先进飞机装配技术及其应用案例飞机装配是根据尺寸协调原则,将飞机零件或组件按照设计和技术要求进行组合、连接形成更高一级的装配件或整机的过程;社会的需求、市场竞争及相关技术的不断发展,推动着飞机装配技术不断向更高水平演进;迄今为止,飞机装配技术已经历了从人工装配、半自动化装配到自动化装配的发展历程,目前快速发展的柔性装配将自动化装配技术推向了一飞机装配技术已经历了从人工装配、半自动化装配到自动化装配的发展历程,目前快速发展的柔性装配将自动化装配技术推向了一个新的高度;国外先进装配技术的发展状况近10余年来,国外飞机装配技术发展迅速,以B777、A340、A380、F-22、F-35等为代表的新型军、民机集中反映了国外飞机制造技术的现状和发展趋势,在装配技术上基于单一产品数据源的数字量尺寸协调体系,实施数字化尺寸工程技术,通过装配仿真实现装配过程优化,应用柔性模块化的工装技术、加工和检测单元并集成应用为一系列的自动化装配系统进行机体结构的自动化装配,大量米用了长寿命连接技术,实现了长寿命飞机结构的高质量、高效率装配;下面分别从自动化装配工装、自自动化装配单元、自动化装配系统、自动制孔、自动钻铆、装配检测、数字化装配管理技术等方面来介绍国外先进装配技术;1、自动化装配工装技术与传统的装配工装不同,国外装配工装已经发展成数控自动化工装,主要包括行列式柔性装配工装、多点成形真空吸盘式柔性装配工装、分散式机身柔性装配工装、自动对接平合等几类,它们具有模块化、数字化和自动化的特点;1 行列式柔性装配工装行列式柔性装配工装包括壁板工装和翼梁工装;前者用于空客系列民机的机翼壁板的装配,后者用于波音飞机如B-737、B-777、C一17 等飞机翼梁的装配;空客机翼壁板柔性装配工装可完成A330/340、A319/ 320/321 /A300系列飞机的机翼壁板的装配;最新的A380飞机也采用了此类装配工装;。
飞机装配容差分析技术探讨摘要:飞机装配技术是指采用科学、合理的加工工艺,以提高装配的合理性,减少装配误差,确保飞机组装的可靠性和精度。
飞机装配容差分析的技术过程主要是对各种工作的基准进行设计、确定几何容差等,过程比较繁琐。
而飞机装配容差分析的核心技术是准确地确定设计标准,自主地选取合理的容差累积计算模式和计算方法,并在此基础上提出了完善的技术体系,引入了优秀的技术人员以及先进的技术,使飞机的装配容差分析技术得到进一步的提升。
关键词:飞机装配;容差分析;设计基准飞机装配是指采用一套专业的加工工艺,对飞机的各部件、工装等进行科学、合理的协调,使其达到精确、可靠的目的,从而达到改善飞机生产质量、保障飞行安全的目的。
近几年,随着经济的快速发展和社会的发展,对飞机制造技术提出的要求也越来越高。
飞机装配容差分析是飞机安全飞行的关键,装配过程中如果出现偏差,不但会对飞机的组装造成一定的影响,还会造成大量的人力、物力损失,从而影响到飞机项目的后续发展。
为了改进装配技术,促进飞机项目的发展,本文将对飞机装配容差分析技术展开详细的探讨。
1.飞机装配容差分析的工作流程飞机装配容差分析通常是一个循环迭代的过程:第一步,确定初始容差分析的基本输入;第二步,进行容差分析;第三步,依据容差分析的计算结果判断是否满足设计要求,是否需要对输入进行优化;如果需要优化输入,则必须从第一个步骤重新开始;在不进行输入优化的情况下,允许误差分析的运算处理完成。
飞机装配容差分析的基本工作流程详见图1。
在虚线框架中进行容差分析的计算,在粗线框架中进行特定的误差分析计算,菱形决策框用于判断容差分析是否能够结束。
图1飞机装配容差分析工作流程飞机设计基准、飞机几何容差要求、工作包设计基准、工作包内部几何容差、工作包截面控制容差、零组件设计基准和零组件几何容差要求。
在设计基准和飞机的几何容差要求、工作包括设计基准、工作包截面控制容差要求等方面,都是由主要设计单位来确定和管理的;设计包的几何容差要求、零组件设计基准和零组件容差要求通常是设计合同提供商来确定和管理的。
飞机部件装配技术与工艺研究
作者:程永
来源:《科学与财富》2017年第18期
摘要:飞机的研究越来越高端,各方面的设计也在不断的追求完美,而客户的需求也不断的提高,传统的装配已经不在试用现在大多数飞机了,飞机部件的装配也需要越来越精密,要在设计之初将飞机的性能提升,新型的装配方法也不断的产生,部件柔性转配方法就是其中之一,同时设计人员采用试用行强的装配工艺设计,可以提高飞机制造进度,减少成本,更好的满足客户要求。
关键词:飞机部件装配;部件柔性装配方法;装配工艺设计
1.飞机部件装配
飞机部件装配是根据飞机零件尺寸要求,采用飞机装配工装、夹具等辅助装配,同时还要根据飞机设计要求进行指导装配,飞机部件是由组件产生的,飞机组件就是飞机各个零件组装起来的。
飞机部件的转配涉及大量的标准件、零件、附件等,飞机在很多时间内都是进行装配的,飞机制造时间中有将近一半的时间是装配,而飞机典型的部件装配工艺如图2.1,对于飞机部件装配,零件的固定和修配是最重要的,它的精度直接影响后边的流程。
2.部件柔性装配方法
飞机柔性装配技术可以从飞机框、梁零件,蒙皮/壁板零件这两个方面进行分析,飞机部件柔性转配的应用减少了传统飞机转配中刚性定位的影响。
框、梁零件装配时候,主要是解决零件的定位技术,通常的方法就是工艺孔或者是结构交点对飞机零件进行定位,而部件柔性装配技术是对框、梁零件进行定位头设计,图2.1就是定位头的一种,它可以根据对飞机零件定位孔的不同大小而进行不同的组合更换。
对飞机梁类零件的定位,采用柔性滑轨定位,如图2.2,它的优点就是可以定位在滑轨运动范围内不同位置零件的孔与基准面。
对于飞机蒙皮/壁板零件的定位,可以采用吸盘定位,也可以采用点阵柔性夹具进行定位,如图2.3。
这种定位方法比较精确,它是由坐标和计算机同时控制的,可以根据蒙皮/壁板零件外形的不同进行控制,通过计算机测量可以得到与蒙皮一致的坐标点。
3.装配工艺设计
1)协调方案设计,是将飞机部件进行数字化分析,设计符合零件的转配工艺。
2)确定装配单元,通过方案的选用,将飞机部件的装配单元拟定出来,转配单元不要过于庞大。
3)定位基准,飞机部件的定位是最重要的,它是影响飞机转配误差的,采用飞机部件柔性定位。
4)工装设计,通过上边的装配工艺过程,设计符合要求的工装,如制孔机器人。
5)装配仿真,通过计算机进行装配仿真,模拟转配流程,最终确定部件装配工艺和装配过程。
结束语
现在飞机制造中,对于柔性装配技术的应用还不是很广泛,因为它的成本有些偏高,怎样能通过重点因素、飞机结构、复杂程度进行飞机装配,是提高飞机装配精度的一项内容,对于飞机部件柔性装配方法可以从单个部件上进行突破,分别进行装配,实现分步法,形成统一,最好最大标准化,可替代化,这样可以实现快速装配,同时飞机的精度也能得到控制,质量得到提升。
参考文献
[1]范玉清.现代飞机制造技术.[M].北京航空航天大学出版社.
[2]刘舒红.数控化技术在装配工装研制中的应用研究.[D].北京航空航天大学.2004.
[3]郭恩明.国外飞机柔性装配技术.[J].航空制造技术.2005.
[4]刘忠梁.飞机装配协调互换问题与装配型架的设计安装.[M].航空工业出版社.1991.。